// ****************************************************************************
 
// * This file is part of the HqMAME project. It is distributed under         *
 
// * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0         *
 
// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved          *
 
// *                                                                          *
 
// * Additionally and as a special exception, the author gives permission     *
 
// * to link the code of this program with the MAME library (or with modified *
 
// * versions of MAME that use the same license as MAME), and distribute      *
 
// * linked combinations including the two. You must obey the GNU General     *
 
// * Public License in all respects for all of the code used other than MAME. *
 
// * If you modify this file, you may extend this exception to your version   *
 
// * of the file, but you are not obligated to do so. If you do not wish to   *
 
// * do so, delete this exception statement from your version.                *
 
// ****************************************************************************
 
 
 
// -------------------------------------------------------------------------
 
// | xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju |
 
// -------------------------------------------------------------------------
 
// using a modified approach of xBR:
 
// http://board.byuu.org/viewtopic.php?f=10&t=2248
 
//  - new rule set preserving small image features
 
//  - highly optimized for performance
 
//  - support alpha channel
 
//  - support multithreading
 
//  - support 64-bit architectures
 
//  - support processing image slices
 
//  - support scaling up to 6xBRZ
 
 
 
// -> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only
 
// -> support for source/target pitch in bytes!
 
// -> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image:
 
//    Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis)
 
//    CAVEAT: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition
 
//    in the target image data if you are using multiple threads for processing each enlarged slice!
 
// 
 
// THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap!
 
//                - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process at least 8-16 rows
 
 
 
 
 
#include <stddef.h> // for size_t
 
#include <stdint.h> // for uint32_t
 
#include <memory.h> // for memset()
 
#include <limits.h>
 
#include <math.h>
 
 
 
 
 
#ifdef __cplusplus
 
#define EXTERN_C extern "C"
 
#else // !__cplusplus
 
#define EXTERN_C
 
#endif // __cplusplus
 
 
 
 
 
#ifdef _MSC_VER
 
#define FORCE_INLINE __forceinline
 
#elif defined __GNUC__
 
#define FORCE_INLINE __attribute__((always_inline)) inline
 
#else
 
#define FORCE_INLINE inline
 
#endif
 
 
 
 
 
// scaler configuration
 
#define XBRZ_CFG_LUMINANCE_WEIGHT 1
 
#define XBRZ_CFG_EQUAL_COLOR_TOLERANCE 30
 
#define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6
 
#define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2
 
 
 
 
 
// slice types
 
#define XBRZ_SLICETYPE_SOURCE 1
 
#define XBRZ_SLICETYPE_TARGET 2
 
 
 
 
 
// handy macros
 
#define GET_BYTE(val,byteno) ((unsigned char) (((val) >> ((byteno) << 3)) & 0xff))
 
#define GET_BLUE(val)  GET_BYTE (val, 0)
 
#define GET_GREEN(val) GET_BYTE (val, 1)
 
#define GET_RED(val)   GET_BYTE (val, 2)
 
#define GET_ALPHA(val) GET_BYTE (val, 3)
 
#define CALC_COLOR24(colFront,colBack,M,N) (unsigned char) ((((unsigned char) (colFront)) * ((unsigned int) (M)) + ((unsigned char) (colBack)) * (((unsigned int) (N)) - ((unsigned int) (M)))) / ((unsigned int) (N)))
 
#define CALC_COLOR32(colFront,colBack,weightFront,weightBack,weightSum) ((unsigned char) ((((unsigned char) (colFront)) * ((unsigned int) (weightFront)) + ((unsigned char) (colBack)) * ((unsigned int) (weightBack))) / ((unsigned int) (weightSum))))
 
#define BYTE_ADVANCE(buffer,offset) (((char *) buffer) + (offset))
 
#ifndef MIN
 
#define MIN(a,b) ((a) < (b) ? (a) : (b))
 
#endif // MIN
 
#ifndef MAX
 
#define MAX(a,b) ((a) > (b) ? (a) : (b))
 
#endif // MAX
 
 
 
 
 
enum BlendType
 
{
 
   BLEND_NONE = 0,
 
   BLEND_NORMAL,   //a normal indication to blend
 
   BLEND_DOMINANT, //a strong indication to blend
 
   //attention: BlendType must fit into the value range of 2 bit!!!
 
};
 
 
 
 
 
typedef struct blendresult_s
 
{
 
   BlendType
 
      /**/blend_f, blend_g,
 
      /**/blend_j, blend_k;
 
} blendresult_t;
 
 
 
 
 
typedef struct kernel_3x3_s
 
{
 
   uint32_t
 
      /**/a, b, c,
 
      /**/d, e, f,
 
      /**/g, h, i;
 
} kernel_3x3_t;
 
 
 
 
 
typedef struct kernel_4x4_s //kernel for preprocessing step
 
{
 
   uint32_t
 
      /**/a, b, c, d,
 
      /**/e, f, g, h,
 
      /**/i, j, k, l,
 
      /**/m, n, o, p;
 
} kernel_4x4_t;
 
 
 
 
 
typedef struct outmatrix_s
 
{
 
   size_t size;
 
   uint32_t* ptr;
 
   int stride;
 
   int rotDeg; // either 0, 90, 180 or 270
 
} outmatrix_t;
 
 
 
 
 
static void outmatrix_create (outmatrix_t *mat, size_t size, uint32_t *ptr, int stride, int rotDeg) //access matrix area, top-left at position "out" for image with given width
 
{
 
   mat->size = size;
 
   mat->ptr = ptr;
 
   mat->stride = stride;
 
   mat->rotDeg = rotDeg;
 
}
 
 
 
 
 
static uint32_t *outmatrix_ref (outmatrix_t *mat, size_t I, size_t J)
 
{
 
   size_t I_old;
 
   size_t J_old;
 
   // calculate input matrix coordinates after rotation: (i, j) = (row, col) indices, N = size of (square) matrix
 
   if (mat->rotDeg == 270) { I_old = J;                 J_old = mat->size - 1 - I; }
 
   else if (mat->rotDeg == 180) { I_old = mat->size - 1 - I; J_old = mat->size - 1 - J; }
 
   else if (mat->rotDeg == 90) { I_old = mat->size - 1 - J; J_old = I; }
 
   else { I_old = I;                 J_old = J; }
 
 
 
   return (mat->ptr + I_old * mat->stride + J_old);
 
}
 
 
 
 
 
typedef void (alphagrad_func) (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N);
 
typedef double (dist_func) (uint32_t pix1, uint32_t pix2);
 
 
 
 
 
typedef struct scaler_s
 
{
 
   int factor;
 
   void (*blend_line_shallow) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
 
   void (*blend_line_steep) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
 
   void (*blend_line_steep_and_shallow) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
 
   void (*blend_line_diagonal) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
 
   void (*blend_corner) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
 
} scaler_t;
 
 
 
 
 
/////////////////////////////////
 
// shallow line scaling functions
 
 
 
static void blend_line_shallow_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 2 - 1, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2 - 1, 1), col, 3, 4);
 
}
 
static void blend_line_shallow_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 3 - 1, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 3 - 2, 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 3 - 1, 1), col, 3, 4);
 
   *outmatrix_ref (out, 3 - 1, 2) = col;
 
}
 
static void blend_line_shallow_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 4 - 1, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 4 - 2, 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 4 - 1, 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 4 - 2, 3), col, 3, 4);
 
   *outmatrix_ref (out, 4 - 1, 2) = col;
 
   *outmatrix_ref (out, 4 - 1, 3) = col;
 
}
 
static void blend_line_shallow_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 5 - 3, 4), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 5 - 2, 3), col, 3, 4);
 
   *outmatrix_ref (out, 5 - 1, 2) = col;
 
   *outmatrix_ref (out, 5 - 1, 3) = col;
 
   *outmatrix_ref (out, 5 - 1, 4) = col;
 
   *outmatrix_ref (out, 5 - 2, 4) = col;
 
}
 
static void blend_line_shallow_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 3, 4), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 3, 5), col, 3, 4);
 
   *outmatrix_ref (out, 6 - 1, 2) = col;
 
   *outmatrix_ref (out, 6 - 1, 3) = col;
 
   *outmatrix_ref (out, 6 - 1, 4) = col;
 
   *outmatrix_ref (out, 6 - 1, 5) = col;
 
   *outmatrix_ref (out, 6 - 2, 4) = col;
 
   *outmatrix_ref (out, 6 - 2, 5) = col;
 
}
 
 
 
///////////////////////////////
 
// steep line scaling functions
 
 
 
static void blend_line_steep_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 0, 2 - 1), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 1, 2 - 1), col, 3, 4);
 
}
 
static void blend_line_steep_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 0, 3 - 1), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2, 3 - 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 1, 3 - 1), col, 3, 4);
 
   *outmatrix_ref (out, 2, 3 - 1) = col;
 
}
 
static void blend_line_steep_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 0, 4 - 1), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2, 4 - 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 1, 4 - 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 3, 4 - 2), col, 3, 4);
 
   *outmatrix_ref (out, 2, 4 - 1) = col;
 
   *outmatrix_ref (out, 3, 4 - 1) = col;
 
}
 
static void blend_line_steep_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 4, 5 - 3), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 3, 5 - 2), col, 3, 4);
 
   *outmatrix_ref (out, 2, 5 - 1) = col;
 
   *outmatrix_ref (out, 3, 5 - 1) = col;
 
   *outmatrix_ref (out, 4, 5 - 1) = col;
 
   *outmatrix_ref (out, 4, 5 - 2) = col;
 
}
 
static void blend_line_steep_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 4, 6 - 3), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 5, 6 - 3), col, 3, 4);
 
   *outmatrix_ref (out, 2, 6 - 1) = col;
 
   *outmatrix_ref (out, 3, 6 - 1) = col;
 
   *outmatrix_ref (out, 4, 6 - 1) = col;
 
   *outmatrix_ref (out, 5, 6 - 1) = col;
 
   *outmatrix_ref (out, 4, 6 - 2) = col;
 
   *outmatrix_ref (out, 5, 6 - 2) = col;
 
}
 
 
 
///////////////////////////////////////////
 
// steep and shallow line scaling functions
 
 
 
static void blend_line_steep_and_shallow_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); //[!] fixes 7/8 used in xBR
 
}
 
static void blend_line_steep_and_shallow_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2, 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 1, 2), col, 3, 4);
 
   *outmatrix_ref (out, 2, 2) = col;
 
}
 
static void blend_line_steep_and_shallow_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); //[!] fixes 1/4 used in xBR
 
   *outmatrix_ref (out, 3, 3) = col;
 
   *outmatrix_ref (out, 3, 2) = col;
 
   *outmatrix_ref (out, 2, 3) = col;
 
}
 
static void blend_line_steep_and_shallow_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 3, 3), col, 2, 3);
 
   *outmatrix_ref (out, 2, 5 - 1) = col;
 
   *outmatrix_ref (out, 3, 5 - 1) = col;
 
   *outmatrix_ref (out, 4, 5 - 1) = col;
 
   *outmatrix_ref (out, 5 - 1, 2) = col;
 
   *outmatrix_ref (out, 5 - 1, 3) = col;
 
}
 
static void blend_line_steep_and_shallow_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4);
 
   alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4);
 
   *outmatrix_ref (out, 2, 6 - 1) = col;
 
   *outmatrix_ref (out, 3, 6 - 1) = col;
 
   *outmatrix_ref (out, 4, 6 - 1) = col;
 
   *outmatrix_ref (out, 5, 6 - 1) = col;
 
   *outmatrix_ref (out, 4, 6 - 2) = col;
 
   *outmatrix_ref (out, 5, 6 - 2) = col;
 
   *outmatrix_ref (out, 6 - 1, 2) = col;
 
   *outmatrix_ref (out, 6 - 1, 3) = col;
 
}
 
 
 
//////////////////////////////////
 
// diagonal line scaling functions
 
 
 
static void blend_line_diagonal_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2);
 
}
 
static void blend_line_diagonal_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); //conflict with other rotations for this odd scale
 
   alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8);
 
   alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8); //
 
}
 
static void blend_line_diagonal_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 4 - 1, 4 / 2), col, 1, 2);
 
   alphagrad (outmatrix_ref (out, 4 - 2, 4 / 2 + 1), col, 1, 2);
 
   *outmatrix_ref (out, 4 - 1, 4 - 1) = col;
 
}
 
static void blend_line_diagonal_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 5 - 1, 5 / 2 + 0), col, 1, 8); //conflict with other rotations for this odd scale
 
   alphagrad (outmatrix_ref (out, 5 - 2, 5 / 2 + 1), col, 1, 8);
 
   alphagrad (outmatrix_ref (out, 5 - 3, 5 / 2 + 2), col, 1, 8); //
 
   alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8);
 
   alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8);
 
   *outmatrix_ref (out, 4, 4) = col;
 
}
 
static void blend_line_diagonal_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   alphagrad (outmatrix_ref (out, 6 - 1, 6 / 2 + 0), col, 1, 2);
 
   alphagrad (outmatrix_ref (out, 6 - 2, 6 / 2 + 1), col, 1, 2);
 
   alphagrad (outmatrix_ref (out, 6 - 3, 6 / 2 + 2), col, 1, 2);
 
   *outmatrix_ref (out, 6 - 2, 6 - 1) = col;
 
   *outmatrix_ref (out, 6 - 1, 6 - 1) = col;
 
   *outmatrix_ref (out, 6 - 1, 6 - 2) = col;
 
}
 
 
 
///////////////////////////
 
// corner scaling functions
 
 
 
static void blend_corner_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   //model a round corner
 
   alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); //exact: 1 - pi/4 = 0.2146018366
 
}
 
static void blend_corner_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   //model a round corner
 
   alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); //exact: 0.4545939598
 
   //alphagrad (outmatrix_ref (out, 2, 1), col, 7, 256); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale
 
   //alphagrad (outmatrix_ref (out, 1, 2), col, 7, 256); //0.02826017254
 
}
 
static void blend_corner_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   //model a round corner
 
   alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); //exact: 0.6848532563
 
   alphagrad (outmatrix_ref (out, 3, 2), col, 9, 100); //0.08677704501
 
   alphagrad (outmatrix_ref (out, 2, 3), col, 9, 100); //0.08677704501
 
}
 
static void blend_corner_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   // model a round corner
 
   alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); //exact: 0.8631434088
 
   alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); //0.2306749731
 
   alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); //0.2306749731
 
   //alphagrad (outmatrix_ref (out, 4, 2), col, 1, 64); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale
 
   //alphagrad (outmatrix_ref (out, 2, 4), col, 1, 64); //0.01676812367
 
}
 
static void blend_corner_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
 
{
 
   //model a round corner
 
   alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); //exact: 0.9711013910
 
   alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); //0.4236372243
 
   alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); //0.4236372243
 
   alphagrad (outmatrix_ref (out, 5, 3), col, 6, 100); //0.05652034508
 
   alphagrad (outmatrix_ref (out, 3, 5), col, 6, 100); //0.05652034508
 
}
 
 
 
/////////////////////////////////////
 
// scaler objects for various factors
 
 
 
static const scaler_t scalers[] =
 
{
 
   { 2, blend_line_shallow_2x, blend_line_steep_2x, blend_line_steep_and_shallow_2x, blend_line_diagonal_2x, blend_corner_2x },
 
   { 3, blend_line_shallow_3x, blend_line_steep_3x, blend_line_steep_and_shallow_3x, blend_line_diagonal_3x, blend_corner_3x },
 
   { 4, blend_line_shallow_4x, blend_line_steep_4x, blend_line_steep_and_shallow_4x, blend_line_diagonal_4x, blend_corner_4x },
 
   { 5, blend_line_shallow_5x, blend_line_steep_5x, blend_line_steep_and_shallow_5x, blend_line_diagonal_5x, blend_corner_5x },
 
   { 6, blend_line_shallow_6x, blend_line_steep_6x, blend_line_steep_and_shallow_6x, blend_line_diagonal_6x, blend_corner_6x },
 
};
 
 
 
 
 
static FORCE_INLINE void preProcessCorners (blendresult_t *result, const kernel_4x4_t *ker, dist_func dist)
 
{
 
   // detect blend direction
 
   // result: F, G, J, K corners of "GradientType"
 
 
 
   // input kernel area naming convention:
 
   // -----------------
 
   // | A | B | C | D |
 
   // ----|---|---|---|
 
   // | E | F | G | H |   //evaluate the four corners between F, G, J, K
 
   // ----|---|---|---|   //input pixel is at position F
 
   // | I | J | K | L |
 
   // ----|---|---|---|
 
   // | M | N | O | P |
 
   // -----------------
 
 
 
   memset (result
, 0, sizeof (blendresult_t
));  
 
 
   if (((ker->f == ker->g) && (ker->j == ker->k)) || ((ker->f == ker->j) && (ker->g == ker->k)))
 
      return;
 
 
 
   const int weight = 4;
 
   double jg = dist (ker->i, ker->f) + dist (ker->f, ker->c) + dist (ker->n, ker->k) + dist (ker->k, ker->h) + weight * dist (ker->j, ker->g);
 
   double fk = dist (ker->e, ker->j) + dist (ker->j, ker->o) + dist (ker->b, ker->g) + dist (ker->g, ker->l) + weight * dist (ker->f, ker->k);
 
 
 
   if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
 
   {
 
      const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk;
 
      if (ker->f != ker->g && ker->f != ker->j)
 
         result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
 
 
 
      if (ker->k != ker->j && ker->k != ker->g)
 
         result->blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
 
   }
 
   else if (fk < jg)
 
   {
 
      const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * fk < jg;
 
      if (ker->j != ker->f && ker->j != ker->k)
 
         result->blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
 
 
 
      if (ker->g != ker->f && ker->g != ker->k)
 
         result->blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
 
   }
 
   return;
 
}
 
 
 
// compress four blend types into a single byte
 
#define getTopL(b)    ((BlendType) (0x3 & ((unsigned char) (b) >> 0)))
 
#define getTopR(b)    ((BlendType) (0x3 & ((unsigned char) (b) >> 2)))
 
#define getBottomR(b) ((BlendType) (0x3 & ((unsigned char) (b) >> 4)))
 
#define getBottomL(b) ((BlendType) (0x3 & ((unsigned char) (b) >> 6)))
 
 
 
static inline void setTopL (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 0); } //buffer is assumed to be initialized before preprocessing!
 
static inline void setTopR (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 2); }
 
static inline void setBottomR (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 4); }
 
static inline void setBottomL (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 6); }
 
 
 
 
 
FORCE_INLINE void blend_pixel (const scaler_t *scaler, const kernel_3x3_t *ker, uint32_t *target, int trgWidth, unsigned char blendInfo, alphagrad_func alphagrad, dist_func dist, int rotDeg) //result of preprocessing all four corners of pixel "e"
 
{
 
   // input kernel area naming convention:
 
   // -------------
 
   // | A | B | C |
 
   // ----|---|---|
 
   // | D | E | F | //input pixel is at position E
 
   // ----|---|---|
 
   // | G | H | I |
 
   // -------------
 
 
 
   uint32_t
 
      a, b, c,
 
      d, e, f,
 
      g, h, i;
 
   unsigned char blend;
 
 
 
   if      (rotDeg == 270) { a = ker->c; b = ker->f; c = ker->i; d = ker->b; e = ker->e; f = ker->h; g = ker->a; h = ker->d; i = ker->g; blend = ((blendInfo << 6) | (blendInfo >> 2)) & 0xff; }
 
   else if (rotDeg == 180) { a = ker->i; b = ker->h; c = ker->g; d = ker->f; e = ker->e; f = ker->d; g = ker->c; h = ker->b; i = ker->a; blend = ((blendInfo << 4) | (blendInfo >> 4)) & 0xff; }
 
   else if (rotDeg == 90)  { a = ker->g; b = ker->d; c = ker->a; d = ker->h; e = ker->e; f = ker->b; g = ker->i; h = ker->f; i = ker->c; blend = ((blendInfo << 2) | (blendInfo >> 6)) & 0xff; }
 
   else                    { a = ker->a; b = ker->b; c = ker->c; d = ker->d; e = ker->e; f = ker->f; g = ker->g; h = ker->h; i = ker->i; blend = ((blendInfo << 0) | (blendInfo >> 8)) & 0xff; }
 
 
 
   if (getBottomR (blend) >= BLEND_NORMAL)
 
   {
 
      outmatrix_t out;
 
      uint32_t px;
 
      bool doLineBlend;
 
 
 
      if (getBottomR (blend) >= BLEND_DOMINANT)
 
         doLineBlend = true;
 
      else if (getTopR (blend) != BLEND_NONE && (dist (e, g) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) //but support double-blending for 90° corners
 
         doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
 
      else if (getBottomL (blend) != BLEND_NONE && (dist (e, c) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
 
         doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
 
      else if ((dist (e, i) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
 
         && (dist (g, h) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
 
         && (dist (h, i) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
 
         && (dist (i, f) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
 
         && (dist (f, c) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
 
         doLineBlend = false; // no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
 
      else
 
         doLineBlend = true;
 
 
 
      outmatrix_create (&out, scaler->factor, target, trgWidth, rotDeg);
 
      px = (dist (e, f) <= dist (e, h) ? f : h); //choose most similar color
 
 
 
      if (doLineBlend)
 
      {
 
         const double fg = dist (f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
 
         const double hc = dist (h, c); //
 
         const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g);
 
         const bool haveSteepLine   = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c);
 
 
 
         if (haveShallowLine)
 
         {
 
            if (haveSteepLine)
 
               scaler->blend_line_steep_and_shallow (px, &out, alphagrad);
 
            else
 
               scaler->blend_line_shallow (px, &out, alphagrad);
 
         }
 
         else
 
         {
 
            if (haveSteepLine)
 
               scaler->blend_line_steep (px, &out, alphagrad);
 
            else
 
               scaler->blend_line_diagonal (px, &out, alphagrad);
 
         }
 
      }
 
      else
 
         scaler->blend_corner (px, &out, alphagrad);
 
   }
 
}
 
 
 
 
 
void scale_image (const scaler_t *scaler, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, int yFirst, int yLast, alphagrad_func alphagrad, dist_func dist)
 
{
 
   yFirst = MAX (yFirst, 0);
 
   yLast = MIN (yLast, srcHeight);
 
   if (yFirst >= yLast || srcWidth <= 0)
 
      return;
 
 
 
   const int trgWidth = srcWidth * scaler->factor;
 
 
 
   //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
 
   //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
 
   const int bufferSize = srcWidth;
 
   unsigned char *preProcBuffer = (unsigned char *) (trg + yLast * scaler->factor * trgWidth) - bufferSize;
 
   memset (preProcBuffer
, 0, bufferSize
);  
   static_assert(BLEND_NONE == 0, "");
 
 
 
   //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
 
   //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
 
   if (yFirst > 0)
 
   {
 
      const int y = yFirst - 1;
 
 
 
      const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0);
 
      const uint32_t* s_0 = src + srcWidth * y; //center line
 
      const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
 
      const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
 
 
 
      for (int x = 0; x < srcWidth; ++x)
 
      {
 
         blendresult_t res;
 
         const int x_m1 = MAX (x - 1, 0);
 
         const int x_p1 = MIN (x + 1, srcWidth - 1);
 
         const int x_p2 = MIN (x + 2, srcWidth - 1);
 
 
 
         kernel_4x4_t ker; //perf: initialization is negligible
 
         ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
 
         ker.b = s_m1[x];
 
         ker.c = s_m1[x_p1];
 
         ker.d = s_m1[x_p2];
 
 
 
         ker.e = s_0[x_m1];
 
         ker.f = s_0[x];
 
         ker.g = s_0[x_p1];
 
         ker.h = s_0[x_p2];
 
 
 
         ker.i = s_p1[x_m1];
 
         ker.j = s_p1[x];
 
         ker.k = s_p1[x_p1];
 
         ker.l = s_p1[x_p2];
 
 
 
         ker.m = s_p2[x_m1];
 
         ker.n = s_p2[x];
 
         ker.o = s_p2[x_p1];
 
         ker.p = s_p2[x_p2];
 
 
 
         preProcessCorners (&res, &ker, dist);
 
         /*
 
         preprocessing blend result:
 
         ---------
 
         | F | G |   //evalute corner between F, G, J, K
 
         ----|---|   //input pixel is at position F
 
         | J | K |
 
         ---------
 
         */
 
         setTopR (preProcBuffer[x], res.blend_j);
 
 
 
         if (x + 1 < bufferSize)
 
            setTopL (preProcBuffer[x + 1], res.blend_k);
 
      }
 
   }
 
   //------------------------------------------------------------------------------------
 
 
 
   for (int y = yFirst; y < yLast; ++y)
 
   {
 
      uint32_t *out = trg + scaler->factor * y * trgWidth; //consider MT "striped" access
 
 
 
      const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0);
 
      const uint32_t* s_0 = src + srcWidth * y; //center line
 
      const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
 
      const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
 
 
 
      unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position
 
 
 
      for (int x = 0; x < srcWidth; ++x, out += scaler->factor)
 
      {
 
         //all those bounds checks have only insignificant impact on performance!
 
         const int x_m1 = MAX (x - 1, 0); //perf: prefer array indexing to additional pointers!
 
         const int x_p1 = MIN (x + 1, srcWidth - 1);
 
         const int x_p2 = MIN (x + 2, srcWidth - 1);
 
         kernel_4x4_t ker4; //perf: initialization is negligible
 
 
 
         ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible
 
         ker4.b = s_m1[x];
 
         ker4.c = s_m1[x_p1];
 
         ker4.d = s_m1[x_p2];
 
 
 
         ker4.e = s_0[x_m1];
 
         ker4.f = s_0[x];
 
         ker4.g = s_0[x_p1];
 
         ker4.h = s_0[x_p2];
 
 
 
         ker4.i = s_p1[x_m1];
 
         ker4.j = s_p1[x];
 
         ker4.k = s_p1[x_p1];
 
         ker4.l = s_p1[x_p2];
 
 
 
         ker4.m = s_p2[x_m1];
 
         ker4.n = s_p2[x];
 
         ker4.o = s_p2[x_p1];
 
         ker4.p = s_p2[x_p2];
 
 
 
         //evaluate the four corners on bottom-right of current pixel
 
         unsigned char blend_xy = 0; //for current (x, y) position
 
         {
 
            blendresult_t res;
 
            preProcessCorners (&res, &ker4, dist);
 
            /*
 
            preprocessing blend result:
 
            ---------
 
            | F | G |   //evalute corner between F, G, J, K
 
            ----|---|   //current input pixel is at position F
 
            | J | K |
 
            ---------
 
            */
 
            blend_xy = preProcBuffer[x];
 
            setBottomR (blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence!
 
 
 
            setTopR (blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1)
 
            preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row
 
 
 
            blend_xy1 = 0;
 
            setTopL (blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column
 
 
 
            if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y)
 
               setBottomL (preProcBuffer[x + 1], res.blend_g);
 
         }
 
 
 
         //fill block of size scale * scale with the given color
 
         {
 
            uint32_t *blk = out;
 
            for (int _blk_y = 0; _blk_y < scaler->factor; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t)))
 
               for (int _blk_x = 0; _blk_x < scaler->factor; ++_blk_x)
 
                  blk[_blk_x] = ker4.f;
 
         }
 
         //place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
 
 
 
         //blend four corners of current pixel
 
         if (blend_xy != 0) //good 5% perf-improvement
 
         {
 
            kernel_3x3_t ker3; //perf: initialization is negligible
 
 
 
            ker3.a = ker4.a;
 
            ker3.b = ker4.b;
 
            ker3.c = ker4.c;
 
 
 
            ker3.d = ker4.e;
 
            ker3.e = ker4.f;
 
            ker3.f = ker4.g;
 
 
 
            ker3.g = ker4.i;
 
            ker3.h = ker4.j;
 
            ker3.i = ker4.k;
 
 
 
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 0);
 
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 90);
 
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 180);
 
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 270);
 
         }
 
      }
 
   }
 
}
 
 
 
 
 
static double dist24 (uint32_t pix1, uint32_t pix2)
 
{
 
   //30% perf boost compared to plain distYCbCr()!
 
   //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB
 
   static float diffToDist[256 * 256 * 256];
 
   static bool is_initialized = false;
 
   if (!is_initialized)
 
   {
 
      for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
 
      {
 
         const int r_diff = GET_RED (i) * 2 - 0xFF;
 
         const int g_diff = GET_GREEN (i) * 2 - 0xFF;
 
         const int b_diff = GET_BLUE (i) * 2 - 0xFF;
 
 
 
         const double k_b = 0.0593; //ITU-R BT.2020 conversion
 
         const double k_r = 0.2627; //
 
         const double k_g = 1 - k_b - k_r;
 
 
 
         const double scale_b = 0.5 / (1 - k_b);
 
         const double scale_r = 0.5 / (1 - k_r);
 
 
 
         const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
 
         const double c_b = scale_b * (b_diff - y);
 
         const double c_r = scale_r * (r_diff - y);
 
 
 
         diffToDist
[i
] = (float) (sqrt ((y 
* y
) + (c_b 
* c_b
) + (c_r 
* c_r
))); 
      }
 
      is_initialized = true;
 
   }
 
 
 
   const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2);
 
   const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2);
 
   const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2);
 
 
 
   return diffToDist[(((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte
 
      (((g_diff + 0xFF) / 2) << 8) |
 
      (((b_diff + 0xFF) / 2) << 0)];
 
}
 
 
 
 
 
static double dist32 (uint32_t pix1, uint32_t pix2)
 
{
 
   const double a1 = GET_ALPHA (pix1) / 255.0;
 
   const double a2 = GET_ALPHA (pix2) / 255.0;
 
   /*
 
   Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
 
 
 
       1. if a1 = a2, distance should be: a1 * distYCbCr()
 
       2. if a1 = 0,  distance should be: a2 * distYCbCr(black, white) = a2 * 255
 
       3. if a1 = 1,  ??? maybe: 255 * (1 - a2) + a2 * distYCbCr()
 
   */
 
 
 
   //return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2);
 
   //=> following code is 15% faster:
 
   const double d = dist24 (pix1, pix2);
 
   return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2));
 
}
 
 
 
 
 
static void alphagrad24 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
 
{
 
   // blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
 
   *pixBack = ((CALC_COLOR24 (GET_RED (pixFront), GET_RED (*pixBack), M, N) << 16)
 
      | (CALC_COLOR24 (GET_GREEN (pixFront), GET_GREEN (*pixBack), M, N) << 8)
 
      | (CALC_COLOR24 (GET_BLUE (pixFront), GET_BLUE (*pixBack), M, N) << 0));
 
}
 
 
 
 
 
static void alphagrad32 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
 
{
 
   // find intermediate color between two colors with alpha channels (=> NO alpha blending!!!)
 
   const unsigned int weightFront = GET_ALPHA (pixFront) * M;
 
   const unsigned int weightBack = GET_ALPHA (*pixBack) * (N - M);
 
   const unsigned int weightSum = weightFront + weightBack;
 
   *pixBack = (weightSum == 0 ? 0 :
 
      (((unsigned char) (weightSum / N)) << 24)
 
      | (CALC_COLOR32 (GET_RED (pixFront), GET_RED (*pixBack), weightFront, weightBack, weightSum) << 16)
 
      | (CALC_COLOR32 (GET_GREEN (pixFront), GET_GREEN (*pixBack), weightFront, weightBack, weightSum) << 8)
 
      | (CALC_COLOR32 (GET_BLUE (pixFront), GET_BLUE (*pixBack), weightFront, weightBack, weightSum) << 0));
 
}
 
 
 
 
 
EXTERN_C void nearestNeighborScale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight)
 
{
 
   //    nearestNeighborScale (src, srcWidth, srcHeight, srcWidth * sizeof (uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof (uint32_t), XBRZ_SLICETYPE_TARGET, 0, trgHeight, [](uint32_t pix) { return pix; });
 
       //static_assert(std::is_integral<PixSrc>::value, "PixSrc* is expected to be cast-able to char*");
 
       //static_assert(std::is_integral<PixTrg>::value, "PixTrg* is expected to be cast-able to char*");
 
       //static_assert(std::is_same<decltype(pixCvrt(PixSrc())), PixTrg>::value, "PixConverter returning wrong pixel format");
 
 
 
   int srcPitch = srcWidth * sizeof (uint32_t);
 
   int trgPitch = trgWidth * sizeof (uint32_t);
 
   int yFirst;
 
   int yLast;
 
 
 
#if 0 // going over source image - fast for upscaling, since source is read only once
 
   yFirst = 0;
 
   yLast = MIN (trgHeight, srcHeight);
 
 
 
   if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0)
 
      return; // consistency check
 
 
 
   for (int y = yFirst; y < yLast; ++y)
 
   {
 
      //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight)
 
      // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight
 
 
 
      //keep within for loop to support MT input slices!
 
      const int yTrg_first = (y      * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight)
 
      const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight)
 
      const int blockHeight = yTrg_last - yTrg_first;
 
 
 
      if (blockHeight > 0)
 
      {
 
         const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch);
 
         /**/  uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, yTrg_first * trgPitch);
 
         int xTrg_first = 0;
 
 
 
         for (int x = 0; x < srcWidth; ++x)
 
         {
 
            const int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth;
 
            const int blockWidth = xTrg_last - xTrg_first;
 
            if (blockWidth > 0)
 
            {
 
               const uint32_t trgColor = srcLine[x];
 
               uint32_t *blkLine = trgLine;
 
 
 
               xTrg_first = xTrg_last;
 
 
 
               for (int blk_y = 0; blk_y < blockHeight; ++blk_y, blkLine = (uint32_t *) BYTE_ADVANCE (blkLine, trgPitch))
 
                  for (int blk_x = 0; blk_x < blockWidth; ++blk_x)
 
                     blkLine[blk_x] = trgColor;
 
 
 
               trgLine += blockWidth;
 
            }
 
         }
 
      }
 
   }
 
#else // going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!
 
   yFirst = 0;
 
   yLast = trgHeight;
 
 
 
   if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0)
 
      return; // consistency check
 
 
 
   for (int y = yFirst; y < yLast; ++y)
 
   {
 
      /**/  uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, y * trgPitch);
 
      const int ySrc = srcHeight * y / trgHeight;
 
      const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, ySrc * srcPitch);
 
      for (int x = 0; x < trgWidth; ++x)
 
      {
 
         const int xSrc = srcWidth * x / trgWidth;
 
         trgLine[x] = srcLine[xSrc];
 
      }
 
   }
 
#endif // going over source or target
 
 
 
   return;
 
}
 
 
 
 
 
EXTERN_C bool xbrz_equalcolortest24 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
 
{
 
   return (dist24 (col1, col2) < equalColorTolerance);
 
}
 
 
 
 
 
EXTERN_C bool xbrz_equalcolortest32 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
 
{
 
   return (dist32 (col1, col2) < equalColorTolerance);
 
}
 
 
 
 
 
EXTERN_C void xbrz_scale24 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight)
 
{
 
   if (factor < 7)
 
      return scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad24, dist24);
 
}
 
 
 
 
 
EXTERN_C void xbrz_scale32 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight)
 
{
 
   if (factor < 7)
 
      return scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad32, dist32);
 
}