Subversion Repositories QNX 8.QNX8 IFS tool

Rev

Rev 16 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. // sha512.c
  2.  
  3.  
  4. // standard C includes
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <string.h>
  8.  
  9. // own includes
  10. #include "sha512.h"
  11.  
  12.  
  13. // bring TLS support to antique compilers
  14. #ifndef thread_local
  15. #ifdef _MSC_VER
  16. #define thread_local __declspec(thread) // the thread_local keyword wasn't defined before C++11 and C23
  17. #else // a saner compiler
  18. #define thread_local __thread // the thread_local keyword wasn't defined before C++11 and C23
  19. #endif // _MSC_VER
  20. #endif // !thread_local
  21.  
  22.  
  23. // compiler-specific glue
  24. #ifdef _WIN32
  25. #ifndef __BYTE_ORDER__
  26. #define __ORDER_BIG_ENDIAN__    4321
  27. #define __ORDER_LITTLE_ENDIAN__ 1234
  28. #define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__ // all Windows machines are little endian
  29. #endif // !__BYTE_ORDER__
  30. #ifdef _MSC_VER
  31. #define __builtin_bswap64(x) _byteswap_uint64 ((unsigned long long) (x))
  32. #endif // _MSC_VER
  33. #else // !WIN32, thus POSIX
  34. #define sprintf_s(dst,siz,...) sprintf ((dst), __VA_ARGS__)
  35. #endif // _WIN32
  36.  
  37.  
  38. static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data)
  39. {
  40.    // logical functions used in SHA-384 and SHA-512
  41.    #define S64(b,x)      (((x) >> (b)) | ((x) << (64 - (b)))) // 64-bit rotate right
  42.    #define Ch(x,y,z)     (((x) & (y)) ^ ((~(x)) & (z)))
  43.    #define Maj(x,y,z)    (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  44.    #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  45.    #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  46.    #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ ((x) >> 7))
  47.    #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ ((x) >> 6))
  48.  
  49.    // hash constant words K for SHA-384 and SHA-512
  50.    static const uint64_t K512[80] = {
  51.       0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  52.       0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  53.       0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  54.       0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  55.       0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  56.       0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  57.       0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  58.       0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  59.       0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  60.       0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  61.    };
  62.  
  63.    uint64_t     a, b, c, d, e, f, g, h, s0, s1;
  64.    uint64_t     T1, T2, *W512 = (uint64_t *) context->buffer;
  65.    int j;
  66.  
  67.    // initialize registers with the prev. intermediate value
  68.    a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7];
  69.  
  70.    for (j = 0; j < 16; j++)
  71.    {
  72. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  73.       W512[j] = __builtin_bswap64 (*data); // convert to host byte order
  74. #elif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  75.       W512[j] = *data;
  76. #else // __BYTE_ORDER__ == ???
  77. #error Please port this SHA-512 code to your exotic endianness platform. What are you compiling this on? PDP? Honeywell?
  78. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  79.  
  80.       // apply the SHA-512 compression function to update a..h
  81.       T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + W512[j];
  82.       T2 = Sigma0_512 (a) + Maj (a, b, c);
  83.  
  84.       // update registers
  85.       h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
  86.  
  87.       data++;
  88.    }
  89.  
  90.    for (; j < 80; j++)
  91.    {
  92.       // part of the message block expansion
  93.       s0 = W512[(j + 1) & 0x0f];
  94.       s0 = sigma0_512 (s0);
  95.       s1 = W512[(j + 14) & 0x0f];
  96.       s1 = sigma1_512 (s1);
  97.  
  98.       // apply the SHA-512 compression function to update a..h
  99.       T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
  100.       T2 = Sigma0_512 (a) + Maj (a, b, c);
  101.  
  102.       // update registers
  103.       h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
  104.    }
  105.  
  106.    // compute the current intermediate hash value
  107.    context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h;
  108.  
  109.    // clean up
  110.    a = b = c = d = e = f = g = h = T1 = T2 = 0;
  111.    #undef sigma1_512
  112.    #undef sigma0_512
  113.    #undef Sigma1_512
  114.    #undef Sigma0_512
  115.    #undef Maj
  116.    #undef Ch
  117.    #undef S64
  118.    return;
  119. }
  120.  
  121.  
  122. void SHA512_Init (SHA512_CTX *context)
  123. {
  124.    // initial hash value H for SHA-512
  125.    static const uint64_t sha512_initial_hash_value[8] = {
  126.       0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
  127.    };
  128.  
  129.    memcpy (context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
  130.    memset (context->buffer, 0, SHA512_BLOCK_LENGTH);
  131.    context->bitcount[0] = context->bitcount[1] = 0;
  132. }
  133.  
  134.  
  135. void SHA512_Update (SHA512_CTX *context, void *datain, size_t len)
  136. {
  137.    #define ADDINC128(w,n) do { \
  138.            (w)[0] += (uint64_t) (n); \
  139.            if ((w)[0] < (n)) \
  140.                    (w)[1]++; \
  141.    } while (0) // macro for incrementally adding the unsigned 64-bit integer n to the unsigned 128-bit integer (represented using a two-element array of 64-bit words
  142.  
  143.    size_t freespace, usedspace;
  144.    const uint8_t *data = (const uint8_t *) datain;
  145.  
  146.    if (len == 0)
  147.       return; // calling with empty data is valid - we do nothing
  148.  
  149.    usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  150.    if (usedspace > 0)
  151.    {
  152.       // calculate how much free space is available in the buffer
  153.       freespace = SHA512_BLOCK_LENGTH - usedspace;
  154.  
  155.       if (len >= freespace)
  156.       {
  157.          // fill the buffer completely and process it
  158.          memcpy (&context->buffer[usedspace], data, freespace);
  159.          ADDINC128 (context->bitcount, freespace << 3);
  160.          len -= freespace;
  161.          data += freespace;
  162.          sha512_private_transform (context, (uint64_t *) context->buffer);
  163.       }
  164.       else
  165.       {
  166.          // the buffer is not full yet
  167.          memcpy (&context->buffer[usedspace], data, len);
  168.          ADDINC128 (context->bitcount, len << 3);
  169.  
  170.          // clean up
  171.          usedspace = freespace = 0;
  172.          return;
  173.       }
  174.    }
  175.  
  176.    while (len >= SHA512_BLOCK_LENGTH)
  177.    {
  178.       // process as many complete blocks as we can
  179.       sha512_private_transform (context, (uint64_t *) data);
  180.       ADDINC128 (context->bitcount, SHA512_BLOCK_LENGTH << 3);
  181.       len -= SHA512_BLOCK_LENGTH;
  182.       data += SHA512_BLOCK_LENGTH;
  183.    }
  184.  
  185.    if (len > 0)
  186.    {
  187.       // save leftovers
  188.       memcpy (context->buffer, data, len);
  189.       ADDINC128 (context->bitcount, len << 3);
  190.    }
  191.  
  192.    // clean up
  193.    usedspace = freespace = 0;
  194.    #undef ADDINC128
  195.    return;
  196. }
  197.  
  198.  
  199. void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
  200. {
  201.    #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
  202.  
  203.    size_t usedspace;
  204.    union { uint8_t *as_bytes; uint64_t *as_uint64s; } cast_var = { NULL };
  205.  
  206.    // if no digest buffer is passed, don't bother finalizing the computation
  207.    if (digest != NULL)
  208.    {
  209.       usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  210.  
  211. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  212.       context->bitcount[0] = __builtin_bswap64 (context->bitcount[0]); // convert from host byte order
  213.       context->bitcount[1] = __builtin_bswap64 (context->bitcount[1]); // convert from host byte order
  214. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  215.  
  216.       if (usedspace > 0)
  217.       {
  218.          // begin padding with a 1 bit
  219.          context->buffer[usedspace++] = 0x80;
  220.  
  221.          if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
  222.             memset (&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); // set-up for the last transform
  223.          else
  224.          {
  225.             if (usedspace < SHA512_BLOCK_LENGTH)
  226.                memset (&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
  227.  
  228.             sha512_private_transform (context, (uint64_t *) context->buffer); // do second-to-last transform
  229.             memset (context->buffer, 0, SHA512_BLOCK_LENGTH - 2); // and set-up for the last transform
  230.          }
  231.       }
  232.       else // usedspace == 0
  233.       {
  234.          memset (context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); // prepare for final transform
  235.          *context->buffer = 0x80; // begin padding with a 1 bit
  236.       }
  237.  
  238.       // store the length of input data (in bits)
  239.       cast_var.as_bytes = context->buffer;
  240.       cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 0] = context->bitcount[1];
  241.       cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
  242.  
  243.       // final transform
  244.       sha512_private_transform (context, (uint64_t *) context->buffer);
  245.  
  246.       // save the hash data for output
  247. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  248.       for (int j = 0; j < 8; j++)
  249.          context->state[j] = __builtin_bswap64 (context->state[j]); // convert to host byte order
  250. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  251.       memcpy (digest, context->state, SHA512_DIGEST_LENGTH);
  252.    }
  253.  
  254.    // zero out state data
  255.    memset (context, 0, sizeof (SHA512_CTX));
  256.    #undef SHA512_SHORT_BLOCK_LENGTH
  257.    return;
  258. }
  259.  
  260.  
  261. const char *SHA512 (void *data, size_t data_len, uint8_t *digest_or_NULL)
  262. {
  263.    // computes the SHA-512 hash of a block of data in one pass and write it to digest, or to a static buffer if NULL
  264.    // returns the STRING REPRESENTATION of digest in a statically-allocated string
  265.  
  266.    static thread_local uint8_t static_digest[SHA512_DIGEST_LENGTH] = "";
  267.    static thread_local char digest_as_string[2 * SHA512_DIGEST_LENGTH + 1] = "";
  268.  
  269.    SHA512_CTX ctx;
  270.    size_t byte_index;
  271.  
  272.    SHA512_Init (&ctx);
  273.    SHA512_Update (&ctx, data, data_len);
  274.    if (digest_or_NULL == NULL)
  275.       digest_or_NULL = static_digest;
  276.    SHA512_Final (digest_or_NULL, &ctx);
  277.  
  278.    for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
  279.       sprintf_s (&digest_as_string[2 * byte_index], 3, "%02x", digest_or_NULL[byte_index]);
  280.    return (digest_as_string);
  281. }
  282.