/*
* Portions of this file are copyright Rebirth contributors and licensed as
* described in COPYING.txt.
* Portions of this file are copyright Parallax Software and licensed
* according to the Parallax license below.
* See COPYING.txt for license details.
THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX
SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO
END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A
ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS
IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS
SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE
FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE
CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS
AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE.
COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED.
*/
/*
*
* u,v coordinate computation for segment faces
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <string.h>
#include "inferno.h"
#include "segment.h"
#include "editor/editor.h"
#include "editor/esegment.h"
#include "gameseg.h"
#include "maths.h"
#include "dxxerror.h"
#include "wall.h"
#include "editor/kdefs.h"
#include "bm.h" // Needed for TmapInfo
#include "effects.h" // Needed for effects_bm_num
#include "fvi.h"
#include "seguvs.h"
#include "compiler-range_for.h"
#include "d_enumerate.h"
#include "d_range.h"
#include "d_zip.h"
namespace dcx {
static void cast_all_light_in_mine(int quick_flag);
}
//--rotate_uvs-- vms_vector Rightvec;
#define MAX_LIGHT_SEGS 16
// ---------------------------------------------------------------------------------------------
// Scan all polys in all segments, return average light value for vnum.
// segs = output array for segments containing vertex, terminated by -1.
static fix get_average_light_at_vertex(int vnum, segnum_t *segs)
{
fix total_light;
int num_occurrences;
// #ifndef NDEBUG //Removed this ifdef because the version of Assert that I used to get it to compile doesn't work without this symbol. -KRB
segnum_t *original_segs;
original_segs = segs;
// #endif
num_occurrences = 0;
total_light = 0;
range_for (const auto &&segp, vcsegptridx)
{
auto e = end(segp->verts);
auto relvnum = std::distance(std::find(begin(segp->verts), e, vnum), e);
if (relvnum < MAX_VERTICES_PER_SEGMENT) {
*segs++ = segp;
Assert(segs - original_segs < MAX_LIGHT_SEGS);
(void)original_segs;
range_for (const auto &&z, zip(segp->children, segp->unique_segment::sides, Side_to_verts))
{
if (!IS_CHILD(std::get<0>(z))) {
auto &uside = std::get<1>(z);
auto &vp = std::get<2>(z);
const auto vb = begin(vp);
const auto ve = end(vp);
const auto vi = std::find(vb, ve, relvnum);
if (vi != ve)
{
const auto v = std::distance(vb, vi);
total_light += uside.uvls[v].l;
num_occurrences++;
}
} // end if
} // end sidenum
}
} // end segnum
*segs = segment_none;
if (num_occurrences)
return total_light/num_occurrences;
else
return 0;
}
static void set_average_light_at_vertex(int vnum)
{
int relvnum;
segnum_t Segment_indices[MAX_LIGHT_SEGS];
int segind;
fix average_light;
average_light = get_average_light_at_vertex(vnum, Segment_indices);
if (!average_light)
return;
segind = 0;
while (Segment_indices[segind] != segment_none) {
auto segnum = Segment_indices[segind++];
auto &ssegp = *vcsegptr(segnum);
unique_segment &usegp = *vmsegptr(segnum);
for (relvnum=0; relvnum<MAX_VERTICES_PER_SEGMENT; relvnum++)
if (ssegp.verts[relvnum] == vnum)
break;
if (relvnum < MAX_VERTICES_PER_SEGMENT) {
range_for (const auto &&z, zip(ssegp.children, usegp.sides, Side_to_verts))
{
if (!IS_CHILD(std::get<0>(z))) {
unique_side &sidep = std::get<1>(z);
auto &vp = std::get<2>(z);
const auto vb = begin(vp);
const auto ve = end(vp);
const auto vi = std::find(vb, ve, relvnum);
if (vi != ve)
{
const auto v = std::distance(vb, vi);
sidep.uvls[v].l = average_light;
}
} // end if
} // end sidenum
} // end if
} // end while
Update_flags |= UF_WORLD_CHANGED;
}
static void set_average_light_on_side(const vmsegptr_t segp, int sidenum)
{
if (!IS_CHILD(segp->children[sidenum]))
range_for (const auto v, Side_to_verts[sidenum])
{
set_average_light_at_vertex(segp->verts[v]);
}
}
int set_average_light_on_curside(void)
{
set_average_light_on_side(Cursegp, Curside);
return 0;
}
int set_average_light_on_all(void)
{
Doing_lighting_hack_flag = 1;
cast_all_light_in_mine(0);
Doing_lighting_hack_flag = 0;
Update_flags |= UF_WORLD_CHANGED;
// int seg, side;
// for (seg=0; seg<=Highest_segment_index; seg++)
// for (side=0; side<MAX_SIDES_PER_SEGMENT; side++)
// if (Segments[seg].segnum != -1)
// set_average_light_on_side(&Segments[seg], side);
return 0;
}
int set_average_light_on_all_quick(void)
{
cast_all_light_in_mine(1);
Update_flags |= UF_WORLD_CHANGED;
return 0;
}
// ---------------------------------------------------------------------------------------------
// Given a polygon, compress the uv coordinates so that they are as close to 0 as possible.
// Do this by adding a constant u and v to each uv pair.
static void compress_uv_coordinates(std::array<uvl, 4> &uvls)
{
fix uc, vc;
uc = 0;
vc = 0;
range_for (auto &uvl, uvls)
{
uc += uvl.u;
vc += uvl.v;
}
uc /= 4;
vc /= 4;
uc = uc & 0xffff0000;
vc = vc & 0xffff0000;
range_for (auto &uvl, uvls)
{
uvl.u -= uc;
uvl.v -= vc;
}
}
static void assign_default_lighting_on_side(std::array<uvl, 4> &uvls)
{
range_for (auto &uvl, uvls)
uvl.l = DEFAULT_LIGHTING;
}
static void assign_default_lighting(unique_segment &segp)
{
range_for (auto &side, segp.sides)
assign_default_lighting_on_side(side.uvls);
}
void assign_default_lighting_all(void)
{
range_for (const auto &&segp, vmsegptr)
{
if (segp->segnum != segment_none)
assign_default_lighting(segp);
}
}
// ---------------------------------------------------------------------------------------------
static void validate_uv_coordinates(unique_segment &segp)
{
range_for (auto &side, segp.sides)
{
compress_uv_coordinates(side.uvls);
}
}
#ifdef __WATCOMC__
fix zhypot(fix a,fix b);
#pragma aux zhypot parm [eax] [ebx] value [eax] modify [eax ebx ecx edx] = \
"imul eax" \
"xchg eax,ebx" \
"mov ecx,edx" \
"imul eax" \
"add eax,ebx" \
"adc edx,ecx" \
"call quad_sqrt";
#else
static fix zhypot(fix a,fix b) {
double x = static_cast<double>(a) / 65536;
double y = static_cast<double>(b) / 65536;
return static_cast<long>(sqrt(x * x + y * y) * 65536);
}
#endif
// ---------------------------------------------------------------------------------------------
// Assign lighting value to side, a function of the normal vector.
void assign_light_to_side(unique_side &s)
{
range_for (auto &v, s.uvls)
v.l = DEFAULT_LIGHTING;
}
fix Stretch_scale_x = F1_0;
fix Stretch_scale_y = F1_0;
// ---------------------------------------------------------------------------------------------
// Given u,v coordinates at two vertices, assign u,v coordinates to other two vertices on a side.
// (Actually, assign them to the coordinates in the faces.)
// va, vb = face-relative vertex indices corresponding to uva, uvb. Ie, they are always in 0..3 and should be looked up in
// Side_to_verts[side] to get the segment relative index.
static void assign_uvs_to_side(fvcvertptr &vcvertptr, const vmsegptridx_t segp, int sidenum, uvl *uva, uvl *uvb, int va, int vb)
{
int vlo,vhi;
unsigned v0, v1, v2, v3;
std::array<uvl, 4> uvls;
uvl ruvmag,fuvmag,uvlo,uvhi;
fix fmag,mag01;
Assert( (va<4) && (vb<4) );
Assert((abs(va - vb) == 1) || (abs(va - vb) == 3)); // make sure the verticies specify an edge
auto &vp = Side_to_verts[sidenum];
// We want vlo precedes vhi, ie vlo < vhi, or vlo = 3, vhi = 0
if (va == ((vb + 1) % 4)) { // va = vb + 1
vlo = vb;
vhi = va;
uvlo = *uvb;
uvhi = *uva;
} else {
vlo = va;
vhi = vb;
uvlo = *uva;
uvhi = *uvb;
}
Assert(((vlo+1) % 4) == vhi); // If we are on an edge, then uvhi is one more than uvlo (mod 4)
uvls[vlo] = uvlo;
uvls[vhi] = uvhi;
// Now we have vlo precedes vhi, compute vertices ((vhi+1) % 4) and ((vhi+2) % 4)
// Assign u,v scale to a unit length right vector.
fmag = zhypot(uvhi.v - uvlo.v,uvhi.u - uvlo.u);
if (fmag < 64) { // this is a fix, so 64 = 1/1024
ruvmag.u = F1_0*256;
ruvmag.v = F1_0*256;
fuvmag.u = F1_0*256;
fuvmag.v = F1_0*256;
} else {
ruvmag.u = uvhi.v - uvlo.v;
ruvmag.v = uvlo.u - uvhi.u;
fuvmag.u = uvhi.u - uvlo.u;
fuvmag.v = uvhi.v - uvlo.v;
}
v0 = segp->verts[vp[vlo]];
v1 = segp->verts[vp[vhi]];
v2 = segp->verts[vp[(vhi+1)%4]];
v3 = segp->verts[vp[(vhi+2)%4]];
// Compute right vector by computing orientation matrix from:
// forward vector = vlo:vhi
// right vector = vlo:(vhi+2) % 4
const auto &&vp0 = vcvertptr(v0);
const auto &vv1v0 = vm_vec_sub(vcvertptr(v1), vp0);
mag01 = vm_vec_mag(vv1v0);
mag01 = fixmul(mag01, (va == 0 || va == 2) ? Stretch_scale_x : Stretch_scale_y);
if (unlikely(mag01 < F1_0/1024))
editor_status_fmt("U, V bogosity in segment #%hu, probably on side #%i. CLEAN UP YOUR MESS!", static_cast<uint16_t>(segp), sidenum);
else {
struct frvec {
vms_vector fvec, rvec;
frvec(const vms_vector &tfvec, const vms_vector &trvec) {
if ((tfvec.x == 0 && tfvec.y == 0 && tfvec.z == 0) ||
(trvec.x == 0 && trvec.y == 0 && trvec.z == 0))
{
fvec = vmd_identity_matrix.fvec;
rvec = vmd_identity_matrix.rvec;
}
else
{
const auto &m = vm_vector_2_matrix(tfvec, nullptr, &trvec);
fvec = m.fvec;
rvec = m.rvec;
}
vm_vec_negate(rvec);
}
};
const auto &vv3v0 = vm_vec_sub(vcvertptr(v3), vp0);
const frvec fr{
vv1v0,
vv3v0
};
const auto assign_uvl = [&](const vms_vector &tvec, const uvl &uvi) {
const auto drt = vm_vec_dot(fr.rvec, tvec);
const auto dft = vm_vec_dot(fr.fvec, tvec);
return uvl{
uvi.u +
fixdiv(fixmul(ruvmag.u, drt), mag01) +
fixdiv(fixmul(fuvmag.u, dft), mag01),
uvi.v +
fixdiv(fixmul(ruvmag.v, drt), mag01) +
fixdiv(fixmul(fuvmag.v, dft), mag01),
uvi.l
};
};
uvls[(vhi+1)%4] = assign_uvl(vm_vec_sub(vcvertptr(v2), vcvertptr(v1)), uvhi);
uvls[(vhi+2)%4] = assign_uvl(vv3v0, uvlo);
// For all faces in side, copy uv coordinates from uvs array to face.
segp->unique_segment::sides[sidenum].uvls = uvls;
}
}
int Vmag = VMAG;
namespace dsx {
// -----------------------------------------------------------------------------------------------------------
// Assign default uvs to side.
// This means:
// v0 = 0,0
// v1 = k,0 where k is 3d size dependent
// v2, v3 assigned by assign_uvs_to_side
void assign_default_uvs_to_side(const vmsegptridx_t segp, const unsigned side)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
uvl uv0,uv1;
uv0.u = 0;
uv0.v = 0;
auto &vp = Side_to_verts[side];
uv1.u = 0;
auto &vcvertptr = Vertices.vcptr;
uv1.v = Num_tilings * fixmul(Vmag, vm_vec_dist(vcvertptr(segp->verts[vp[1]]), vcvertptr(segp->verts[vp[0]])));
assign_uvs_to_side(vcvertptr, segp, side, &uv0, &uv1, 0, 1);
}
// -----------------------------------------------------------------------------------------------------------
// Assign default uvs to side.
// This means:
// v0 = 0,0
// v1 = k,0 where k is 3d size dependent
// v2, v3 assigned by assign_uvs_to_side
void stretch_uvs_from_curedge(const vmsegptridx_t segp, int side)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
uvl uv0,uv1;
int v0, v1;
v0 = Curedge;
v1 = (v0 + 1) % 4;
auto &uvls = segp->unique_segment::sides[side].uvls;
uv0.u = uvls[v0].u;
uv0.v = uvls[v0].v;
uv1.u = uvls[v1].u;
uv1.v = uvls[v1].v;
auto &vcvertptr = Vertices.vcptr;
assign_uvs_to_side(vcvertptr, segp, side, &uv0, &uv1, v0, v1);
}
// --------------------------------------------------------------------------------------------------------------
// Assign default uvs to a segment.
void assign_default_uvs_to_segment(const vmsegptridx_t segp)
{
range_for (const uint_fast32_t s, xrange(MAX_SIDES_PER_SEGMENT))
{
assign_default_uvs_to_side(segp,s);
assign_light_to_side(segp, s);
}
}
// -- mk021394 -- // --------------------------------------------------------------------------------------------------------------
// -- mk021394 -- // Find the face:poly:vertex index in base_seg:base_common_side which is segment relative vertex v1
// -- mk021394 -- // This very specific routine is subsidiary to med_assign_uvs_to_side.
// -- mk021394 -- void get_face_and_vert(segment *base_seg, int base_common_side, int v1, int *ff, int *vv, int *pi)
// -- mk021394 -- {
// -- mk021394 -- int p,f,v;
// -- mk021394 --
// -- mk021394 -- for (f=0; f<base_seg->sides[base_common_side].num_faces; f++) {
// -- mk021394 -- face *fp = &base_seg->sides[base_common_side].faces[f];
// -- mk021394 -- for (p=0; p<fp->num_polys; p++) {
// -- mk021394 -- poly *pp = &fp->polys[p];
// -- mk021394 -- for (v=0; v<pp->num_vertices; v++)
// -- mk021394 -- if (pp->verts[v] == v1) {
// -- mk021394 -- *ff = f;
// -- mk021394 -- *vv = v;
// -- mk021394 -- *pi = p;
// -- mk021394 -- return;
// -- mk021394 -- }
// -- mk021394 -- }
// -- mk021394 -- }
// -- mk021394 --
// -- mk021394 -- Assert(0); // Error -- Couldn't find face:vertex which matched vertex v1 on base_seg:base_common_side
// -- mk021394 -- }
// -- mk021394 -- // --------------------------------------------------------------------------------------------------------------
// -- mk021394 -- // Find the vertex index in base_seg:base_common_side which is segment relative vertex v1
// -- mk021394 -- // This very specific routine is subsidiary to med_assign_uvs_to_side.
// -- mk021394 -- void get_side_vert(segment *base_seg,int base_common_side,int v1,int *vv)
// -- mk021394 -- {
// -- mk021394 -- int p,f,v;
// -- mk021394 --
// -- mk021394 -- Assert((base_seg->sides[base_common_side].tri_edge == 0) || (base_seg->sides[base_common_side].tri_edge == 1));
// -- mk021394 -- Assert(base_seg->sides[base_common_side].num_faces <= 2);
// -- mk021394 --
// -- mk021394 -- for (f=0; f<base_seg->sides[base_common_side].num_faces; f++) {
// -- mk021394 -- face *fp = &base_seg->sides[base_common_side].faces[f];
// -- mk021394 -- for (p=0; p<fp->num_polys; p++) {
// -- mk021394 -- poly *pp = &fp->polys[p];
// -- mk021394 -- for (v=0; v<pp->num_vertices; v++)
// -- mk021394 -- if (pp->verts[v] == v1) {
// -- mk021394 -- if (pp->num_vertices == 4) {
// -- mk021394 -- *vv = v;
// -- mk021394 -- return;
// -- mk021394 -- }
// -- mk021394 --
// -- mk021394 -- if (base_seg->sides[base_common_side].tri_edge == 0) { // triangulated 012, 023, so if f==0, *vv = v, if f==1, *vv = v if v=0, else v+1
// -- mk021394 -- if ((f == 1) && (v > 0))
// -- mk021394 -- v++;
// -- mk021394 -- *vv = v;
// -- mk021394 -- return;
// -- mk021394 -- } else { // triangulated 013, 123
// -- mk021394 -- if (f == 0) {
// -- mk021394 -- if (v == 2)
// -- mk021394 -- v++;
// -- mk021394 -- } else
// -- mk021394 -- v++;
// -- mk021394 -- *vv = v;
// -- mk021394 -- return;
// -- mk021394 -- }
// -- mk021394 -- }
// -- mk021394 -- }
// -- mk021394 -- }
// -- mk021394 --
// -- mk021394 -- Assert(0); // Error -- Couldn't find face:vertex which matched vertex v1 on base_seg:base_common_side
// -- mk021394 -- }
//--rotate_uvs-- // --------------------------------------------------------------------------------------------------------------
//--rotate_uvs-- // Rotate uvl coordinates uva, uvb about their center point by heading
//--rotate_uvs-- void rotate_uvs(uvl *uva, uvl *uvb, vms_vector *rvec)
//--rotate_uvs-- {
//--rotate_uvs-- uvl uvc, uva1, uvb1;
//--rotate_uvs--
//--rotate_uvs-- uvc.u = (uva->u + uvb->u)/2;
//--rotate_uvs-- uvc.v = (uva->v + uvb->v)/2;
//--rotate_uvs--
//--rotate_uvs-- uva1.u = fixmul(uva->u - uvc.u, rvec->x) - fixmul(uva->v - uvc.v, rvec->z);
//--rotate_uvs-- uva1.v = fixmul(uva->u - uvc.u, rvec->z) + fixmul(uva->v - uvc.v, rvec->x);
//--rotate_uvs--
//--rotate_uvs-- uva->u = uva1.u + uvc.u;
//--rotate_uvs-- uva->v = uva1.v + uvc.v;
//--rotate_uvs--
//--rotate_uvs-- uvb1.u = fixmul(uvb->u - uvc.u, rvec->x) - fixmul(uvb->v - uvc.v, rvec->z);
//--rotate_uvs-- uvb1.v = fixmul(uvb->u - uvc.u, rvec->z) + fixmul(uvb->v - uvc.v, rvec->x);
//--rotate_uvs--
//--rotate_uvs-- uvb->u = uvb1.u + uvc.u;
//--rotate_uvs-- uvb->v = uvb1.v + uvc.v;
//--rotate_uvs-- }
// --------------------------------------------------------------------------------------------------------------
void med_assign_uvs_to_side(const vmsegptridx_t con_seg, const unsigned con_common_side, const vmsegptr_t base_seg, const unsigned base_common_side, const unsigned abs_id1, const unsigned abs_id2)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
uvl uv1,uv2;
int v,bv1,bv2, vv1, vv2;
int cv1=0, cv2=0;
bv1 = -1; bv2 = -1;
// Find which vertices in segment match abs_id1, abs_id2
for (v=0; v<MAX_VERTICES_PER_SEGMENT; v++) {
if (base_seg->verts[v] == abs_id1)
bv1 = v;
if (base_seg->verts[v] == abs_id2)
bv2 = v;
if (con_seg->verts[v] == abs_id1)
cv1 = v;
if (con_seg->verts[v] == abs_id2)
cv2 = v;
}
// Now, bv1, bv2 are segment relative vertices in base segment which are the same as absolute vertices abs_id1, abs_id2
// cv1, cv2 are segment relative vertices in conn segment which are the same as absolute vertices abs_id1, abs_id2
Assert((bv1 != -1) && (bv2 != -1) && (cv1 != -1) && (cv2 != -1));
// Now, scan 4 vertices in base side and 4 vertices in connected side.
// Set uv1, uv2 to uv coordinates from base side which correspond to vertices bv1, bv2.
// Set vv1, vv2 to relative vertex ids (in 0..3) in connecting side which correspond to cv1, cv2
vv1 = -1; vv2 = -1;
auto &base_uvls = base_seg->unique_segment::sides[base_common_side].uvls;
for (v=0; v<4; v++) {
if (bv1 == Side_to_verts[base_common_side][v])
uv1 = base_uvls[v];
if (bv2 == Side_to_verts[base_common_side][v])
uv2 = base_uvls[v];
if (cv1 == Side_to_verts[con_common_side][v])
vv1 = v;
if (cv2 == Side_to_verts[con_common_side][v])
vv2 = v;
}
Assert((uv1.u != uv2.u) || (uv1.v != uv2.v));
Assert( (vv1 != -1) && (vv2 != -1) );
auto &vcvertptr = Vertices.vcptr;
assign_uvs_to_side(vcvertptr, con_seg, con_common_side, &uv1, &uv2, vv1, vv2);
}
// -----------------------------------------------------------------------------
// Given a base and a connecting segment, a side on each of those segments and two global vertex ids,
// determine which side in each of the segments shares those two vertices.
// This is used to propagate a texture map id to a connecting segment in an expected and desired way.
// Since we can attach any side of a segment to any side of another segment, and do so in each case in
// four different rotations (for a total of 6*6*4 = 144 ways), not having this nifty function will cause
// great confusion.
static void get_side_ids(const vmsegptr_t base_seg, const vmsegptr_t con_seg, int base_side, int con_side, int abs_id1, int abs_id2, int *base_common_side, int *con_common_side)
{
int v0;
*base_common_side = -1;
// Find side in base segment which contains the two global vertex ids.
range_for (const auto &&es, enumerate(Side_to_verts))
{
if (es.idx != base_side) {
auto &base_vp = es.value;
for (v0=0; v0<4; v0++)
if (((base_seg->verts[static_cast<int>(base_vp[v0])] == abs_id1) && (base_seg->verts[static_cast<int>(base_vp[(v0+1) % 4])] == abs_id2)) || ((base_seg->verts[static_cast<int>(base_vp[v0])] == abs_id2) && (base_seg->verts[static_cast<int>(base_vp[ (v0+1) % 4])] == abs_id1))) {
Assert(*base_common_side == -1); // This means two different sides shared the same edge with base_side == impossible!
*base_common_side = es.idx;
}
}
}
// Note: For connecting segment, process vertices in reversed order.
*con_common_side = -1;
// Find side in connecting segment which contains the two global vertex ids.
range_for (const auto &&es, enumerate(Side_to_verts))
{
if (es.idx != con_side) {
auto &con_vp = es.value;
for (v0=0; v0<4; v0++)
if (((con_seg->verts[static_cast<int>(con_vp[(v0 + 1) % 4])] == abs_id1) && (con_seg->verts[static_cast<int>(con_vp[v0])] == abs_id2)) || ((con_seg->verts[static_cast<int>(con_vp[(v0 + 1) % 4])] == abs_id2) && (con_seg->verts[static_cast<int>(con_vp[v0])] == abs_id1))) {
Assert(*con_common_side == -1); // This means two different sides shared the same edge with con_side == impossible!
*con_common_side = es.idx;
}
}
}
Assert((*base_common_side != -1) && (*con_common_side != -1));
}
// -----------------------------------------------------------------------------
// Propagate texture map u,v coordinates from base_seg:base_side to con_seg:con_side.
// The two vertices abs_id1 and abs_id2 are the only two vertices common to the two sides.
// If uv_only_flag is 1, then don't assign texture map ids, only update the uv coordinates
// If uv_only_flag is -1, then ONLY assign texture map ids, don't update the uv coordinates
static void propagate_tmaps_to_segment_side(const vmsegptridx_t base_seg, int base_side, const vmsegptridx_t con_seg, int con_side, int abs_id1, int abs_id2, int uv_only_flag)
{
int base_common_side,con_common_side;
int tmap_num;
Assert ((uv_only_flag == -1) || (uv_only_flag == 0) || (uv_only_flag == 1));
// Set base_common_side = side in base_seg which contains edge abs_id1:abs_id2
// Set con_common_side = side in con_seg which contains edge abs_id1:abs_id2
if (base_seg != con_seg)
get_side_ids(base_seg, con_seg, base_side, con_side, abs_id1, abs_id2, &base_common_side, &con_common_side);
else {
base_common_side = base_side;
con_common_side = con_side;
}
// Now, all faces in con_seg which are on side con_common_side get their tmap_num set to whatever tmap is assigned
// to whatever face I find which is on side base_common_side.
// First, find tmap_num for base_common_side. If it doesn't exist (ie, there is a connection there), look at the segment
// that is connected through it.
if (!IS_CHILD(con_seg->children[con_common_side])) {
if (!IS_CHILD(base_seg->children[base_common_side])) {
// There is at least one face here, so get the tmap_num from there.
tmap_num = base_seg->unique_segment::sides[base_common_side].tmap_num;
// Now assign all faces in the connecting segment on side con_common_side to tmap_num.
if ((uv_only_flag == -1) || (uv_only_flag == 0))
con_seg->unique_segment::sides[con_common_side].tmap_num = tmap_num;
if (uv_only_flag != -1)
med_assign_uvs_to_side(con_seg, con_common_side, base_seg, base_common_side, abs_id1, abs_id2);
} else { // There are no faces here, there is a connection, trace through the connection.
const auto &&csegp = base_seg.absolute_sibling(base_seg->children[base_common_side]);
auto cside = find_connect_side(base_seg, csegp);
propagate_tmaps_to_segment_side(csegp, cside, con_seg, con_side, abs_id1, abs_id2, uv_only_flag);
}
}
}
}
namespace dcx {
constexpr int8_t Edge_between_sides[MAX_SIDES_PER_SEGMENT][MAX_SIDES_PER_SEGMENT][2] = {
// left top right bottom back front
{ {-1,-1}, { 3, 7}, {-1,-1}, { 2, 6}, { 6, 7}, { 2, 3} }, // left
{ { 3, 7}, {-1,-1}, { 0, 4}, {-1,-1}, { 4, 7}, { 0, 3} }, // top
{ {-1,-1}, { 0, 4}, {-1,-1}, { 1, 5}, { 4, 5}, { 0, 1} }, // right
{ { 2, 6}, {-1,-1}, { 1, 5}, {-1,-1}, { 5, 6}, { 1, 2} }, // bottom
{ { 6, 7}, { 4, 7}, { 4, 5}, { 5, 6}, {-1,-1}, {-1,-1} }, // back
{ { 2, 3}, { 0, 3}, { 0, 1}, { 1, 2}, {-1,-1}, {-1,-1} }}; // front
}
namespace dsx {
// -----------------------------------------------------------------------------
// Propagate texture map u,v coordinates to base_seg:back_side from base_seg:some-other-side
// There is no easy way to figure out which side is adjacent to another side along some edge, so we do a bit of searching.
void med_propagate_tmaps_to_back_side(const vmsegptridx_t base_seg, int back_side, int uv_only_flag)
{
int v1=0,v2=0;
if (IS_CHILD(base_seg->children[back_side]))
return; // connection, so no sides here.
// Scan all sides, look for an occupied side which is not back_side or Side_opposite[back_side]
range_for (const auto &&es, enumerate(Edge_between_sides))
{
const auto s = es.idx;
if ((s != back_side) && (s != Side_opposite[back_side])) {
auto &ebs = es.value;
v1 = ebs[back_side][0];
v2 = ebs[back_side][1];
propagate_tmaps_to_segment_side(base_seg, s, base_seg, back_side, base_seg->verts[v1], base_seg->verts[v2], uv_only_flag);
goto found1;
}
}
Assert(0); // Error -- couldn't find edge != back_side and Side_opposite[back_side]
found1: ;
Assert( (v1 != -1) && (v2 != -1)); // This means there was no shared edge between the two sides.
// Assign an unused tmap id to the back side.
// Note that this can get undone by the caller if this was not part of a new attach, but a rotation or a scale (which
// both do attaches).
// First see if tmap on back side is anywhere else.
if (!uv_only_flag) {
const auto back_side_tmap = base_seg->unique_segment::sides[back_side].tmap_num;
range_for (const auto &&es, enumerate(base_seg->unique_segment::sides))
{
if (es.idx != back_side)
if (es.value.tmap_num == back_side_tmap)
{
range_for (const uint_fast32_t tmap_num, xrange(MAX_SIDES_PER_SEGMENT))
{
range_for (const uint_fast32_t ss, xrange(MAX_SIDES_PER_SEGMENT))
if (ss != back_side)
if (base_seg->unique_segment::sides[ss].tmap_num == New_segment.unique_segment::sides[tmap_num].tmap_num)
goto found2; // current texture map (tmap_num) is used on current (ss) side, so try next one
// Current texture map (tmap_num) has not been used, assign to all faces on back_side.
base_seg->unique_segment::sides[back_side].tmap_num = New_segment.unique_segment::sides[tmap_num].tmap_num;
goto done1;
found2: ;
}
}
}
done1: ;
}
}
int fix_bogus_uvs_on_side(void)
{
med_propagate_tmaps_to_back_side(Cursegp, Curside, 1);
return 0;
}
static void fix_bogus_uvs_on_side1(const vmsegptridx_t sp, const unsigned sidenum, const int uvonly_flag)
{
auto &uvls = sp->unique_segment::sides[sidenum].uvls;
if (uvls[0].u == 0 && uvls[1].u == 0 && uvls[2].u == 0)
{
med_propagate_tmaps_to_back_side(sp, sidenum, uvonly_flag);
}
}
static void fix_bogus_uvs_seg(const vmsegptridx_t segp)
{
range_for (const auto &&es, enumerate(segp->children))
{
if (!IS_CHILD(es.value))
fix_bogus_uvs_on_side1(segp, es.idx, 1);
}
}
int fix_bogus_uvs_all(void)
{
range_for (const auto &&segp, vmsegptridx)
{
if (segp->segnum != segment_none)
fix_bogus_uvs_seg(segp);
}
return 0;
}
// -----------------------------------------------------------------------------
// Segment base_seg is connected through side base_side to segment con_seg on con_side.
// For all walls in con_seg, find the wall in base_seg which shares an edge. Copy tmap_num
// from that side in base_seg to the wall in con_seg. If the wall in base_seg is not present
// (ie, there is another segment connected through it), follow the connection through that
// segment to get the wall in the connected segment which shares the edge, and get tmap_num from there.
static void propagate_tmaps_to_segment_sides(const vmsegptridx_t base_seg, int base_side, const vmsegptridx_t con_seg, int con_side, int uv_only_flag)
{
int abs_id1,abs_id2;
int v;
auto &base_vp = Side_to_verts[base_side];
// Do for each edge on connecting face.
for (v=0; v<4; v++) {
abs_id1 = base_seg->verts[static_cast<int>(base_vp[v])];
abs_id2 = base_seg->verts[static_cast<int>(base_vp[(v+1) % 4])];
propagate_tmaps_to_segment_side(base_seg, base_side, con_seg, con_side, abs_id1, abs_id2, uv_only_flag);
}
}
// -----------------------------------------------------------------------------
// Propagate texture maps in base_seg to con_seg.
// For each wall in con_seg, find the wall in base_seg which shared an edge. Copy tmap_num from that
// wall in base_seg to the wall in con_seg. If the wall in base_seg is not present, then look at the
// segment connected through base_seg through the wall. The wall with a common edge is the new wall
// of interest. Continue searching in this way until a wall of interest is present.
void med_propagate_tmaps_to_segments(const vmsegptridx_t base_seg,const vmsegptridx_t con_seg, int uv_only_flag)
{
range_for (const auto &&es, enumerate(base_seg->children))
if (es.value == con_seg)
propagate_tmaps_to_segment_sides(base_seg, es.idx, con_seg, find_connect_side(base_seg, con_seg), uv_only_flag);
con_seg->static_light = base_seg->static_light;
validate_uv_coordinates(con_seg);
}
// -------------------------------------------------------------------------------
// Copy texture map uvs from srcseg to destseg.
// If two segments have different face structure (eg, destseg has two faces on side 3, srcseg has only 1)
// then assign uvs according to side vertex id, not face vertex id.
void copy_uvs_seg_to_seg(unique_segment &destseg, const unique_segment &srcseg)
{
range_for (const auto &&z, zip(destseg.sides, srcseg.sides))
{
auto &ds = std::get<0>(z);
auto &ss = std::get<1>(z);
ds.tmap_num = ss.tmap_num;
ds.tmap_num2 = ss.tmap_num2;
}
destseg.static_light = srcseg.static_light;
}
}
namespace dcx {
// _________________________________________________________________________________________________________________________
// Maximum distance between a segment containing light to a segment to receive light.
#define LIGHT_DISTANCE_THRESHOLD (F1_0*80)
fix Magical_light_constant = (F1_0*16);
// int Seg0, Seg1;
//int Bugseg = 27;
struct hash_info {
sbyte flag, hit_type;
vms_vector vector;
};
#define FVI_HASH_SIZE 8
#define FVI_HASH_AND_MASK (FVI_HASH_SIZE - 1)
// Note: This should be malloced.
// Also, the vector should not be 12 bytes, you should only care about some smaller portion of it.
static std::array<hash_info, FVI_HASH_SIZE> fvi_cache;
static int Hash_hits=0, Hash_retries=0, Hash_calcs=0;
// -----------------------------------------------------------------------------------------
// Set light from a light source.
// Light incident on a surface is defined by the light incident at its points.
// Light at a point = K * (V . N) / d
// where:
// K = some magical constant to make everything look good
// V = normalized vector from light source to point
// N = surface normal at point
// d = distance from light source to point
// (Note that the above equation can be simplified to K * (VV . N) / d^2 where VV = non-normalized V)
// Light intensity emitted from a light source is defined to be cast from four points.
// These four points are 1/64 of the way from the corners of the light source to the center
// of its segment. By assuming light is cast from these points, rather than from on the
// light surface itself, light will be properly cast on the light surface. Otherwise, the
// vector V would be the null vector.
// If quick_light set, then don't use find_vector_intersection
static void cast_light_from_side(const vmsegptridx_t segp, int light_side, fix light_intensity, int quick_light)
{
int vertnum;
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
auto &vcvertptr = Vertices.vcptr;
auto &Walls = LevelUniqueWallSubsystemState.Walls;
auto &vcwallptr = Walls.vcptr;
const auto segment_center = compute_segment_center(vcvertptr, segp);
// Do for four lights, one just inside each corner of side containing light.
range_for (const auto lightnum, Side_to_verts[light_side])
{
// fix inverse_segment_magnitude;
const auto light_vertex_num = segp->verts[lightnum];
auto light_location = *vcvertptr(light_vertex_num);
// New way, 5/8/95: Move towards center irrespective of size of segment.
const auto vector_to_center = vm_vec_normalized_quick(vm_vec_sub(segment_center, light_location));
vm_vec_add2(light_location, vector_to_center);
// -- Old way, before 5/8/95 -- // -- This way was kind of dumb. In larger segments, you move LESS towards the center.
// -- Old way, before 5/8/95 -- // Main problem, though, is vertices don't illuminate themselves well in oblong segments because the dot product is small.
// -- Old way, before 5/8/95 -- vm_vec_sub(&vector_to_center, &segment_center, &light_location);
// -- Old way, before 5/8/95 -- inverse_segment_magnitude = fixdiv(F1_0/5, vm_vec_mag(&vector_to_center));
// -- Old way, before 5/8/95 -- vm_vec_scale_add(&light_location, &light_location, &vector_to_center, inverse_segment_magnitude);
range_for (const auto &&rsegp, vmsegptr)
{
fix dist_to_rseg;
range_for (auto &i, fvi_cache)
i.flag = 0;
// efficiency hack (I hope!), for faraway segments, don't check each point.
const auto r_segment_center = compute_segment_center(vcvertptr, rsegp);
dist_to_rseg = vm_vec_dist_quick(r_segment_center, segment_center);
if (dist_to_rseg <= LIGHT_DISTANCE_THRESHOLD) {
for (const auto &&[sidenum, srside, urside] : enumerate(zip(rsegp->shared_segment::sides, rsegp->unique_segment::sides)))
{
if (WALL_IS_DOORWAY(GameBitmaps, Textures, vcwallptr, rsegp, sidenum) != WID_NO_WALL)
{
auto &side_normalp = srside.normals[0]; // kinda stupid? always use vector 0.
for (vertnum=0; vertnum<4; vertnum++) {
fix distance_to_point, light_at_point, light_dot;
const auto abs_vertnum = rsegp->verts[Side_to_verts[sidenum][vertnum]];
vms_vector vert_location = *vcvertptr(abs_vertnum);
distance_to_point = vm_vec_dist_quick(vert_location, light_location);
const auto vector_to_light = vm_vec_normalized(vm_vec_sub(light_location, vert_location));
// Hack: In oblong segments, it's possible to get a very small dot product
// but the light source is very nearby (eg, illuminating light itself!).
light_dot = vm_vec_dot(vector_to_light, side_normalp);
if (distance_to_point < F1_0)
if (light_dot > 0)
light_dot = (light_dot + F1_0)/2;
if (light_dot > 0) {
light_at_point = fixdiv(fixmul(light_dot, light_dot), distance_to_point);
light_at_point = fixmul(light_at_point, Magical_light_constant);
if (light_at_point >= 0) {
fvi_info hit_data;
int hit_type;
fix inverse_segment_magnitude;
const auto r_vector_to_center = vm_vec_sub(r_segment_center, vert_location);
inverse_segment_magnitude = fixdiv(F1_0/3, vm_vec_mag(r_vector_to_center));
const auto vert_location_1 = vm_vec_scale_add(vert_location, r_vector_to_center, inverse_segment_magnitude);
vert_location = vert_location_1;
//if ((segp-Segments == 199) && (rsegp-Segments==199))
// Int3();
// Seg0 = segp-Segments;
// Seg1 = rsegp-Segments;
if (!quick_light) {
int hash_value = Side_to_verts[sidenum][vertnum];
hash_info *hashp = &fvi_cache[hash_value];
while (1) {
if (hashp->flag) {
if ((hashp->vector.x == vector_to_light.x) && (hashp->vector.y == vector_to_light.y) && (hashp->vector.z == vector_to_light.z)) {
hit_type = hashp->hit_type;
Hash_hits++;
break;
} else {
Int3(); // How is this possible? Should be no hits!
Hash_retries++;
hash_value = (hash_value+1) & FVI_HASH_AND_MASK;
hashp = &fvi_cache[hash_value];
}
} else {
fvi_query fq;
Hash_calcs++;
hashp->vector = vector_to_light;
hashp->flag = 1;
fq.p0 = &light_location;
fq.startseg = segp;
fq.p1 = &vert_location;
fq.rad = 0;
fq.thisobjnum = object_none;
fq.ignore_obj_list.first = nullptr;
fq.flags = 0;
hit_type = find_vector_intersection(fq, hit_data);
hashp->hit_type = hit_type;
break;
}
}
} else
hit_type = HIT_NONE;
switch (hit_type) {
case HIT_NONE:
light_at_point = fixmul(light_at_point, light_intensity);
urside.uvls[vertnum].l += light_at_point;
if (urside.uvls[vertnum].l > F1_0)
urside.uvls[vertnum].l = F1_0;
break;
case HIT_WALL:
break;
case HIT_OBJECT:
Int3(); // Hit object, should be ignoring objects!
break;
case HIT_BAD_P0:
Int3(); // Ugh, this thing again, what happened, what does it mean?
break;
}
} // end if (light_at_point...
} // end if (light_dot >...
} // end for (vertnum=0...
} // end if (rsegp...
} // end for (sidenum=0...
} // end if (dist_to_rseg...
} // end for (segnum=0...
} // end for (lightnum=0...
}
// ------------------------------------------------------------------------------------------
// Zero all lighting values.
static void calim_zero_light_values(void)
{
range_for (unique_segment &segp, vmsegptr)
{
range_for (auto &side, segp.sides)
{
range_for (auto &uvl, side.uvls)
uvl.l = F1_0/64; // Put a tiny bit of light here.
}
segp.static_light = F1_0 / 64;
}
}
// ------------------------------------------------------------------------------------------
// Used in setting average light value in a segment, cast light from a side to the center
// of all segments.
static void cast_light_from_side_to_center(const vmsegptridx_t segp, int light_side, fix light_intensity, int quick_light)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
auto &vcvertptr = Vertices.vcptr;
const auto &&segment_center = compute_segment_center(vcvertptr, segp);
// Do for four lights, one just inside each corner of side containing light.
range_for (const auto lightnum, Side_to_verts[light_side])
{
const auto light_vertex_num = segp->verts[lightnum];
auto &vert_light_location = *vcvertptr(light_vertex_num);
const auto vector_to_center = vm_vec_sub(segment_center, vert_light_location);
const auto light_location = vm_vec_scale_add(vert_light_location, vector_to_center, F1_0/64);
range_for (const auto &&rsegp, vmsegptr)
{
fix dist_to_rseg;
//if ((segp == &Segments[Bugseg]) && (rsegp == &Segments[Bugseg]))
// Int3();
const auto r_segment_center = compute_segment_center(vcvertptr, rsegp);
dist_to_rseg = vm_vec_dist_quick(r_segment_center, segment_center);
if (dist_to_rseg <= LIGHT_DISTANCE_THRESHOLD) {
fix light_at_point;
if (dist_to_rseg > F1_0)
light_at_point = fixdiv(Magical_light_constant, dist_to_rseg);
else
light_at_point = Magical_light_constant;
if (light_at_point >= 0) {
int hit_type;
if (!quick_light) {
fvi_query fq;
fvi_info hit_data;
fq.p0 = &light_location;
fq.startseg = segp;
fq.p1 = &r_segment_center;
fq.rad = 0;
fq.thisobjnum = object_none;
fq.ignore_obj_list.first = nullptr;
fq.flags = 0;
hit_type = find_vector_intersection(fq, hit_data);
}
else
hit_type = HIT_NONE;
switch (hit_type) {
case HIT_NONE:
light_at_point = fixmul(light_at_point, light_intensity);
if (light_at_point >= F1_0)
light_at_point = F1_0-1;
rsegp->static_light += light_at_point;
if (segp->static_light < 0) // if it went negative, saturate
segp->static_light = 0;
break;
case HIT_WALL:
break;
case HIT_OBJECT:
Int3(); // Hit object, should be ignoring objects!
break;
case HIT_BAD_P0:
Int3(); // Ugh, this thing again, what happened, what does it mean?
break;
}
} // end if (light_at_point...
} // end if (dist_to_rseg...
} // end for (segnum=0...
} // end for (lightnum=0...
}
// ------------------------------------------------------------------------------------------
// Process all lights.
static void calim_process_all_lights(int quick_light)
{
auto &TmapInfo = LevelUniqueTmapInfoState.TmapInfo;
auto &Walls = LevelUniqueWallSubsystemState.Walls;
auto &vcwallptr = Walls.vcptr;
range_for (const auto &&segp, vmsegptridx)
{
range_for (const auto &&es, enumerate(segp->unique_segment::sides))
{
const uint_fast32_t sidenum = es.idx;
if (WALL_IS_DOORWAY(GameBitmaps, Textures, vcwallptr, segp, sidenum) != WID_NO_WALL)
{
const auto sidep = &es.value;
fix light_intensity;
light_intensity = TmapInfo[sidep->tmap_num].lighting + TmapInfo[sidep->tmap_num2 & 0x3fff].lighting;
// if (segp->sides[sidenum].wall_num != -1) {
// int wall_num, bitmap_num, effect_num;
// wall_num = segp->sides[sidenum].wall_num;
// effect_num = Walls[wall_num].type;
// bitmap_num = effects_bm_num[effect_num];
//
// light_intensity += TmapInfo[bitmap_num].lighting;
// }
if (light_intensity) {
light_intensity /= 4; // casting light from four spots, so divide by 4.
cast_light_from_side(segp, sidenum, light_intensity, quick_light);
cast_light_from_side_to_center(segp, sidenum, light_intensity, quick_light);
}
}
}
}
}
// ------------------------------------------------------------------------------------------
// Apply static light in mine.
// First, zero all light values.
// Then, for all light sources, cast their light.
static void cast_all_light_in_mine(int quick_flag)
{
validate_segment_all(LevelSharedSegmentState);
calim_zero_light_values();
calim_process_all_lights(quick_flag);
}
}
// int Fvit_num = 1000;
//
// fix find_vector_intersection_test(void)
// {
// int i;
// fvi_info hit_data;
// int p0_seg, p1_seg, this_objnum, ignore_obj, check_obj_flag;
// fix rad;
// int start_time = timer_get_milliseconds();;
// vms_vector p0,p1;
//
// ignore_obj = 1;
// check_obj_flag = 0;
// this_objnum = -1;
// rad = F1_0/4;
//
// for (i=0; i<Fvit_num; i++) {
// p0_seg = d_rand()*(Highest_segment_index+1)/32768;
// compute_segment_center(&p0, &Segments[p0_seg]);
//
// p1_seg = d_rand()*(Highest_segment_index+1)/32768;
// compute_segment_center(&p1, &Segments[p1_seg]);
//
// find_vector_intersection(&hit_data, &p0, p0_seg, &p1, rad, this_objnum, ignore_obj, check_obj_flag);
// }
//
// return timer_get_milliseconds() - start_time;
// }