// -------------------------------------------------------------------------
// | xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju |
// -------------------------------------------------------------------------
// using a modified approach of xBR:
// http://board.byuu.org/viewtopic.php?f=10&t=2248
// - new rule set preserving small image features
// - highly optimized for performance
// - support alpha channel
// - support multithreading
// - support 64-bit architectures
// - support processing image slices
// - support scaling up to 6xBRZ
// -> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only
// -> support for source/target pitch in bytes!
// -> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image:
// Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis)
// CAVEAT: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition
// in the target image data if you are using multiple threads for processing each enlarged slice!
//
// THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap!
// - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process at least 8-16 rows
#include <stddef.h> // for size_t
#include <stdint.h> // for uint32_t
#include <stdbool.h> // for bool
#include <memory.h> // for memset()
#include <limits.h>
#include <math.h>
// prototypes of exported functions
void xbrz_scale (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, bool has_alpha_channel);
void nearest_neighbor_scale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight);
// algorithm configuration
#define XBRZ_CFG_LUMINANCE_WEIGHT 1
#define XBRZ_CFG_EQUAL_COLOR_TOLERANCE 30
#define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6
#define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2
// blend types
#define BLEND_NONE 0
#define BLEND_NORMAL 1 // a normal indication to blend
#define BLEND_DOMINANT 2 // a strong indication to blend
// handy macros
#ifndef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif // MIN
#ifndef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#endif // MAX
#define GET_BYTE(val,byteno) ((uint8_t) (((val) >> ((byteno) << 3)) & 0xff))
#define GET_BLUE(val) GET_BYTE (val, 0)
#define GET_GREEN(val) GET_BYTE (val, 1)
#define GET_RED(val) GET_BYTE (val, 2)
#define GET_ALPHA(val) GET_BYTE (val, 3)
#define CALC_COLOR24(colFront,colBack,M,N) (uint8_t) ((((uint8_t) (colFront)) * ((unsigned int) (M)) + ((uint8_t) (colBack)) * (((unsigned int) (N)) - ((unsigned int) (M)))) / ((unsigned int) (N)))
#define CALC_COLOR32(colFront,colBack,weightFront,weightBack,weightSum) ((uint8_t) ((((uint8_t) (colFront)) * ((unsigned int) (weightFront)) + ((uint8_t) (colBack)) * ((unsigned int) (weightBack))) / ((unsigned int) (weightSum))))
#define BYTE_ADVANCE(buffer,offset) (((char *) buffer) + (offset))
// compress four blend types into a single byte
#define getTopL(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 0)))
#define getTopR(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 2)))
#define getBottomR(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 4)))
#define getBottomL(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 6)))
#define setTopL(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 0) // buffer is assumed to be initialized before preprocessing!
#define setTopR(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 2)
#define setBottomR(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 4)
#define setBottomL(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 6)
typedef struct blendresult_s
{
uint8_t
blend_f, blend_g,
blend_j, blend_k;
} blendresult_t;
typedef struct kernel_3x3_s
{
uint32_t
a, b, c,
d, e, f,
g, h, i;
} kernel_3x3_t;
typedef struct kernel_4x4_s //kernel for preprocessing step
{
uint32_t
a, b, c, d,
e, f, g, h,
i, j, k, l,
m, n, o, p;
} kernel_4x4_t;
typedef struct colorformat_s
{
int bpp;
void (*alphagrad) (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N);
double (*dist) (uint32_t pix1, uint32_t pix2);
} colorformat_t;
typedef struct outmatrix_s
{
size_t size;
uint32_t* ptr;
int stride;
} outmatrix_t;
typedef uint32_t *(outmatrixreffunc_t) (outmatrix_t *mat, size_t I, size_t J);
typedef struct scaler_s
{
int factor;
void (*blend_line_shallow) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
void (*blend_line_steep) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
void (*blend_line_steep_and_shallow) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
void (*blend_line_diagonal) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
void (*blend_corner) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
} scaler_t;
/////////////////////////////////
// shallow line scaling functions
static void blend_line_shallow_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 2 - 1, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2 - 1, 1), col, 3, 4);
}
static void blend_line_shallow_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 3 - 1, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 3 - 2, 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 3 - 1, 1), col, 3, 4);
*outmatrix_ref (out, 3 - 1, 2) = col;
}
static void blend_line_shallow_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 4 - 1, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 4 - 2, 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 4 - 1, 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 4 - 2, 3), col, 3, 4);
*outmatrix_ref (out, 4 - 1, 2) = col;
*outmatrix_ref (out, 4 - 1, 3) = col;
}
static void blend_line_shallow_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 5 - 3, 4), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 5 - 2, 3), col, 3, 4);
*outmatrix_ref (out, 5 - 1, 2) = col;
*outmatrix_ref (out, 5 - 1, 3) = col;
*outmatrix_ref (out, 5 - 1, 4) = col;
*outmatrix_ref (out, 5 - 2, 4) = col;
}
static void blend_line_shallow_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 3, 4), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 3, 5), col, 3, 4);
*outmatrix_ref (out, 6 - 1, 2) = col;
*outmatrix_ref (out, 6 - 1, 3) = col;
*outmatrix_ref (out, 6 - 1, 4) = col;
*outmatrix_ref (out, 6 - 1, 5) = col;
*outmatrix_ref (out, 6 - 2, 4) = col;
*outmatrix_ref (out, 6 - 2, 5) = col;
}
///////////////////////////////
// steep line scaling functions
static void blend_line_steep_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 0, 2 - 1), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 2 - 1), col, 3, 4);
}
static void blend_line_steep_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 0, 3 - 1), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2, 3 - 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 3 - 1), col, 3, 4);
*outmatrix_ref (out, 2, 3 - 1) = col;
}
static void blend_line_steep_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 0, 4 - 1), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2, 4 - 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 4 - 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 3, 4 - 2), col, 3, 4);
*outmatrix_ref (out, 2, 4 - 1) = col;
*outmatrix_ref (out, 3, 4 - 1) = col;
}
static void blend_line_steep_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 4, 5 - 3), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 3, 5 - 2), col, 3, 4);
*outmatrix_ref (out, 2, 5 - 1) = col;
*outmatrix_ref (out, 3, 5 - 1) = col;
*outmatrix_ref (out, 4, 5 - 1) = col;
*outmatrix_ref (out, 4, 5 - 2) = col;
}
static void blend_line_steep_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 4, 6 - 3), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 5, 6 - 3), col, 3, 4);
*outmatrix_ref (out, 2, 6 - 1) = col;
*outmatrix_ref (out, 3, 6 - 1) = col;
*outmatrix_ref (out, 4, 6 - 1) = col;
*outmatrix_ref (out, 5, 6 - 1) = col;
*outmatrix_ref (out, 4, 6 - 2) = col;
*outmatrix_ref (out, 5, 6 - 2) = col;
}
///////////////////////////////////////////
// steep and shallow line scaling functions
static void blend_line_steep_and_shallow_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); //[!] fixes 7/8 used in xBR
}
static void blend_line_steep_and_shallow_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 3, 4);
*outmatrix_ref (out, 2, 2) = col;
}
static void blend_line_steep_and_shallow_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); //[!] fixes 1/4 used in xBR
*outmatrix_ref (out, 3, 3) = col;
*outmatrix_ref (out, 3, 2) = col;
*outmatrix_ref (out, 2, 3) = col;
}
static void blend_line_steep_and_shallow_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 3, 3), col, 2, 3);
*outmatrix_ref (out, 2, 5 - 1) = col;
*outmatrix_ref (out, 3, 5 - 1) = col;
*outmatrix_ref (out, 4, 5 - 1) = col;
*outmatrix_ref (out, 5 - 1, 2) = col;
*outmatrix_ref (out, 5 - 1, 3) = col;
}
static void blend_line_steep_and_shallow_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4);
color_format->alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4);
*outmatrix_ref (out, 2, 6 - 1) = col;
*outmatrix_ref (out, 3, 6 - 1) = col;
*outmatrix_ref (out, 4, 6 - 1) = col;
*outmatrix_ref (out, 5, 6 - 1) = col;
*outmatrix_ref (out, 4, 6 - 2) = col;
*outmatrix_ref (out, 5, 6 - 2) = col;
*outmatrix_ref (out, 6 - 1, 2) = col;
*outmatrix_ref (out, 6 - 1, 3) = col;
}
//////////////////////////////////
// diagonal line scaling functions
static void blend_line_diagonal_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2);
}
static void blend_line_diagonal_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); //conflict with other rotations for this odd scale
color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8);
color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8); //
}
static void blend_line_diagonal_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 4 - 1, 4 / 2), col, 1, 2);
color_format->alphagrad (outmatrix_ref (out, 4 - 2, 4 / 2 + 1), col, 1, 2);
*outmatrix_ref (out, 4 - 1, 4 - 1) = col;
}
static void blend_line_diagonal_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 5 - 1, 5 / 2 + 0), col, 1, 8); //conflict with other rotations for this odd scale
color_format->alphagrad (outmatrix_ref (out, 5 - 2, 5 / 2 + 1), col, 1, 8);
color_format->alphagrad (outmatrix_ref (out, 5 - 3, 5 / 2 + 2), col, 1, 8); //
color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8);
color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8);
*outmatrix_ref (out, 4, 4) = col;
}
static void blend_line_diagonal_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
color_format->alphagrad (outmatrix_ref (out, 6 - 1, 6 / 2 + 0), col, 1, 2);
color_format->alphagrad (outmatrix_ref (out, 6 - 2, 6 / 2 + 1), col, 1, 2);
color_format->alphagrad (outmatrix_ref (out, 6 - 3, 6 / 2 + 2), col, 1, 2);
*outmatrix_ref (out, 6 - 2, 6 - 1) = col;
*outmatrix_ref (out, 6 - 1, 6 - 1) = col;
*outmatrix_ref (out, 6 - 1, 6 - 2) = col;
}
///////////////////////////
// corner scaling functions
static void blend_corner_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
// model a round corner
color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); //exact: 1 - pi/4 = 0.2146018366
}
static void blend_corner_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
// model a round corner
color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); //exact: 0.4545939598
//color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 7, 256); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale
//color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 7, 256); //0.02826017254
}
static void blend_corner_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
// model a round corner
color_format->alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); //exact: 0.6848532563
color_format->alphagrad (outmatrix_ref (out, 3, 2), col, 9, 100); //0.08677704501
color_format->alphagrad (outmatrix_ref (out, 2, 3), col, 9, 100); //0.08677704501
}
static void blend_corner_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
// model a round corner
color_format->alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); //exact: 0.8631434088
color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); //0.2306749731
color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); //0.2306749731
//color_format->alphagrad (outmatrix_ref (out, 4, 2), col, 1, 64); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale
//color_format->alphagrad (outmatrix_ref (out, 2, 4), col, 1, 64); //0.01676812367
}
static void blend_corner_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
{
// model a round corner
color_format->alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); //exact: 0.9711013910
color_format->alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); //0.4236372243
color_format->alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); //0.4236372243
color_format->alphagrad (outmatrix_ref (out, 5, 3), col, 6, 100); //0.05652034508
color_format->alphagrad (outmatrix_ref (out, 3, 5), col, 6, 100); //0.05652034508
}
/////////////////////////////////////
// scaler objects for various factors
static const scaler_t scalers[] =
{
{ 2, blend_line_shallow_2x, blend_line_steep_2x, blend_line_steep_and_shallow_2x, blend_line_diagonal_2x, blend_corner_2x },
{ 3, blend_line_shallow_3x, blend_line_steep_3x, blend_line_steep_and_shallow_3x, blend_line_diagonal_3x, blend_corner_3x },
{ 4, blend_line_shallow_4x, blend_line_steep_4x, blend_line_steep_and_shallow_4x, blend_line_diagonal_4x, blend_corner_4x },
{ 5, blend_line_shallow_5x, blend_line_steep_5x, blend_line_steep_and_shallow_5x, blend_line_diagonal_5x, blend_corner_5x },
{ 6, blend_line_shallow_6x, blend_line_steep_6x, blend_line_steep_and_shallow_6x, blend_line_diagonal_6x, blend_corner_6x },
};
/////////////////////////////////////////////////////
// alpha gradient functions for various color formats
static void alphagrad24 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
{
// blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
*pixBack = ((CALC_COLOR24 (GET_RED (pixFront), GET_RED (*pixBack), M, N) << 16)
| (CALC_COLOR24 (GET_GREEN (pixFront), GET_GREEN (*pixBack), M, N) << 8)
| (CALC_COLOR24 (GET_BLUE (pixFront), GET_BLUE (*pixBack), M, N) << 0));
}
static void alphagrad32 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
{
// find intermediate color between two colors with alpha channels (=> NO alpha blending!!!)
const unsigned int weightFront = GET_ALPHA (pixFront) * M;
const unsigned int weightBack = GET_ALPHA (*pixBack) * (N - M);
const unsigned int weightSum = weightFront + weightBack;
*pixBack = (weightSum == 0 ? 0 :
(((uint8_t) (weightSum / N)) << 24)
| (CALC_COLOR32 (GET_RED (pixFront), GET_RED (*pixBack), weightFront, weightBack, weightSum) << 16)
| (CALC_COLOR32 (GET_GREEN (pixFront), GET_GREEN (*pixBack), weightFront, weightBack, weightSum) << 8)
| (CALC_COLOR32 (GET_BLUE (pixFront), GET_BLUE (*pixBack), weightFront, weightBack, weightSum) << 0));
}
/////////////////////////////////////////////////////
// color distance functions for various color formats
static double dist24 (uint32_t pix1, uint32_t pix2)
{
//30% perf boost compared to plain distYCbCr()!
//consumes 64 MB memory; using double is only 2% faster, but takes 128 MB
static float diffToDist[256 * 256 * 256];
static bool is_initialized = false;
if (!is_initialized)
{
for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
{
const int r_diff = GET_RED (i) * 2 - 0xFF;
const int g_diff = GET_GREEN (i) * 2 - 0xFF;
const int b_diff = GET_BLUE (i) * 2 - 0xFF;
const double k_b = 0.0593; //ITU-R BT.2020 conversion
const double k_r = 0.2627; //
const double k_g = 1 - k_b - k_r;
const double scale_b = 0.5 / (1 - k_b);
const double scale_r = 0.5 / (1 - k_r);
const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
const double c_b = scale_b * (b_diff - y);
const double c_r = scale_r * (r_diff - y);
diffToDist
[i
] = (float) (sqrt ((y
* y
) + (c_b
* c_b
) + (c_r
* c_r
)));
}
is_initialized = true;
}
const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2);
const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2);
const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2);
return diffToDist[(((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte
(((g_diff + 0xFF) / 2) << 8) |
(((b_diff + 0xFF) / 2) << 0)];
}
static double dist32 (uint32_t pix1, uint32_t pix2)
{
// Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
// 1. if a1 = a2, distance should be: a1 * distYCbCr()
// 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255
// 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr()
//return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2);
//=> following code is 15% faster:
const double d = dist24 (pix1, pix2);
const double a1 = GET_ALPHA (pix1) / 255.0;
const double a2 = GET_ALPHA (pix2) / 255.0;
return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2));
}
///////////////////////////////////////
// color format objects for various bpp
static colorformat_t color_format_24 = { 24, alphagrad24, dist24 };
static colorformat_t color_format_32 = { 32, alphagrad32, dist32 };
//////////////////////////////////////////////////////////
// output matrix reference functions for various rotations
static uint32_t *outmatrixref_0 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + I * mat->stride + J); }
static uint32_t *outmatrixref_90 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + (mat->size - 1 - J) * mat->stride + I); }
static uint32_t *outmatrixref_180 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + (mat->size - 1 - I) * mat->stride + (mat->size - 1 - J)); }
static uint32_t *outmatrixref_270 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + J * mat->stride + (mat->size - 1 - I)); }
///////////////////////////
// core algorithm functions
#ifdef _MSC_VER
#define FORCE_INLINE __forceinline
#elif defined __GNUC__
#define FORCE_INLINE __attribute__((always_inline)) inline
#else
#define FORCE_INLINE inline
#endif
static FORCE_INLINE void preprocess_corners (blendresult_t *result, const kernel_4x4_t *ker, colorformat_t *color_format)
{
// detect blend direction
// result: F, G, J, K corners of "GradientType"
// input kernel area naming convention:
// -----------------
// | A | B | C | D |
// ----|---|---|---|
// | E | F | G | H | //evaluate the four corners between F, G, J, K
// ----|---|---|---| //input pixel is at position F
// | I | J | K | L |
// ----|---|---|---|
// | M | N | O | P |
// -----------------
memset (result
, 0, sizeof (blendresult_t
));
if (((ker->f == ker->g) && (ker->j == ker->k)) || ((ker->f == ker->j) && (ker->g == ker->k)))
return;
const int weight = 4;
double jg = color_format->dist (ker->i, ker->f) + color_format->dist (ker->f, ker->c) + color_format->dist (ker->n, ker->k) + color_format->dist (ker->k, ker->h) + weight * color_format->dist (ker->j, ker->g);
double fk = color_format->dist (ker->e, ker->j) + color_format->dist (ker->j, ker->o) + color_format->dist (ker->b, ker->g) + color_format->dist (ker->g, ker->l) + weight * color_format->dist (ker->f, ker->k);
if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
{
const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk;
if (ker->f != ker->g && ker->f != ker->j)
result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
if (ker->k != ker->j && ker->k != ker->g)
result->blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
}
else if (fk < jg)
{
const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * fk < jg;
if (ker->j != ker->f && ker->j != ker->k)
result->blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
if (ker->g != ker->f && ker->g != ker->k)
result->blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
}
return;
}
static FORCE_INLINE void blend_pixel (const scaler_t *scaler, const kernel_3x3_t *ker, uint32_t *target, int trgWidth, uint8_t blendInfo, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) //result of preprocessing all four corners of pixel "e"
{
// input kernel area naming convention:
// -------------
// | A | B | C |
// ----|---|---|
// | D | E | F | //input pixel is at position E
// ----|---|---|
// | G | H | I |
// -------------
uint32_t
a, b, c,
d, e, f,
g, h, i;
uint8_t blend;
if (outmatrix_ref == outmatrixref_270) { a = ker->c; b = ker->f; c = ker->i; d = ker->b; e = ker->e; f = ker->h; g = ker->a; h = ker->d; i = ker->g; blend = ((blendInfo << 6) | (blendInfo >> 2)) & 0xff; }
else if (outmatrix_ref == outmatrixref_180) { a = ker->i; b = ker->h; c = ker->g; d = ker->f; e = ker->e; f = ker->d; g = ker->c; h = ker->b; i = ker->a; blend = ((blendInfo << 4) | (blendInfo >> 4)) & 0xff; }
else if (outmatrix_ref == outmatrixref_90) { a = ker->g; b = ker->d; c = ker->a; d = ker->h; e = ker->e; f = ker->b; g = ker->i; h = ker->f; i = ker->c; blend = ((blendInfo << 2) | (blendInfo >> 6)) & 0xff; }
else { a = ker->a; b = ker->b; c = ker->c; d = ker->d; e = ker->e; f = ker->f; g = ker->g; h = ker->h; i = ker->i; blend = ((blendInfo << 0) | (blendInfo >> 8)) & 0xff; }
if (getBottomR (blend) >= BLEND_NORMAL)
{
uint32_t px;
bool doLineBlend;
if (getBottomR (blend) >= BLEND_DOMINANT)
doLineBlend = true;
else if (getTopR (blend) != BLEND_NONE && (color_format->dist (e, g) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) //but support double-blending for 90° corners
doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
else if (getBottomL (blend) != BLEND_NONE && (color_format->dist (e, c) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
else if ((color_format->dist (e, i) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
&& (color_format->dist (g, h) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
&& (color_format->dist (h, i) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
&& (color_format->dist (i, f) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
&& (color_format->dist (f, c) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
doLineBlend = false; // no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
else
doLineBlend = true;
outmatrix_t out;
out.size = scaler->factor;
out.ptr = target;
out.stride = trgWidth;
px = (color_format->dist (e, f) <= color_format->dist (e, h) ? f : h); //choose most similar color
if (doLineBlend)
{
const double fg = color_format->dist (f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
const double hc = color_format->dist (h, c); //
const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g);
const bool haveSteepLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c);
if (haveShallowLine)
{
if (haveSteepLine)
scaler->blend_line_steep_and_shallow (px, &out, color_format, outmatrix_ref);
else
scaler->blend_line_shallow (px, &out, color_format, outmatrix_ref);
}
else
{
if (haveSteepLine)
scaler->blend_line_steep (px, &out, color_format, outmatrix_ref);
else
scaler->blend_line_diagonal (px, &out, color_format, outmatrix_ref);
}
}
else
scaler->blend_corner (px, &out, color_format, outmatrix_ref);
}
}
static void scale_image (const scaler_t *scaler, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, int yFirst, int yLast, colorformat_t *color_format)
{
yFirst = MAX (yFirst, 0);
yLast = MIN (yLast, srcHeight);
if (yFirst >= yLast || srcWidth <= 0)
return;
const int trgWidth = srcWidth * scaler->factor;
// "use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
// "sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
const int bufferSize = srcWidth;
uint8_t *preProcBuffer = (uint8_t *) (trg + yLast * scaler->factor * trgWidth) - bufferSize;
memset (preProcBuffer
, 0, bufferSize
);
// initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
// this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
if (yFirst > 0)
{
const int y = yFirst - 1;
const uint32_t *s_m1 = src + srcWidth * MAX (y - 1, 0);
const uint32_t *s_0 = src + srcWidth * y; //center line
const uint32_t *s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
const uint32_t *s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
for (int x = 0; x < srcWidth; ++x)
{
blendresult_t res;
const int x_m1 = MAX (x - 1, 0);
const int x_p1 = MIN (x + 1, srcWidth - 1);
const int x_p2 = MIN (x + 2, srcWidth - 1);
kernel_4x4_t ker; // perf: initialization is negligible
ker.a = s_m1[x_m1]; ker.b = s_m1[x]; ker.c = s_m1[x_p1]; ker.d = s_m1[x_p2]; // read sequentially from memory as far as possible
ker.e = s_0[x_m1]; ker.f = s_0[x]; ker.g = s_0[x_p1]; ker.h = s_0[x_p2];
ker.i = s_p1[x_m1]; ker.j = s_p1[x]; ker.k = s_p1[x_p1]; ker.l = s_p1[x_p2];
ker.m = s_p2[x_m1]; ker.n = s_p2[x]; ker.o = s_p2[x_p1]; ker.p = s_p2[x_p2];
preprocess_corners (&res, &ker, color_format);
// preprocessing blend result:
// ---------
// | F | G | //evalute corner between F, G, J, K
// ----|---| //input pixel is at position F
// | J | K |
// ---------
setTopR (&preProcBuffer[x], res.blend_j);
if (x + 1 < bufferSize)
setTopL (&preProcBuffer[x + 1], res.blend_k);
}
}
//------------------------------------------------------------------------------------
for (int y = yFirst; y < yLast; ++y)
{
uint32_t *out = trg + scaler->factor * y * trgWidth; //consider MT "striped" access
const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0);
const uint32_t* s_0 = src + srcWidth * y; //center line
const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
uint8_t blend_xy1 = 0; // corner blending for current (x, y + 1) position
for (int x = 0; x < srcWidth; ++x, out += scaler->factor)
{
// all those bounds checks have only insignificant impact on performance!
const int x_m1 = MAX (x - 1, 0); //perf: prefer array indexing to additional pointers!
const int x_p1 = MIN (x + 1, srcWidth - 1);
const int x_p2 = MIN (x + 2, srcWidth - 1);
kernel_4x4_t ker4; //perf: initialization is negligible
ker4.a = s_m1[x_m1]; ker4.b = s_m1[x]; ker4.c = s_m1[x_p1]; ker4.d = s_m1[x_p2]; // read sequentially from memory as far as possible
ker4.e = s_0[x_m1]; ker4.f = s_0[x]; ker4.g = s_0[x_p1]; ker4.h = s_0[x_p2];
ker4.i = s_p1[x_m1]; ker4.j = s_p1[x]; ker4.k = s_p1[x_p1]; ker4.l = s_p1[x_p2];
ker4.m = s_p2[x_m1]; ker4.n = s_p2[x]; ker4.o = s_p2[x_p1]; ker4.p = s_p2[x_p2];
// evaluate the four corners on bottom-right of current pixel
uint8_t blend_xy = 0; //for current (x, y) position
{
blendresult_t res;
preprocess_corners (&res, &ker4, color_format);
// preprocessing blend result:
// ---------
// | F | G | //evalute corner between F, G, J, K
// ----|---| //current input pixel is at position F
// | J | K |
// ---------
blend_xy = preProcBuffer[x];
setBottomR (&blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence!
setTopR (&blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1)
preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row
blend_xy1 = 0;
setTopL (&blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column
if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y)
setBottomL (&preProcBuffer[x + 1], res.blend_g);
}
//fill block of size scale * scale with the given color
uint32_t *blk = out;
for (int _blk_y = 0; _blk_y < scaler->factor; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t)))
for (int _blk_x = 0; _blk_x < scaler->factor; ++_blk_x)
blk[_blk_x] = ker4.f;
//place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
//blend four corners of current pixel
if (blend_xy != 0) //good 5% perf-improvement
{
kernel_3x3_t ker3; //perf: initialization is negligible
ker3.a = ker4.a; ker3.b = ker4.b; ker3.c = ker4.c;
ker3.d = ker4.e; ker3.e = ker4.f; ker3.f = ker4.g;
ker3.g = ker4.i; ker3.h = ker4.j; ker3.i = ker4.k;
blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_0);
blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_90);
blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_180);
blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_270);
}
}
}
}
/////////////////////
// exported functions
void nearest_neighbor_scale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight)
{
int srcPitch = srcWidth * sizeof (uint32_t);
int trgPitch = trgWidth * sizeof (uint32_t);
int yFirst;
int yLast;
#if 0 // going over source image - fast for upscaling, since source is read only once
yFirst = 0;
yLast = MIN (trgHeight, srcHeight);
if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0)
return; // consistency check
for (int y = yFirst; y < yLast; ++y)
{
//mathematically: ySrc = floor(srcHeight * yTrg / trgHeight)
// => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight
//keep within for loop to support MT input slices!
const int yTrg_first = (y * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight)
const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight)
const int blockHeight = yTrg_last - yTrg_first;
if (blockHeight > 0)
{
const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch);
/**/ uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, yTrg_first * trgPitch);
int xTrg_first = 0;
for (int x = 0; x < srcWidth; ++x)
{
const int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth;
const int blockWidth = xTrg_last - xTrg_first;
if (blockWidth > 0)
{
const uint32_t trgColor = srcLine[x];
uint32_t *blkLine = trgLine;
xTrg_first = xTrg_last;
for (int blk_y = 0; blk_y < blockHeight; ++blk_y, blkLine = (uint32_t *) BYTE_ADVANCE (blkLine, trgPitch))
for (int blk_x = 0; blk_x < blockWidth; ++blk_x)
blkLine[blk_x] = trgColor;
trgLine += blockWidth;
}
}
}
}
#else // going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!
yFirst = 0;
yLast = trgHeight;
if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0)
return; // consistency check
for (int y = yFirst; y < yLast; ++y)
{
/**/ uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, y * trgPitch);
const int ySrc = srcHeight * y / trgHeight;
const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, ySrc * srcPitch);
for (int x = 0; x < trgWidth; ++x)
{
const int xSrc = srcWidth * x / trgWidth;
trgLine[x] = srcLine[xSrc];
}
}
#endif // going over source or target
return;
}
void xbrz_scale (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, bool has_alpha_channel)
{
if ((factor < 2) || (factor > 6))
return; // consistency check
scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, (has_alpha_channel ? &color_format_32 : &color_format_24));
return;
}