//===------ Support/ScopHelper.h -- Some Helper Functions for Scop. -------===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Small functions that help with LLVM-IR.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef POLLY_SUPPORT_IRHELPER_H
 
#define POLLY_SUPPORT_IRHELPER_H
 
 
 
#include "llvm/ADT/SetVector.h"
 
#include "llvm/IR/Instructions.h"
 
#include "llvm/IR/IntrinsicInst.h"
 
#include "llvm/IR/ValueHandle.h"
 
#include "isl/isl-noexceptions.h"
 
#include <optional>
 
 
 
namespace llvm {
 
class LoopInfo;
 
class Loop;
 
class ScalarEvolution;
 
class SCEV;
 
class Region;
 
class Pass;
 
class DominatorTree;
 
class RegionInfo;
 
class RegionNode;
 
} // namespace llvm
 
 
 
namespace polly {
 
class Scop;
 
class ScopStmt;
 
 
 
/// Enumeration of assumptions Polly can take.
 
enum AssumptionKind {
 
  ALIASING,
 
  INBOUNDS,
 
  WRAPPING,
 
  UNSIGNED,
 
  PROFITABLE,
 
  ERRORBLOCK,
 
  COMPLEXITY,
 
  INFINITELOOP,
 
  INVARIANTLOAD,
 
  DELINEARIZATION,
 
};
 
 
 
/// Enum to distinguish between assumptions and restrictions.
 
enum AssumptionSign { AS_ASSUMPTION, AS_RESTRICTION };
 
 
 
/// Helper struct to remember assumptions.
 
struct Assumption {
 
  /// The kind of the assumption (e.g., WRAPPING).
 
  AssumptionKind Kind;
 
 
 
  /// Flag to distinguish assumptions and restrictions.
 
  AssumptionSign Sign;
 
 
 
  /// The valid/invalid context if this is an assumption/restriction.
 
  isl::set Set;
 
 
 
  /// The location that caused this assumption.
 
  llvm::DebugLoc Loc;
 
 
 
  /// An optional block whose domain can simplify the assumption.
 
  llvm::BasicBlock *BB;
 
 
 
  // Whether the assumption must be checked at runtime.
 
  bool RequiresRTC;
 
};
 
 
 
using RecordedAssumptionsTy = llvm::SmallVector<Assumption, 8>;
 
 
 
/// Record an assumption for later addition to the assumed context.
 
///
 
/// This function will add the assumption to the RecordedAssumptions. This
 
/// collection will be added (@see addAssumption) to the assumed context once
 
/// all paramaters are known and the context is fully built.
 
///
 
/// @param RecordedAssumption container which keeps all recorded assumptions.
 
/// @param Kind The assumption kind describing the underlying cause.
 
/// @param Set  The relations between parameters that are assumed to hold.
 
/// @param Loc  The location in the source that caused this assumption.
 
/// @param Sign Enum to indicate if the assumptions in @p Set are positive
 
///             (needed/assumptions) or negative (invalid/restrictions).
 
/// @param BB   The block in which this assumption was taken. If it is
 
///             set, the domain of that block will be used to simplify the
 
///             actual assumption in @p Set once it is added. This is useful
 
///             if the assumption was created prior to the domain.
 
/// @param RTC  Does the assumption require a runtime check?
 
void recordAssumption(RecordedAssumptionsTy *RecordedAssumptions,
 
                      AssumptionKind Kind, isl::set Set, llvm::DebugLoc Loc,
 
                      AssumptionSign Sign, llvm::BasicBlock *BB = nullptr,
 
                      bool RTC = true);
 
 
 
/// Type to remap values.
 
using ValueMapT = llvm::DenseMap<llvm::AssertingVH<llvm::Value>,
 
                                 llvm::AssertingVH<llvm::Value>>;
 
 
 
/// Type for a set of invariant loads.
 
using InvariantLoadsSetTy = llvm::SetVector<llvm::AssertingVH<llvm::LoadInst>>;
 
 
 
/// Set type for parameters.
 
using ParameterSetTy = llvm::SetVector<const llvm::SCEV *>;
 
 
 
/// Set of loops (used to remember loops in non-affine subregions).
 
using BoxedLoopsSetTy = llvm::SetVector<const llvm::Loop *>;
 
 
 
/// Utility proxy to wrap the common members of LoadInst and StoreInst.
 
///
 
/// This works like the LLVM utility class CallSite, ie. it forwards all calls
 
/// to either a LoadInst, StoreInst, MemIntrinsic or MemTransferInst.
 
/// It is similar to LLVM's utility classes IntrinsicInst, MemIntrinsic,
 
/// MemTransferInst, etc. in that it offers a common interface, but does not act
 
/// as a fake base class.
 
/// It is similar to StringRef and ArrayRef in that it holds a pointer to the
 
/// referenced object and should be passed by-value as it is small enough.
 
///
 
/// This proxy can either represent a LoadInst instance, a StoreInst instance,
 
/// a MemIntrinsic instance (memset, memmove, memcpy), a CallInst instance or a
 
/// nullptr (only creatable using the default constructor); never an Instruction
 
/// that is neither of the above mentioned. When representing a nullptr, only
 
/// the following methods are defined:
 
/// isNull(), isInstruction(), isLoad(), isStore(), ..., isMemTransferInst(),
 
/// operator bool(), operator!()
 
///
 
/// The functions isa, cast, cast_or_null, dyn_cast are modeled te resemble
 
/// those from llvm/Support/Casting.h. Partial template function specialization
 
/// is currently not supported in C++ such that those cannot be used directly.
 
/// (llvm::isa could, but then llvm:cast etc. would not have the expected
 
/// behavior)
 
class MemAccInst final {
 
private:
 
  llvm::Instruction *I;
 
 
 
public:
 
  MemAccInst() : I(nullptr) {}
 
  MemAccInst(const MemAccInst &Inst) : I(Inst.I) {}
 
  /* implicit */ MemAccInst(llvm::LoadInst &LI) : I(&LI) {}
 
  /* implicit */ MemAccInst(llvm::LoadInst *LI) : I(LI) {}
 
  /* implicit */ MemAccInst(llvm::StoreInst &SI) : I(&SI) {}
 
  /* implicit */ MemAccInst(llvm::StoreInst *SI) : I(SI) {}
 
  /* implicit */ MemAccInst(llvm::MemIntrinsic *MI) : I(MI) {}
 
  /* implicit */ MemAccInst(llvm::CallInst *CI) : I(CI) {}
 
  explicit MemAccInst(llvm::Instruction &I) : I(&I) { assert(isa(I)); }
 
  explicit MemAccInst(llvm::Instruction *I) : I(I) { assert(isa(I)); }
 
 
 
  static bool isa(const llvm::Value &V) {
 
    return llvm::isa<llvm::LoadInst>(V) || llvm::isa<llvm::StoreInst>(V) ||
 
           llvm::isa<llvm::CallInst>(V) || llvm::isa<llvm::MemIntrinsic>(V);
 
  }
 
  static bool isa(const llvm::Value *V) {
 
    return llvm::isa<llvm::LoadInst>(V) || llvm::isa<llvm::StoreInst>(V) ||
 
           llvm::isa<llvm::CallInst>(V) || llvm::isa<llvm::MemIntrinsic>(V);
 
  }
 
  static MemAccInst cast(llvm::Value &V) {
 
    return MemAccInst(llvm::cast<llvm::Instruction>(V));
 
  }
 
  static MemAccInst cast(llvm::Value *V) {
 
    return MemAccInst(llvm::cast<llvm::Instruction>(V));
 
  }
 
  static MemAccInst cast_or_null(llvm::Value &V) {
 
    return MemAccInst(llvm::cast<llvm::Instruction>(V));
 
  }
 
  static MemAccInst cast_or_null(llvm::Value *V) {
 
    if (!V)
 
      return MemAccInst();
 
    return MemAccInst(llvm::cast<llvm::Instruction>(V));
 
  }
 
  static MemAccInst dyn_cast(llvm::Value &V) {
 
    if (isa(V))
 
      return MemAccInst(llvm::cast<llvm::Instruction>(V));
 
    return MemAccInst();
 
  }
 
  static MemAccInst dyn_cast(llvm::Value *V) {
 
    assert(V);
 
    if (isa(V))
 
      return MemAccInst(llvm::cast<llvm::Instruction>(V));
 
    return MemAccInst();
 
  }
 
 
 
  MemAccInst &operator=(const MemAccInst &Inst) {
 
    I = Inst.I;
 
    return *this;
 
  }
 
  MemAccInst &operator=(llvm::LoadInst &LI) {
 
    I = &LI;
 
    return *this;
 
  }
 
  MemAccInst &operator=(llvm::LoadInst *LI) {
 
    I = LI;
 
    return *this;
 
  }
 
  MemAccInst &operator=(llvm::StoreInst &SI) {
 
    I = &SI;
 
    return *this;
 
  }
 
  MemAccInst &operator=(llvm::StoreInst *SI) {
 
    I = SI;
 
    return *this;
 
  }
 
  MemAccInst &operator=(llvm::MemIntrinsic &MI) {
 
    I = &MI;
 
    return *this;
 
  }
 
  MemAccInst &operator=(llvm::MemIntrinsic *MI) {
 
    I = MI;
 
    return *this;
 
  }
 
  MemAccInst &operator=(llvm::CallInst &CI) {
 
    I = &CI;
 
    return *this;
 
  }
 
  MemAccInst &operator=(llvm::CallInst *CI) {
 
    I = CI;
 
    return *this;
 
  }
 
 
 
  llvm::Instruction *get() const {
 
    assert(I && "Unexpected nullptr!");
 
    return I;
 
  }
 
  operator llvm::Instruction *() const { return asInstruction(); }
 
  llvm::Instruction *operator->() const { return get(); }
 
 
 
  explicit operator bool() const { return isInstruction(); }
 
  bool operator!() const { return isNull(); }
 
 
 
  llvm::Value *getValueOperand() const {
 
    if (isLoad())
 
      return asLoad();
 
    if (isStore())
 
      return asStore()->getValueOperand();
 
    if (isMemIntrinsic())
 
      return nullptr;
 
    if (isCallInst())
 
      return nullptr;
 
    llvm_unreachable("Operation not supported on nullptr");
 
  }
 
  llvm::Value *getPointerOperand() const {
 
    if (isLoad())
 
      return asLoad()->getPointerOperand();
 
    if (isStore())
 
      return asStore()->getPointerOperand();
 
    if (isMemIntrinsic())
 
      return asMemIntrinsic()->getRawDest();
 
    if (isCallInst())
 
      return nullptr;
 
    llvm_unreachable("Operation not supported on nullptr");
 
  }
 
  bool isVolatile() const {
 
    if (isLoad())
 
      return asLoad()->isVolatile();
 
    if (isStore())
 
      return asStore()->isVolatile();
 
    if (isMemIntrinsic())
 
      return asMemIntrinsic()->isVolatile();
 
    if (isCallInst())
 
      return false;
 
    llvm_unreachable("Operation not supported on nullptr");
 
  }
 
  bool isSimple() const {
 
    if (isLoad())
 
      return asLoad()->isSimple();
 
    if (isStore())
 
      return asStore()->isSimple();
 
    if (isMemIntrinsic())
 
      return !asMemIntrinsic()->isVolatile();
 
    if (isCallInst())
 
      return true;
 
    llvm_unreachable("Operation not supported on nullptr");
 
  }
 
  llvm::AtomicOrdering getOrdering() const {
 
    if (isLoad())
 
      return asLoad()->getOrdering();
 
    if (isStore())
 
      return asStore()->getOrdering();
 
    if (isMemIntrinsic())
 
      return llvm::AtomicOrdering::NotAtomic;
 
    if (isCallInst())
 
      return llvm::AtomicOrdering::NotAtomic;
 
    llvm_unreachable("Operation not supported on nullptr");
 
  }
 
  bool isUnordered() const {
 
    if (isLoad())
 
      return asLoad()->isUnordered();
 
    if (isStore())
 
      return asStore()->isUnordered();
 
    // Copied from the Load/Store implementation of isUnordered:
 
    if (isMemIntrinsic())
 
      return !asMemIntrinsic()->isVolatile();
 
    if (isCallInst())
 
      return true;
 
    llvm_unreachable("Operation not supported on nullptr");
 
  }
 
 
 
  bool isNull() const { return !I; }
 
  bool isInstruction() const { return I; }
 
 
 
  llvm::Instruction *asInstruction() const { return I; }
 
 
 
  bool isLoad() const { return I && llvm::isa<llvm::LoadInst>(I); }
 
  bool isStore() const { return I && llvm::isa<llvm::StoreInst>(I); }
 
  bool isCallInst() const { return I && llvm::isa<llvm::CallInst>(I); }
 
  bool isMemIntrinsic() const { return I && llvm::isa<llvm::MemIntrinsic>(I); }
 
  bool isMemSetInst() const { return I && llvm::isa<llvm::MemSetInst>(I); }
 
  bool isMemTransferInst() const {
 
    return I && llvm::isa<llvm::MemTransferInst>(I);
 
  }
 
 
 
  llvm::LoadInst *asLoad() const { return llvm::cast<llvm::LoadInst>(I); }
 
  llvm::StoreInst *asStore() const { return llvm::cast<llvm::StoreInst>(I); }
 
  llvm::CallInst *asCallInst() const { return llvm::cast<llvm::CallInst>(I); }
 
  llvm::MemIntrinsic *asMemIntrinsic() const {
 
    return llvm::cast<llvm::MemIntrinsic>(I);
 
  }
 
  llvm::MemSetInst *asMemSetInst() const {
 
    return llvm::cast<llvm::MemSetInst>(I);
 
  }
 
  llvm::MemTransferInst *asMemTransferInst() const {
 
    return llvm::cast<llvm::MemTransferInst>(I);
 
  }
 
};
 
} // namespace polly
 
 
 
namespace llvm {
 
/// Specialize simplify_type for MemAccInst to enable dyn_cast and cast
 
///        from a MemAccInst object.
 
template <> struct simplify_type<polly::MemAccInst> {
 
  typedef Instruction *SimpleType;
 
  static SimpleType getSimplifiedValue(polly::MemAccInst &I) {
 
    return I.asInstruction();
 
  }
 
};
 
} // namespace llvm
 
 
 
namespace polly {
 
 
 
/// Simplify the region to have a single unconditional entry edge and a
 
/// single exit edge.
 
///
 
/// Although this function allows DT and RI to be null, regions only work
 
/// properly if the DominatorTree (for Region::contains) and RegionInfo are kept
 
/// up-to-date.
 
///
 
/// @param R  The region to be simplified
 
/// @param DT DominatorTree to be updated.
 
/// @param LI LoopInfo to be updated.
 
/// @param RI RegionInfo to be updated.
 
void simplifyRegion(llvm::Region *R, llvm::DominatorTree *DT,
 
                    llvm::LoopInfo *LI, llvm::RegionInfo *RI);
 
 
 
/// Split the entry block of a function to store the newly inserted
 
///        allocations outside of all Scops.
 
///
 
/// @param EntryBlock The entry block of the current function.
 
/// @param P          The pass that currently running.
 
///
 
void splitEntryBlockForAlloca(llvm::BasicBlock *EntryBlock, llvm::Pass *P);
 
 
 
/// Split the entry block of a function to store the newly inserted
 
///        allocations outside of all Scops.
 
///
 
/// @param DT DominatorTree to be updated.
 
/// @param LI LoopInfo to be updated.
 
/// @param RI RegionInfo to be updated.
 
void splitEntryBlockForAlloca(llvm::BasicBlock *EntryBlock,
 
                              llvm::DominatorTree *DT, llvm::LoopInfo *LI,
 
                              llvm::RegionInfo *RI);
 
 
 
/// Wrapper for SCEVExpander extended to all Polly features.
 
///
 
/// This wrapper will internally call the SCEVExpander but also makes sure that
 
/// all additional features not represented in SCEV (e.g., SDiv/SRem are not
 
/// black boxes but can be part of the function) will be expanded correctly.
 
///
 
/// The parameters are the same as for the creation of a SCEVExpander as well
 
/// as the call to SCEVExpander::expandCodeFor:
 
///
 
/// @param S     The current Scop.
 
/// @param SE    The Scalar Evolution pass.
 
/// @param DL    The module data layout.
 
/// @param Name  The suffix added to the new instruction names.
 
/// @param E     The expression for which code is actually generated.
 
/// @param Ty    The type of the resulting code.
 
/// @param IP    The insertion point for the new code.
 
/// @param VMap  A remapping of values used in @p E.
 
/// @param RTCBB The last block of the RTC. Used to insert loop-invariant
 
///              instructions in rare cases.
 
llvm::Value *expandCodeFor(Scop &S, llvm::ScalarEvolution &SE,
 
                           const llvm::DataLayout &DL, const char *Name,
 
                           const llvm::SCEV *E, llvm::Type *Ty,
 
                           llvm::Instruction *IP, ValueMapT *VMap,
 
                           llvm::BasicBlock *RTCBB);
 
 
 
/// Return the condition for the terminator @p TI.
 
///
 
/// For unconditional branches the "i1 true" condition will be returned.
 
///
 
/// @param TI The terminator to get the condition from.
 
///
 
/// @return The condition of @p TI and nullptr if none could be extracted.
 
llvm::Value *getConditionFromTerminator(llvm::Instruction *TI);
 
 
 
/// Get the smallest loop that contains @p S but is not in @p S.
 
llvm::Loop *getLoopSurroundingScop(Scop &S, llvm::LoopInfo &LI);
 
 
 
/// Get the number of blocks in @p L.
 
///
 
/// The number of blocks in a loop are the number of basic blocks actually
 
/// belonging to the loop, as well as all single basic blocks that the loop
 
/// exits to and which terminate in an unreachable instruction. We do not
 
/// allow such basic blocks in the exit of a scop, hence they belong to the
 
/// scop and represent run-time conditions which we want to model and
 
/// subsequently speculate away.
 
///
 
/// @see getRegionNodeLoop for additional details.
 
unsigned getNumBlocksInLoop(llvm::Loop *L);
 
 
 
/// Get the number of blocks in @p RN.
 
unsigned getNumBlocksInRegionNode(llvm::RegionNode *RN);
 
 
 
/// Return the smallest loop surrounding @p RN.
 
llvm::Loop *getRegionNodeLoop(llvm::RegionNode *RN, llvm::LoopInfo &LI);
 
 
 
/// Check if @p LInst can be hoisted in @p R.
 
///
 
/// @param LInst The load to check.
 
/// @param R     The analyzed region.
 
/// @param LI    The loop info.
 
/// @param SE    The scalar evolution analysis.
 
/// @param DT    The dominator tree of the function.
 
/// @param KnownInvariantLoads The invariant load set.
 
///
 
/// @return True if @p LInst can be hoisted in @p R.
 
bool isHoistableLoad(llvm::LoadInst *LInst, llvm::Region &R, llvm::LoopInfo &LI,
 
                     llvm::ScalarEvolution &SE, const llvm::DominatorTree &DT,
 
                     const InvariantLoadsSetTy &KnownInvariantLoads);
 
 
 
/// Return true iff @p V is an intrinsic that we ignore during code
 
///        generation.
 
bool isIgnoredIntrinsic(const llvm::Value *V);
 
 
 
/// Check whether a value an be synthesized by the code generator.
 
///
 
/// Some value will be recalculated only from information that is code generated
 
/// from the polyhedral representation. For such instructions we do not need to
 
/// ensure that their operands are available during code generation.
 
///
 
/// @param V The value to check.
 
/// @param S The current SCoP.
 
/// @param SE The scalar evolution database.
 
/// @param Scope Location where the value would by synthesized.
 
/// @return If the instruction I can be regenerated from its
 
///         scalar evolution representation, return true,
 
///         otherwise return false.
 
bool canSynthesize(const llvm::Value *V, const Scop &S,
 
                   llvm::ScalarEvolution *SE, llvm::Loop *Scope);
 
 
 
/// Return the block in which a value is used.
 
///
 
/// For normal instructions, this is the instruction's parent block. For PHI
 
/// nodes, this is the incoming block of that use, because this is where the
 
/// operand must be defined (i.e. its definition dominates this block).
 
/// Non-instructions do not use operands at a specific point such that in this
 
/// case this function returns nullptr.
 
llvm::BasicBlock *getUseBlock(const llvm::Use &U);
 
 
 
// If the loop is nonaffine/boxed, return the first non-boxed surrounding loop
 
// for Polly. If the loop is affine, return the loop itself.
 
//
 
// @param L             Pointer to the Loop object to analyze.
 
// @param LI            Reference to the LoopInfo.
 
// @param BoxedLoops    Set of Boxed Loops we get from the SCoP.
 
llvm::Loop *getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
 
                                    const BoxedLoopsSetTy &BoxedLoops);
 
 
 
// If the Basic Block belongs to a loop that is nonaffine/boxed, return the
 
// first non-boxed surrounding loop for Polly. If the loop is affine, return
 
// the loop itself.
 
//
 
// @param BB            Pointer to the Basic Block to analyze.
 
// @param LI            Reference to the LoopInfo.
 
// @param BoxedLoops    Set of Boxed Loops we get from the SCoP.
 
llvm::Loop *getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, llvm::LoopInfo &LI,
 
                                    const BoxedLoopsSetTy &BoxedLoops);
 
 
 
/// Is the given instruction a call to a debug function?
 
///
 
/// A debug function can be used to insert output in Polly-optimized code which
 
/// normally does not allow function calls with side-effects. For instance, a
 
/// printf can be inserted to check whether a value still has the expected value
 
/// after Polly generated code:
 
///
 
///     int sum = 0;
 
///     for (int i = 0; i < 16; i+=1) {
 
///       sum += i;
 
///       printf("The value of sum at i=%d is %d\n", sum, i);
 
///     }
 
bool isDebugCall(llvm::Instruction *Inst);
 
 
 
/// Does the statement contain a call to a debug function?
 
///
 
/// Such a statement must not be removed, even if has no side-effects.
 
bool hasDebugCall(ScopStmt *Stmt);
 
 
 
/// Find a property value in a LoopID.
 
///
 
/// Generally, a property MDNode has the format
 
///
 
///   !{ !"Name", value }
 
///
 
/// In which case the value is returned.
 
///
 
/// If the property is just
 
///
 
///   !{ !"Name" }
 
///
 
/// Then `nullptr` is set to mark the property is existing, but does not carry
 
/// any value. If the property does not exist, `None` is returned.
 
std::optional<llvm::Metadata *> findMetadataOperand(llvm::MDNode *LoopMD,
 
                                                    llvm::StringRef Name);
 
 
 
/// Find a boolean property value in a LoopID. The value not being defined is
 
/// interpreted as a false value.
 
bool getBooleanLoopAttribute(llvm::MDNode *LoopID, llvm::StringRef Name);
 
 
 
/// Find an integers property value in a LoopID.
 
std::optional<int> getOptionalIntLoopAttribute(llvm::MDNode *LoopID,
 
                                               llvm::StringRef Name);
 
 
 
/// Does the loop's LoopID contain a 'llvm.loop.disable_heuristics' property?
 
///
 
/// This is equivalent to llvm::hasDisableAllTransformsHint(Loop*), but
 
/// including the LoopUtils.h header indirectly also declares llvm::MemoryAccess
 
/// which clashes with polly::MemoryAccess. Declaring this alias here avoid
 
/// having to include LoopUtils.h in other files.
 
bool hasDisableAllTransformsHint(llvm::Loop *L);
 
bool hasDisableAllTransformsHint(llvm::MDNode *LoopID);
 
 
 
/// Represent the attributes of a loop.
 
struct BandAttr {
 
  /// LoopID which stores the properties of the loop, such as transformations to
 
  /// apply and the metadata of followup-loops.
 
  ///
 
  /// Cannot be used to identify a loop. Two different loops can have the same
 
  /// metadata.
 
  llvm::MDNode *Metadata = nullptr;
 
 
 
  /// The LoopInfo reference for this loop.
 
  ///
 
  /// Only loops from the original IR are represented by LoopInfo. Loops that
 
  /// were generated by Polly are not tracked by LoopInfo.
 
  llvm::Loop *OriginalLoop = nullptr;
 
};
 
 
 
/// Get an isl::id representing a loop.
 
///
 
/// This takes the ownership of the BandAttr and will be free'd when the
 
/// returned isl::Id is free'd.
 
isl::id getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr);
 
 
 
/// Create an isl::id that identifies an original loop.
 
///
 
/// Return nullptr if the loop does not need a BandAttr (i.e. has no
 
/// properties);
 
///
 
/// This creates a BandAttr which must be unique per loop and therefore this
 
/// must not be called multiple times on the same loop as their id would be
 
/// different.
 
isl::id createIslLoopAttr(isl::ctx Ctx, llvm::Loop *L);
 
 
 
/// Is @p Id representing a loop?
 
///
 
/// Such ids contain a polly::BandAttr as its user pointer.
 
bool isLoopAttr(const isl::id &Id);
 
 
 
/// Return the BandAttr of a loop's isl::id.
 
BandAttr *getLoopAttr(const isl::id &Id);
 
 
 
} // namespace polly
 
#endif