Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- polly/ScopInfo.h -----------------------------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // Store the polyhedral model representation of a static control flow region,
  10. // also called SCoP (Static Control Part).
  11. //
  12. // This representation is shared among several tools in the polyhedral
  13. // community, which are e.g. CLooG, Pluto, Loopo, Graphite.
  14. //
  15. //===----------------------------------------------------------------------===//
  16.  
  17. #ifndef POLLY_SCOPINFO_H
  18. #define POLLY_SCOPINFO_H
  19.  
  20. #include "polly/ScopDetection.h"
  21. #include "polly/Support/SCEVAffinator.h"
  22. #include "polly/Support/ScopHelper.h"
  23. #include "llvm/ADT/ArrayRef.h"
  24. #include "llvm/ADT/MapVector.h"
  25. #include "llvm/ADT/SetVector.h"
  26. #include "llvm/Analysis/RegionPass.h"
  27. #include "llvm/IR/DebugLoc.h"
  28. #include "llvm/IR/Instruction.h"
  29. #include "llvm/IR/Instructions.h"
  30. #include "llvm/IR/PassManager.h"
  31. #include "llvm/IR/ValueHandle.h"
  32. #include "llvm/Pass.h"
  33. #include "isl/isl-noexceptions.h"
  34. #include <cassert>
  35. #include <cstddef>
  36. #include <forward_list>
  37. #include <optional>
  38.  
  39. namespace polly {
  40. using llvm::AnalysisInfoMixin;
  41. using llvm::ArrayRef;
  42. using llvm::AssertingVH;
  43. using llvm::AssumptionCache;
  44. using llvm::cast;
  45. using llvm::DataLayout;
  46. using llvm::DenseMap;
  47. using llvm::DenseSet;
  48. using llvm::function_ref;
  49. using llvm::isa;
  50. using llvm::iterator_range;
  51. using llvm::LoadInst;
  52. using llvm::make_range;
  53. using llvm::MapVector;
  54. using llvm::MemIntrinsic;
  55. using llvm::PassInfoMixin;
  56. using llvm::PHINode;
  57. using llvm::RegionNode;
  58. using llvm::RegionPass;
  59. using llvm::RGPassManager;
  60. using llvm::SetVector;
  61. using llvm::SmallPtrSetImpl;
  62. using llvm::SmallVector;
  63. using llvm::SmallVectorImpl;
  64. using llvm::StringMap;
  65. using llvm::Type;
  66. using llvm::Use;
  67. using llvm::Value;
  68. using llvm::ValueToValueMap;
  69.  
  70. class MemoryAccess;
  71.  
  72. //===---------------------------------------------------------------------===//
  73.  
  74. extern bool UseInstructionNames;
  75.  
  76. // The maximal number of basic sets we allow during domain construction to
  77. // be created. More complex scops will result in very high compile time and
  78. // are also unlikely to result in good code.
  79. extern unsigned const MaxDisjunctsInDomain;
  80.  
  81. /// The different memory kinds used in Polly.
  82. ///
  83. /// We distinguish between arrays and various scalar memory objects. We use
  84. /// the term ``array'' to describe memory objects that consist of a set of
  85. /// individual data elements arranged in a multi-dimensional grid. A scalar
  86. /// memory object describes an individual data element and is used to model
  87. /// the definition and uses of llvm::Values.
  88. ///
  89. /// The polyhedral model does traditionally not reason about SSA values. To
  90. /// reason about llvm::Values we model them "as if" they were zero-dimensional
  91. /// memory objects, even though they were not actually allocated in (main)
  92. /// memory.  Memory for such objects is only alloca[ed] at CodeGeneration
  93. /// time. To relate the memory slots used during code generation with the
  94. /// llvm::Values they belong to the new names for these corresponding stack
  95. /// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
  96. /// to the name of the original llvm::Value. To describe how def/uses are
  97. /// modeled exactly we use these suffixes here as well.
  98. ///
  99. /// There are currently four different kinds of memory objects:
  100. enum class MemoryKind {
  101.   /// MemoryKind::Array: Models a one or multi-dimensional array
  102.   ///
  103.   /// A memory object that can be described by a multi-dimensional array.
  104.   /// Memory objects of this type are used to model actual multi-dimensional
  105.   /// arrays as they exist in LLVM-IR, but they are also used to describe
  106.   /// other objects:
  107.   ///   - A single data element allocated on the stack using 'alloca' is
  108.   ///     modeled as a one-dimensional, single-element array.
  109.   ///   - A single data element allocated as a global variable is modeled as
  110.   ///     one-dimensional, single-element array.
  111.   ///   - Certain multi-dimensional arrays with variable size, which in
  112.   ///     LLVM-IR are commonly expressed as a single-dimensional access with a
  113.   ///     complicated access function, are modeled as multi-dimensional
  114.   ///     memory objects (grep for "delinearization").
  115.   Array,
  116.  
  117.   /// MemoryKind::Value: Models an llvm::Value
  118.   ///
  119.   /// Memory objects of type MemoryKind::Value are used to model the data flow
  120.   /// induced by llvm::Values. For each llvm::Value that is used across
  121.   /// BasicBlocks, one ScopArrayInfo object is created. A single memory WRITE
  122.   /// stores the llvm::Value at its definition into the memory object and at
  123.   /// each use of the llvm::Value (ignoring trivial intra-block uses) a
  124.   /// corresponding READ is added. For instance, the use/def chain of a
  125.   /// llvm::Value %V depicted below
  126.   ///              ______________________
  127.   ///              |DefBB:              |
  128.   ///              |  %V = float op ... |
  129.   ///              ----------------------
  130.   ///               |                  |
  131.   /// _________________               _________________
  132.   /// |UseBB1:        |               |UseBB2:        |
  133.   /// |  use float %V |               |  use float %V |
  134.   /// -----------------               -----------------
  135.   ///
  136.   /// is modeled as if the following memory accesses occurred:
  137.   ///
  138.   ///                        __________________________
  139.   ///                        |entry:                  |
  140.   ///                        |  %V.s2a = alloca float |
  141.   ///                        --------------------------
  142.   ///                                     |
  143.   ///                    ___________________________________
  144.   ///                    |DefBB:                           |
  145.   ///                    |  store %float %V, float* %V.s2a |
  146.   ///                    -----------------------------------
  147.   ///                           |                   |
  148.   /// ____________________________________ ___________________________________
  149.   /// |UseBB1:                           | |UseBB2:                          |
  150.   /// |  %V.reload1 = load float* %V.s2a | |  %V.reload2 = load float* %V.s2a|
  151.   /// |  use float %V.reload1            | |  use float %V.reload2           |
  152.   /// ------------------------------------ -----------------------------------
  153.   ///
  154.   Value,
  155.  
  156.   /// MemoryKind::PHI: Models PHI nodes within the SCoP
  157.   ///
  158.   /// Besides the MemoryKind::Value memory object used to model the normal
  159.   /// llvm::Value dependences described above, PHI nodes require an additional
  160.   /// memory object of type MemoryKind::PHI to describe the forwarding of values
  161.   /// to
  162.   /// the PHI node.
  163.   ///
  164.   /// As an example, a PHIInst instructions
  165.   ///
  166.   /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
  167.   ///
  168.   /// is modeled as if the accesses occurred this way:
  169.   ///
  170.   ///                    _______________________________
  171.   ///                    |entry:                       |
  172.   ///                    |  %PHI.phiops = alloca float |
  173.   ///                    -------------------------------
  174.   ///                           |              |
  175.   /// __________________________________  __________________________________
  176.   /// |IncomingBlock1:                 |  |IncomingBlock2:                 |
  177.   /// |  ...                           |  |  ...                           |
  178.   /// |  store float %Val1 %PHI.phiops |  |  store float %Val2 %PHI.phiops |
  179.   /// |  br label % JoinBlock          |  |  br label %JoinBlock           |
  180.   /// ----------------------------------  ----------------------------------
  181.   ///                             \            /
  182.   ///                              \          /
  183.   ///               _________________________________________
  184.   ///               |JoinBlock:                             |
  185.   ///               |  %PHI = load float, float* PHI.phiops |
  186.   ///               -----------------------------------------
  187.   ///
  188.   /// Note that there can also be a scalar write access for %PHI if used in a
  189.   /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
  190.   /// well as a memory object %PHI.s2a.
  191.   PHI,
  192.  
  193.   /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block
  194.   ///
  195.   /// For PHI nodes in the Scop's exit block a special memory object kind is
  196.   /// used. The modeling used is identical to MemoryKind::PHI, with the
  197.   /// exception
  198.   /// that there are no READs from these memory objects. The PHINode's
  199.   /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
  200.   /// write directly to the escaping value's ".s2a" alloca.
  201.   ExitPHI
  202. };
  203.  
  204. /// Maps from a loop to the affine function expressing its backedge taken count.
  205. /// The backedge taken count already enough to express iteration domain as we
  206. /// only allow loops with canonical induction variable.
  207. /// A canonical induction variable is:
  208. /// an integer recurrence that starts at 0 and increments by one each time
  209. /// through the loop.
  210. using LoopBoundMapType = std::map<const Loop *, const SCEV *>;
  211.  
  212. using AccFuncVector = std::vector<std::unique_ptr<MemoryAccess>>;
  213.  
  214. /// A class to store information about arrays in the SCoP.
  215. ///
  216. /// Objects are accessible via the ScoP, MemoryAccess or the id associated with
  217. /// the MemoryAccess access function.
  218. ///
  219. class ScopArrayInfo final {
  220. public:
  221.   /// Construct a ScopArrayInfo object.
  222.   ///
  223.   /// @param BasePtr        The array base pointer.
  224.   /// @param ElementType    The type of the elements stored in the array.
  225.   /// @param IslCtx         The isl context used to create the base pointer id.
  226.   /// @param DimensionSizes A vector containing the size of each dimension.
  227.   /// @param Kind           The kind of the array object.
  228.   /// @param DL             The data layout of the module.
  229.   /// @param S              The scop this array object belongs to.
  230.   /// @param BaseName       The optional name of this memory reference.
  231.   ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx IslCtx,
  232.                 ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind,
  233.                 const DataLayout &DL, Scop *S, const char *BaseName = nullptr);
  234.  
  235.   /// Destructor to free the isl id of the base pointer.
  236.   ~ScopArrayInfo();
  237.  
  238.   ///  Update the element type of the ScopArrayInfo object.
  239.   ///
  240.   ///  Memory accesses referencing this ScopArrayInfo object may use
  241.   ///  different element sizes. This function ensures the canonical element type
  242.   ///  stored is small enough to model accesses to the current element type as
  243.   ///  well as to @p NewElementType.
  244.   ///
  245.   ///  @param NewElementType An element type that is used to access this array.
  246.   void updateElementType(Type *NewElementType);
  247.  
  248.   ///  Update the sizes of the ScopArrayInfo object.
  249.   ///
  250.   ///  A ScopArrayInfo object may be created without all outer dimensions being
  251.   ///  available. This function is called when new memory accesses are added for
  252.   ///  this ScopArrayInfo object. It verifies that sizes are compatible and adds
  253.   ///  additional outer array dimensions, if needed.
  254.   ///
  255.   ///  @param Sizes       A vector of array sizes where the rightmost array
  256.   ///                     sizes need to match the innermost array sizes already
  257.   ///                     defined in SAI.
  258.   ///  @param CheckConsistency Update sizes, even if new sizes are inconsistent
  259.   ///                          with old sizes
  260.   bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);
  261.  
  262.   /// Set the base pointer to @p BP.
  263.   void setBasePtr(Value *BP) { BasePtr = BP; }
  264.  
  265.   /// Return the base pointer.
  266.   Value *getBasePtr() const { return BasePtr; }
  267.  
  268.   // Set IsOnHeap to the value in parameter.
  269.   void setIsOnHeap(bool value) { IsOnHeap = value; }
  270.  
  271.   /// For indirect accesses return the origin SAI of the BP, else null.
  272.   const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }
  273.  
  274.   /// The set of derived indirect SAIs for this origin SAI.
  275.   const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
  276.     return DerivedSAIs;
  277.   }
  278.  
  279.   /// Return the number of dimensions.
  280.   unsigned getNumberOfDimensions() const {
  281.     if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI ||
  282.         Kind == MemoryKind::Value)
  283.       return 0;
  284.     return DimensionSizes.size();
  285.   }
  286.  
  287.   /// Return the size of dimension @p dim as SCEV*.
  288.   //
  289.   //  Scalars do not have array dimensions and the first dimension of
  290.   //  a (possibly multi-dimensional) array also does not carry any size
  291.   //  information, in case the array is not newly created.
  292.   const SCEV *getDimensionSize(unsigned Dim) const {
  293.     assert(Dim < getNumberOfDimensions() && "Invalid dimension");
  294.     return DimensionSizes[Dim];
  295.   }
  296.  
  297.   /// Return the size of dimension @p dim as isl::pw_aff.
  298.   //
  299.   //  Scalars do not have array dimensions and the first dimension of
  300.   //  a (possibly multi-dimensional) array also does not carry any size
  301.   //  information, in case the array is not newly created.
  302.   isl::pw_aff getDimensionSizePw(unsigned Dim) const {
  303.     assert(Dim < getNumberOfDimensions() && "Invalid dimension");
  304.     return DimensionSizesPw[Dim];
  305.   }
  306.  
  307.   /// Get the canonical element type of this array.
  308.   ///
  309.   /// @returns The canonical element type of this array.
  310.   Type *getElementType() const { return ElementType; }
  311.  
  312.   /// Get element size in bytes.
  313.   int getElemSizeInBytes() const;
  314.  
  315.   /// Get the name of this memory reference.
  316.   std::string getName() const;
  317.  
  318.   /// Return the isl id for the base pointer.
  319.   isl::id getBasePtrId() const;
  320.  
  321.   /// Return what kind of memory this represents.
  322.   MemoryKind getKind() const { return Kind; }
  323.  
  324.   /// Is this array info modeling an llvm::Value?
  325.   bool isValueKind() const { return Kind == MemoryKind::Value; }
  326.  
  327.   /// Is this array info modeling special PHI node memory?
  328.   ///
  329.   /// During code generation of PHI nodes, there is a need for two kinds of
  330.   /// virtual storage. The normal one as it is used for all scalar dependences,
  331.   /// where the result of the PHI node is stored and later loaded from as well
  332.   /// as a second one where the incoming values of the PHI nodes are stored
  333.   /// into and reloaded when the PHI is executed. As both memories use the
  334.   /// original PHI node as virtual base pointer, we have this additional
  335.   /// attribute to distinguish the PHI node specific array modeling from the
  336.   /// normal scalar array modeling.
  337.   bool isPHIKind() const { return Kind == MemoryKind::PHI; }
  338.  
  339.   /// Is this array info modeling an MemoryKind::ExitPHI?
  340.   bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; }
  341.  
  342.   /// Is this array info modeling an array?
  343.   bool isArrayKind() const { return Kind == MemoryKind::Array; }
  344.  
  345.   /// Is this array allocated on heap
  346.   ///
  347.   /// This property is only relevant if the array is allocated by Polly instead
  348.   /// of pre-existing. If false, it is allocated using alloca instead malloca.
  349.   bool isOnHeap() const { return IsOnHeap; }
  350.  
  351. #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  352.   /// Dump a readable representation to stderr.
  353.   void dump() const;
  354. #endif
  355.  
  356.   /// Print a readable representation to @p OS.
  357.   ///
  358.   /// @param SizeAsPwAff Print the size as isl::pw_aff
  359.   void print(raw_ostream &OS, bool SizeAsPwAff = false) const;
  360.  
  361.   /// Access the ScopArrayInfo associated with an access function.
  362.   static const ScopArrayInfo *getFromAccessFunction(isl::pw_multi_aff PMA);
  363.  
  364.   /// Access the ScopArrayInfo associated with an isl Id.
  365.   static const ScopArrayInfo *getFromId(isl::id Id);
  366.  
  367.   /// Get the space of this array access.
  368.   isl::space getSpace() const;
  369.  
  370.   /// If the array is read only
  371.   bool isReadOnly();
  372.  
  373.   /// Verify that @p Array is compatible to this ScopArrayInfo.
  374.   ///
  375.   /// Two arrays are compatible if their dimensionality, the sizes of their
  376.   /// dimensions, and their element sizes match.
  377.   ///
  378.   /// @param Array The array to compare against.
  379.   ///
  380.   /// @returns True, if the arrays are compatible, False otherwise.
  381.   bool isCompatibleWith(const ScopArrayInfo *Array) const;
  382.  
  383. private:
  384.   void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
  385.     DerivedSAIs.insert(DerivedSAI);
  386.   }
  387.  
  388.   /// For indirect accesses this is the SAI of the BP origin.
  389.   const ScopArrayInfo *BasePtrOriginSAI;
  390.  
  391.   /// For origin SAIs the set of derived indirect SAIs.
  392.   SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;
  393.  
  394.   /// The base pointer.
  395.   AssertingVH<Value> BasePtr;
  396.  
  397.   /// The canonical element type of this array.
  398.   ///
  399.   /// The canonical element type describes the minimal accessible element in
  400.   /// this array. Not all elements accessed, need to be of the very same type,
  401.   /// but the allocation size of the type of the elements loaded/stored from/to
  402.   /// this array needs to be a multiple of the allocation size of the canonical
  403.   /// type.
  404.   Type *ElementType;
  405.  
  406.   /// The isl id for the base pointer.
  407.   isl::id Id;
  408.  
  409.   /// True if the newly allocated array is on heap.
  410.   bool IsOnHeap = false;
  411.  
  412.   /// The sizes of each dimension as SCEV*.
  413.   SmallVector<const SCEV *, 4> DimensionSizes;
  414.  
  415.   /// The sizes of each dimension as isl::pw_aff.
  416.   SmallVector<isl::pw_aff, 4> DimensionSizesPw;
  417.  
  418.   /// The type of this scop array info object.
  419.   ///
  420.   /// We distinguish between SCALAR, PHI and ARRAY objects.
  421.   MemoryKind Kind;
  422.  
  423.   /// The data layout of the module.
  424.   const DataLayout &DL;
  425.  
  426.   /// The scop this SAI object belongs to.
  427.   Scop &S;
  428. };
  429.  
  430. /// Represent memory accesses in statements.
  431. class MemoryAccess final {
  432.   friend class Scop;
  433.   friend class ScopStmt;
  434.   friend class ScopBuilder;
  435.  
  436. public:
  437.   /// The access type of a memory access
  438.   ///
  439.   /// There are three kind of access types:
  440.   ///
  441.   /// * A read access
  442.   ///
  443.   /// A certain set of memory locations are read and may be used for internal
  444.   /// calculations.
  445.   ///
  446.   /// * A must-write access
  447.   ///
  448.   /// A certain set of memory locations is definitely written. The old value is
  449.   /// replaced by a newly calculated value. The old value is not read or used at
  450.   /// all.
  451.   ///
  452.   /// * A may-write access
  453.   ///
  454.   /// A certain set of memory locations may be written. The memory location may
  455.   /// contain a new value if there is actually a write or the old value may
  456.   /// remain, if no write happens.
  457.   enum AccessType {
  458.     READ = 0x1,
  459.     MUST_WRITE = 0x2,
  460.     MAY_WRITE = 0x3,
  461.   };
  462.  
  463.   /// Reduction access type
  464.   ///
  465.   /// Commutative and associative binary operations suitable for reductions
  466.   enum ReductionType {
  467.     RT_NONE, ///< Indicate no reduction at all
  468.     RT_ADD,  ///< Addition
  469.     RT_MUL,  ///< Multiplication
  470.     RT_BOR,  ///< Bitwise Or
  471.     RT_BXOR, ///< Bitwise XOr
  472.     RT_BAND, ///< Bitwise And
  473.   };
  474.  
  475.   using SubscriptsTy = SmallVector<const SCEV *, 4>;
  476.  
  477. private:
  478.   /// A unique identifier for this memory access.
  479.   ///
  480.   /// The identifier is unique between all memory accesses belonging to the same
  481.   /// scop statement.
  482.   isl::id Id;
  483.  
  484.   /// What is modeled by this MemoryAccess.
  485.   /// @see MemoryKind
  486.   MemoryKind Kind;
  487.  
  488.   /// Whether it a reading or writing access, and if writing, whether it
  489.   /// is conditional (MAY_WRITE).
  490.   enum AccessType AccType;
  491.  
  492.   /// Reduction type for reduction like accesses, RT_NONE otherwise
  493.   ///
  494.   /// An access is reduction like if it is part of a load-store chain in which
  495.   /// both access the same memory location (use the same LLVM-IR value
  496.   /// as pointer reference). Furthermore, between the load and the store there
  497.   /// is exactly one binary operator which is known to be associative and
  498.   /// commutative.
  499.   ///
  500.   /// TODO:
  501.   ///
  502.   /// We can later lift the constraint that the same LLVM-IR value defines the
  503.   /// memory location to handle scops such as the following:
  504.   ///
  505.   ///    for i
  506.   ///      for j
  507.   ///        sum[i+j] = sum[i] + 3;
  508.   ///
  509.   /// Here not all iterations access the same memory location, but iterations
  510.   /// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
  511.   /// subsequent transformations do not only need check if a statement is
  512.   /// reduction like, but they also need to verify that that the reduction
  513.   /// property is only exploited for statement instances that load from and
  514.   /// store to the same data location. Doing so at dependence analysis time
  515.   /// could allow us to handle the above example.
  516.   ReductionType RedType = RT_NONE;
  517.  
  518.   /// Parent ScopStmt of this access.
  519.   ScopStmt *Statement;
  520.  
  521.   /// The domain under which this access is not modeled precisely.
  522.   ///
  523.   /// The invalid domain for an access describes all parameter combinations
  524.   /// under which the statement looks to be executed but is in fact not because
  525.   /// some assumption/restriction makes the access invalid.
  526.   isl::set InvalidDomain;
  527.  
  528.   // Properties describing the accessed array.
  529.   // TODO: It might be possible to move them to ScopArrayInfo.
  530.   // @{
  531.  
  532.   /// The base address (e.g., A for A[i+j]).
  533.   ///
  534.   /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base
  535.   /// pointer of the memory access.
  536.   /// The #BaseAddr of a memory access of kind MemoryKind::PHI or
  537.   /// MemoryKind::ExitPHI is the PHI node itself.
  538.   /// The #BaseAddr of a memory access of kind MemoryKind::Value is the
  539.   /// instruction defining the value.
  540.   AssertingVH<Value> BaseAddr;
  541.  
  542.   /// Type a single array element wrt. this access.
  543.   Type *ElementType;
  544.  
  545.   /// Size of each dimension of the accessed array.
  546.   SmallVector<const SCEV *, 4> Sizes;
  547.   // @}
  548.  
  549.   // Properties describing the accessed element.
  550.   // @{
  551.  
  552.   /// The access instruction of this memory access.
  553.   ///
  554.   /// For memory accesses of kind MemoryKind::Array the access instruction is
  555.   /// the Load or Store instruction performing the access.
  556.   ///
  557.   /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the
  558.   /// access instruction of a load access is the PHI instruction. The access
  559.   /// instruction of a PHI-store is the incoming's block's terminator
  560.   /// instruction.
  561.   ///
  562.   /// For memory accesses of kind MemoryKind::Value the access instruction of a
  563.   /// load access is nullptr because generally there can be multiple
  564.   /// instructions in the statement using the same llvm::Value. The access
  565.   /// instruction of a write access is the instruction that defines the
  566.   /// llvm::Value.
  567.   Instruction *AccessInstruction = nullptr;
  568.  
  569.   /// Incoming block and value of a PHINode.
  570.   SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;
  571.  
  572.   /// The value associated with this memory access.
  573.   ///
  574.   ///  - For array memory accesses (MemoryKind::Array) it is the loaded result
  575.   ///    or the stored value. If the access instruction is a memory intrinsic it
  576.   ///    the access value is also the memory intrinsic.
  577.   ///  - For accesses of kind MemoryKind::Value it is the access instruction
  578.   ///    itself.
  579.   ///  - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the
  580.   ///    PHI node itself (for both, READ and WRITE accesses).
  581.   ///
  582.   AssertingVH<Value> AccessValue;
  583.  
  584.   /// Are all the subscripts affine expression?
  585.   bool IsAffine = true;
  586.  
  587.   /// Subscript expression for each dimension.
  588.   SubscriptsTy Subscripts;
  589.  
  590.   /// Relation from statement instances to the accessed array elements.
  591.   ///
  592.   /// In the common case this relation is a function that maps a set of loop
  593.   /// indices to the memory address from which a value is loaded/stored:
  594.   ///
  595.   ///      for i
  596.   ///        for j
  597.   ///    S:     A[i + 3 j] = ...
  598.   ///
  599.   ///    => { S[i,j] -> A[i + 3j] }
  600.   ///
  601.   /// In case the exact access function is not known, the access relation may
  602.   /// also be a one to all mapping { S[i,j] -> A[o] } describing that any
  603.   /// element accessible through A might be accessed.
  604.   ///
  605.   /// In case of an access to a larger element belonging to an array that also
  606.   /// contains smaller elements, the access relation models the larger access
  607.   /// with multiple smaller accesses of the size of the minimal array element
  608.   /// type:
  609.   ///
  610.   ///      short *A;
  611.   ///
  612.   ///      for i
  613.   ///    S:     A[i] = *((double*)&A[4 * i]);
  614.   ///
  615.   ///    => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
  616.   isl::map AccessRelation;
  617.  
  618.   /// Updated access relation read from JSCOP file.
  619.   isl::map NewAccessRelation;
  620.   // @}
  621.  
  622.   isl::basic_map createBasicAccessMap(ScopStmt *Statement);
  623.  
  624.   isl::set assumeNoOutOfBound();
  625.  
  626.   /// Compute bounds on an over approximated  access relation.
  627.   ///
  628.   /// @param ElementSize The size of one element accessed.
  629.   void computeBoundsOnAccessRelation(unsigned ElementSize);
  630.  
  631.   /// Get the original access function as read from IR.
  632.   isl::map getOriginalAccessRelation() const;
  633.  
  634.   /// Return the space in which the access relation lives in.
  635.   isl::space getOriginalAccessRelationSpace() const;
  636.  
  637.   /// Get the new access function imported or set by a pass
  638.   isl::map getNewAccessRelation() const;
  639.  
  640.   /// Fold the memory access to consider parametric offsets
  641.   ///
  642.   /// To recover memory accesses with array size parameters in the subscript
  643.   /// expression we post-process the delinearization results.
  644.   ///
  645.   /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
  646.   /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
  647.   /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
  648.   /// range of exp1(i) - may be preferable. Specifically, for cases where we
  649.   /// know exp1(i) is negative, we want to choose the latter expression.
  650.   ///
  651.   /// As we commonly do not have any information about the range of exp1(i),
  652.   /// we do not choose one of the two options, but instead create a piecewise
  653.   /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
  654.   /// negative. For a 2D array such an access function is created by applying
  655.   /// the piecewise map:
  656.   ///
  657.   /// [i,j] -> [i, j] :      j >= 0
  658.   /// [i,j] -> [i-1, j+N] :  j <  0
  659.   ///
  660.   /// We can generalize this mapping to arbitrary dimensions by applying this
  661.   /// piecewise mapping pairwise from the rightmost to the leftmost access
  662.   /// dimension. It would also be possible to cover a wider range by introducing
  663.   /// more cases and adding multiple of Ns to these cases. However, this has
  664.   /// not yet been necessary.
  665.   /// The introduction of different cases necessarily complicates the memory
  666.   /// access function, but cases that can be statically proven to not happen
  667.   /// will be eliminated later on.
  668.   void foldAccessRelation();
  669.  
  670.   /// Create the access relation for the underlying memory intrinsic.
  671.   void buildMemIntrinsicAccessRelation();
  672.  
  673.   /// Assemble the access relation from all available information.
  674.   ///
  675.   /// In particular, used the information passes in the constructor and the
  676.   /// parent ScopStmt set by setStatment().
  677.   ///
  678.   /// @param SAI Info object for the accessed array.
  679.   void buildAccessRelation(const ScopArrayInfo *SAI);
  680.  
  681.   /// Carry index overflows of dimensions with constant size to the next higher
  682.   /// dimension.
  683.   ///
  684.   /// For dimensions that have constant size, modulo the index by the size and
  685.   /// add up the carry (floored division) to the next higher dimension. This is
  686.   /// how overflow is defined in row-major order.
  687.   /// It happens e.g. when ScalarEvolution computes the offset to the base
  688.   /// pointer and would algebraically sum up all lower dimensions' indices of
  689.   /// constant size.
  690.   ///
  691.   /// Example:
  692.   ///   float (*A)[4];
  693.   ///   A[1][6] -> A[2][2]
  694.   void wrapConstantDimensions();
  695.  
  696. public:
  697.   /// Create a new MemoryAccess.
  698.   ///
  699.   /// @param Stmt       The parent statement.
  700.   /// @param AccessInst The instruction doing the access.
  701.   /// @param BaseAddr   The accessed array's address.
  702.   /// @param ElemType   The type of the accessed array elements.
  703.   /// @param AccType    Whether read or write access.
  704.   /// @param IsAffine   Whether the subscripts are affine expressions.
  705.   /// @param Kind       The kind of memory accessed.
  706.   /// @param Subscripts Subscript expressions
  707.   /// @param Sizes      Dimension lengths of the accessed array.
  708.   MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
  709.                Value *BaseAddress, Type *ElemType, bool Affine,
  710.                ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
  711.                Value *AccessValue, MemoryKind Kind);
  712.  
  713.   /// Create a new MemoryAccess that corresponds to @p AccRel.
  714.   ///
  715.   /// Along with @p Stmt and @p AccType it uses information about dimension
  716.   /// lengths of the accessed array, the type of the accessed array elements,
  717.   /// the name of the accessed array that is derived from the object accessible
  718.   /// via @p AccRel.
  719.   ///
  720.   /// @param Stmt       The parent statement.
  721.   /// @param AccType    Whether read or write access.
  722.   /// @param AccRel     The access relation that describes the memory access.
  723.   MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel);
  724.  
  725.   MemoryAccess(const MemoryAccess &) = delete;
  726.   MemoryAccess &operator=(const MemoryAccess &) = delete;
  727.   ~MemoryAccess();
  728.  
  729.   /// Add a new incoming block/value pairs for this PHI/ExitPHI access.
  730.   ///
  731.   /// @param IncomingBlock The PHI's incoming block.
  732.   /// @param IncomingValue The value when reaching the PHI from the @p
  733.   ///                      IncomingBlock.
  734.   void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
  735.     assert(!isRead());
  736.     assert(isAnyPHIKind());
  737.     Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
  738.   }
  739.  
  740.   /// Return the list of possible PHI/ExitPHI values.
  741.   ///
  742.   /// After code generation moves some PHIs around during region simplification,
  743.   /// we cannot reliably locate the original PHI node and its incoming values
  744.   /// anymore. For this reason we remember these explicitly for all PHI-kind
  745.   /// accesses.
  746.   ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
  747.     assert(isAnyPHIKind());
  748.     return Incoming;
  749.   }
  750.  
  751.   /// Get the type of a memory access.
  752.   enum AccessType getType() { return AccType; }
  753.  
  754.   /// Is this a reduction like access?
  755.   bool isReductionLike() const { return RedType != RT_NONE; }
  756.  
  757.   /// Is this a read memory access?
  758.   bool isRead() const { return AccType == MemoryAccess::READ; }
  759.  
  760.   /// Is this a must-write memory access?
  761.   bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
  762.  
  763.   /// Is this a may-write memory access?
  764.   bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
  765.  
  766.   /// Is this a write memory access?
  767.   bool isWrite() const { return isMustWrite() || isMayWrite(); }
  768.  
  769.   /// Is this a memory intrinsic access (memcpy, memset, memmove)?
  770.   bool isMemoryIntrinsic() const {
  771.     return isa<MemIntrinsic>(getAccessInstruction());
  772.   }
  773.  
  774.   /// Check if a new access relation was imported or set by a pass.
  775.   bool hasNewAccessRelation() const { return !NewAccessRelation.is_null(); }
  776.  
  777.   /// Return the newest access relation of this access.
  778.   ///
  779.   /// There are two possibilities:
  780.   ///   1) The original access relation read from the LLVM-IR.
  781.   ///   2) A new access relation imported from a json file or set by another
  782.   ///      pass (e.g., for privatization).
  783.   ///
  784.   /// As 2) is by construction "newer" than 1) we return the new access
  785.   /// relation if present.
  786.   ///
  787.   isl::map getLatestAccessRelation() const {
  788.     return hasNewAccessRelation() ? getNewAccessRelation()
  789.                                   : getOriginalAccessRelation();
  790.   }
  791.  
  792.   /// Old name of getLatestAccessRelation().
  793.   isl::map getAccessRelation() const { return getLatestAccessRelation(); }
  794.  
  795.   /// Get an isl map describing the memory address accessed.
  796.   ///
  797.   /// In most cases the memory address accessed is well described by the access
  798.   /// relation obtained with getAccessRelation. However, in case of arrays
  799.   /// accessed with types of different size the access relation maps one access
  800.   /// to multiple smaller address locations. This method returns an isl map that
  801.   /// relates each dynamic statement instance to the unique memory location
  802.   /// that is loaded from / stored to.
  803.   ///
  804.   /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
  805.   /// will return the address function { S[i] -> A[4i] }.
  806.   ///
  807.   /// @returns The address function for this memory access.
  808.   isl::map getAddressFunction() const;
  809.  
  810.   /// Return the access relation after the schedule was applied.
  811.   isl::pw_multi_aff
  812.   applyScheduleToAccessRelation(isl::union_map Schedule) const;
  813.  
  814.   /// Get an isl string representing the access function read from IR.
  815.   std::string getOriginalAccessRelationStr() const;
  816.  
  817.   /// Get an isl string representing a new access function, if available.
  818.   std::string getNewAccessRelationStr() const;
  819.  
  820.   /// Get an isl string representing the latest access relation.
  821.   std::string getAccessRelationStr() const;
  822.  
  823.   /// Get the original base address of this access (e.g. A for A[i+j]) when
  824.   /// detected.
  825.   ///
  826.   /// This address may differ from the base address referenced by the original
  827.   /// ScopArrayInfo to which this array belongs, as this memory access may
  828.   /// have been canonicalized to a ScopArrayInfo which has a different but
  829.   /// identically-valued base pointer in case invariant load hoisting is
  830.   /// enabled.
  831.   Value *getOriginalBaseAddr() const { return BaseAddr; }
  832.  
  833.   /// Get the detection-time base array isl::id for this access.
  834.   isl::id getOriginalArrayId() const;
  835.  
  836.   /// Get the base array isl::id for this access, modifiable through
  837.   /// setNewAccessRelation().
  838.   isl::id getLatestArrayId() const;
  839.  
  840.   /// Old name of getOriginalArrayId().
  841.   isl::id getArrayId() const { return getOriginalArrayId(); }
  842.  
  843.   /// Get the detection-time ScopArrayInfo object for the base address.
  844.   const ScopArrayInfo *getOriginalScopArrayInfo() const;
  845.  
  846.   /// Get the ScopArrayInfo object for the base address, or the one set
  847.   /// by setNewAccessRelation().
  848.   const ScopArrayInfo *getLatestScopArrayInfo() const;
  849.  
  850.   /// Legacy name of getOriginalScopArrayInfo().
  851.   const ScopArrayInfo *getScopArrayInfo() const {
  852.     return getOriginalScopArrayInfo();
  853.   }
  854.  
  855.   /// Return a string representation of the access's reduction type.
  856.   const std::string getReductionOperatorStr() const;
  857.  
  858.   /// Return a string representation of the reduction type @p RT.
  859.   static const std::string getReductionOperatorStr(ReductionType RT);
  860.  
  861.   /// Return the element type of the accessed array wrt. this access.
  862.   Type *getElementType() const { return ElementType; }
  863.  
  864.   /// Return the access value of this memory access.
  865.   Value *getAccessValue() const { return AccessValue; }
  866.  
  867.   /// Return llvm::Value that is stored by this access, if available.
  868.   ///
  869.   /// PHI nodes may not have a unique value available that is stored, as in
  870.   /// case of region statements one out of possibly several llvm::Values
  871.   /// might be stored. In this case nullptr is returned.
  872.   Value *tryGetValueStored() {
  873.     assert(isWrite() && "Only write statement store values");
  874.     if (isAnyPHIKind()) {
  875.       if (Incoming.size() == 1)
  876.         return Incoming[0].second;
  877.       return nullptr;
  878.     }
  879.     return AccessValue;
  880.   }
  881.  
  882.   /// Return the access instruction of this memory access.
  883.   Instruction *getAccessInstruction() const { return AccessInstruction; }
  884.  
  885.   ///  Return an iterator range containing the subscripts.
  886.   iterator_range<SubscriptsTy::const_iterator> subscripts() const {
  887.     return make_range(Subscripts.begin(), Subscripts.end());
  888.   }
  889.  
  890.   /// Return the number of access function subscript.
  891.   unsigned getNumSubscripts() const { return Subscripts.size(); }
  892.  
  893.   /// Return the access function subscript in the dimension @p Dim.
  894.   const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }
  895.  
  896.   /// Compute the isl representation for the SCEV @p E wrt. this access.
  897.   ///
  898.   /// Note that this function will also adjust the invalid context accordingly.
  899.   isl::pw_aff getPwAff(const SCEV *E);
  900.  
  901.   /// Get the invalid domain for this access.
  902.   isl::set getInvalidDomain() const { return InvalidDomain; }
  903.  
  904.   /// Get the invalid context for this access.
  905.   isl::set getInvalidContext() const { return getInvalidDomain().params(); }
  906.  
  907.   /// Get the stride of this memory access in the specified Schedule. Schedule
  908.   /// is a map from the statement to a schedule where the innermost dimension is
  909.   /// the dimension of the innermost loop containing the statement.
  910.   isl::set getStride(isl::map Schedule) const;
  911.  
  912.   /// Is the stride of the access equal to a certain width? Schedule is a map
  913.   /// from the statement to a schedule where the innermost dimension is the
  914.   /// dimension of the innermost loop containing the statement.
  915.   bool isStrideX(isl::map Schedule, int StrideWidth) const;
  916.  
  917.   /// Is consecutive memory accessed for a given statement instance set?
  918.   /// Schedule is a map from the statement to a schedule where the innermost
  919.   /// dimension is the dimension of the innermost loop containing the
  920.   /// statement.
  921.   bool isStrideOne(isl::map Schedule) const;
  922.  
  923.   /// Is always the same memory accessed for a given statement instance set?
  924.   /// Schedule is a map from the statement to a schedule where the innermost
  925.   /// dimension is the dimension of the innermost loop containing the
  926.   /// statement.
  927.   bool isStrideZero(isl::map Schedule) const;
  928.  
  929.   /// Return the kind when this access was first detected.
  930.   MemoryKind getOriginalKind() const {
  931.     assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
  932.            getOriginalScopArrayInfo()->getKind() == Kind);
  933.     return Kind;
  934.   }
  935.  
  936.   /// Return the kind considering a potential setNewAccessRelation.
  937.   MemoryKind getLatestKind() const {
  938.     return getLatestScopArrayInfo()->getKind();
  939.   }
  940.  
  941.   /// Whether this is an access of an explicit load or store in the IR.
  942.   bool isOriginalArrayKind() const {
  943.     return getOriginalKind() == MemoryKind::Array;
  944.   }
  945.  
  946.   /// Whether storage memory is either an custom .s2a/.phiops alloca
  947.   /// (false) or an existing pointer into an array (true).
  948.   bool isLatestArrayKind() const {
  949.     return getLatestKind() == MemoryKind::Array;
  950.   }
  951.  
  952.   /// Old name of isOriginalArrayKind.
  953.   bool isArrayKind() const { return isOriginalArrayKind(); }
  954.  
  955.   /// Whether this access is an array to a scalar memory object, without
  956.   /// considering changes by setNewAccessRelation.
  957.   ///
  958.   /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or
  959.   /// MemoryKind::ExitPHI.
  960.   bool isOriginalScalarKind() const {
  961.     return getOriginalKind() != MemoryKind::Array;
  962.   }
  963.  
  964.   /// Whether this access is an array to a scalar memory object, also
  965.   /// considering changes by setNewAccessRelation.
  966.   bool isLatestScalarKind() const {
  967.     return getLatestKind() != MemoryKind::Array;
  968.   }
  969.  
  970.   /// Old name of isOriginalScalarKind.
  971.   bool isScalarKind() const { return isOriginalScalarKind(); }
  972.  
  973.   /// Was this MemoryAccess detected as a scalar dependences?
  974.   bool isOriginalValueKind() const {
  975.     return getOriginalKind() == MemoryKind::Value;
  976.   }
  977.  
  978.   /// Is this MemoryAccess currently modeling scalar dependences?
  979.   bool isLatestValueKind() const {
  980.     return getLatestKind() == MemoryKind::Value;
  981.   }
  982.  
  983.   /// Old name of isOriginalValueKind().
  984.   bool isValueKind() const { return isOriginalValueKind(); }
  985.  
  986.   /// Was this MemoryAccess detected as a special PHI node access?
  987.   bool isOriginalPHIKind() const {
  988.     return getOriginalKind() == MemoryKind::PHI;
  989.   }
  990.  
  991.   /// Is this MemoryAccess modeling special PHI node accesses, also
  992.   /// considering a potential change by setNewAccessRelation?
  993.   bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; }
  994.  
  995.   /// Old name of isOriginalPHIKind.
  996.   bool isPHIKind() const { return isOriginalPHIKind(); }
  997.  
  998.   /// Was this MemoryAccess detected as the accesses of a PHI node in the
  999.   /// SCoP's exit block?
  1000.   bool isOriginalExitPHIKind() const {
  1001.     return getOriginalKind() == MemoryKind::ExitPHI;
  1002.   }
  1003.  
  1004.   /// Is this MemoryAccess modeling the accesses of a PHI node in the
  1005.   /// SCoP's exit block? Can be changed to an array access using
  1006.   /// setNewAccessRelation().
  1007.   bool isLatestExitPHIKind() const {
  1008.     return getLatestKind() == MemoryKind::ExitPHI;
  1009.   }
  1010.  
  1011.   /// Old name of isOriginalExitPHIKind().
  1012.   bool isExitPHIKind() const { return isOriginalExitPHIKind(); }
  1013.  
  1014.   /// Was this access detected as one of the two PHI types?
  1015.   bool isOriginalAnyPHIKind() const {
  1016.     return isOriginalPHIKind() || isOriginalExitPHIKind();
  1017.   }
  1018.  
  1019.   /// Does this access originate from one of the two PHI types? Can be
  1020.   /// changed to an array access using setNewAccessRelation().
  1021.   bool isLatestAnyPHIKind() const {
  1022.     return isLatestPHIKind() || isLatestExitPHIKind();
  1023.   }
  1024.  
  1025.   /// Old name of isOriginalAnyPHIKind().
  1026.   bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }
  1027.  
  1028.   /// Get the statement that contains this memory access.
  1029.   ScopStmt *getStatement() const { return Statement; }
  1030.  
  1031.   /// Get the reduction type of this access
  1032.   ReductionType getReductionType() const { return RedType; }
  1033.  
  1034.   /// Update the original access relation.
  1035.   ///
  1036.   /// We need to update the original access relation during scop construction,
  1037.   /// when unifying the memory accesses that access the same scop array info
  1038.   /// object. After the scop has been constructed, the original access relation
  1039.   /// should not be changed any more. Instead setNewAccessRelation should
  1040.   /// be called.
  1041.   void setAccessRelation(isl::map AccessRelation);
  1042.  
  1043.   /// Set the updated access relation read from JSCOP file.
  1044.   void setNewAccessRelation(isl::map NewAccessRelation);
  1045.  
  1046.   /// Return whether the MemoryyAccess is a partial access. That is, the access
  1047.   /// is not executed in some instances of the parent statement's domain.
  1048.   bool isLatestPartialAccess() const;
  1049.  
  1050.   /// Mark this a reduction like access
  1051.   void markAsReductionLike(ReductionType RT) { RedType = RT; }
  1052.  
  1053.   /// Align the parameters in the access relation to the scop context
  1054.   void realignParams();
  1055.  
  1056.   /// Update the dimensionality of the memory access.
  1057.   ///
  1058.   /// During scop construction some memory accesses may not be constructed with
  1059.   /// their full dimensionality, but outer dimensions may have been omitted if
  1060.   /// they took the value 'zero'. By updating the dimensionality of the
  1061.   /// statement we add additional zero-valued dimensions to match the
  1062.   /// dimensionality of the ScopArrayInfo object that belongs to this memory
  1063.   /// access.
  1064.   void updateDimensionality();
  1065.  
  1066.   /// Get identifier for the memory access.
  1067.   ///
  1068.   /// This identifier is unique for all accesses that belong to the same scop
  1069.   /// statement.
  1070.   isl::id getId() const;
  1071.  
  1072.   /// Print the MemoryAccess.
  1073.   ///
  1074.   /// @param OS The output stream the MemoryAccess is printed to.
  1075.   void print(raw_ostream &OS) const;
  1076.  
  1077. #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  1078.   /// Print the MemoryAccess to stderr.
  1079.   void dump() const;
  1080. #endif
  1081.  
  1082.   /// Is the memory access affine?
  1083.   bool isAffine() const { return IsAffine; }
  1084. };
  1085.  
  1086. raw_ostream &operator<<(raw_ostream &OS, MemoryAccess::ReductionType RT);
  1087.  
  1088. /// Ordered list type to hold accesses.
  1089. using MemoryAccessList = std::forward_list<MemoryAccess *>;
  1090.  
  1091. /// Helper structure for invariant memory accesses.
  1092. struct InvariantAccess {
  1093.   /// The memory access that is (partially) invariant.
  1094.   MemoryAccess *MA;
  1095.  
  1096.   /// The context under which the access is not invariant.
  1097.   isl::set NonHoistableCtx;
  1098. };
  1099.  
  1100. /// Ordered container type to hold invariant accesses.
  1101. using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;
  1102.  
  1103. /// Type for equivalent invariant accesses and their domain context.
  1104. struct InvariantEquivClassTy {
  1105.   /// The pointer that identifies this equivalence class
  1106.   const SCEV *IdentifyingPointer;
  1107.  
  1108.   /// Memory accesses now treated invariant
  1109.   ///
  1110.   /// These memory accesses access the pointer location that identifies
  1111.   /// this equivalence class. They are treated as invariant and hoisted during
  1112.   /// code generation.
  1113.   MemoryAccessList InvariantAccesses;
  1114.  
  1115.   /// The execution context under which the memory location is accessed
  1116.   ///
  1117.   /// It is the union of the execution domains of the memory accesses in the
  1118.   /// InvariantAccesses list.
  1119.   isl::set ExecutionContext;
  1120.  
  1121.   /// The type of the invariant access
  1122.   ///
  1123.   /// It is used to differentiate between differently typed invariant loads from
  1124.   /// the same location.
  1125.   Type *AccessType;
  1126. };
  1127.  
  1128. /// Type for invariant accesses equivalence classes.
  1129. using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;
  1130.  
  1131. /// Statement of the Scop
  1132. ///
  1133. /// A Scop statement represents an instruction in the Scop.
  1134. ///
  1135. /// It is further described by its iteration domain, its schedule and its data
  1136. /// accesses.
  1137. /// At the moment every statement represents a single basic block of LLVM-IR.
  1138. class ScopStmt final {
  1139.   friend class ScopBuilder;
  1140.  
  1141. public:
  1142.   /// Create the ScopStmt from a BasicBlock.
  1143.   ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, Loop *SurroundingLoop,
  1144.            std::vector<Instruction *> Instructions);
  1145.  
  1146.   /// Create an overapproximating ScopStmt for the region @p R.
  1147.   ///
  1148.   /// @param EntryBlockInstructions The list of instructions that belong to the
  1149.   ///                               entry block of the region statement.
  1150.   ///                               Instructions are only tracked for entry
  1151.   ///                               blocks for now. We currently do not allow
  1152.   ///                               to modify the instructions of blocks later
  1153.   ///                               in the region statement.
  1154.   ScopStmt(Scop &parent, Region &R, StringRef Name, Loop *SurroundingLoop,
  1155.            std::vector<Instruction *> EntryBlockInstructions);
  1156.  
  1157.   /// Create a copy statement.
  1158.   ///
  1159.   /// @param Stmt       The parent statement.
  1160.   /// @param SourceRel  The source location.
  1161.   /// @param TargetRel  The target location.
  1162.   /// @param Domain     The original domain under which the copy statement would
  1163.   ///                   be executed.
  1164.   ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
  1165.            isl::set Domain);
  1166.  
  1167.   ScopStmt(const ScopStmt &) = delete;
  1168.   const ScopStmt &operator=(const ScopStmt &) = delete;
  1169.   ~ScopStmt();
  1170.  
  1171. private:
  1172.   /// Polyhedral description
  1173.   //@{
  1174.  
  1175.   /// The Scop containing this ScopStmt.
  1176.   Scop &Parent;
  1177.  
  1178.   /// The domain under which this statement is not modeled precisely.
  1179.   ///
  1180.   /// The invalid domain for a statement describes all parameter combinations
  1181.   /// under which the statement looks to be executed but is in fact not because
  1182.   /// some assumption/restriction makes the statement/scop invalid.
  1183.   isl::set InvalidDomain;
  1184.  
  1185.   /// The iteration domain describes the set of iterations for which this
  1186.   /// statement is executed.
  1187.   ///
  1188.   /// Example:
  1189.   ///     for (i = 0; i < 100 + b; ++i)
  1190.   ///       for (j = 0; j < i; ++j)
  1191.   ///         S(i,j);
  1192.   ///
  1193.   /// 'S' is executed for different values of i and j. A vector of all
  1194.   /// induction variables around S (i, j) is called iteration vector.
  1195.   /// The domain describes the set of possible iteration vectors.
  1196.   ///
  1197.   /// In this case it is:
  1198.   ///
  1199.   ///     Domain: 0 <= i <= 100 + b
  1200.   ///             0 <= j <= i
  1201.   ///
  1202.   /// A pair of statement and iteration vector (S, (5,3)) is called statement
  1203.   /// instance.
  1204.   isl::set Domain;
  1205.  
  1206.   /// The memory accesses of this statement.
  1207.   ///
  1208.   /// The only side effects of a statement are its memory accesses.
  1209.   using MemoryAccessVec = llvm::SmallVector<MemoryAccess *, 8>;
  1210.   MemoryAccessVec MemAccs;
  1211.  
  1212.   /// Mapping from instructions to (scalar) memory accesses.
  1213.   DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;
  1214.  
  1215.   /// The set of values defined elsewhere required in this ScopStmt and
  1216.   ///        their MemoryKind::Value READ MemoryAccesses.
  1217.   DenseMap<Value *, MemoryAccess *> ValueReads;
  1218.  
  1219.   /// The set of values defined in this ScopStmt that are required
  1220.   ///        elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses.
  1221.   DenseMap<Instruction *, MemoryAccess *> ValueWrites;
  1222.  
  1223.   /// Map from PHI nodes to its incoming value when coming from this
  1224.   ///        statement.
  1225.   ///
  1226.   /// Non-affine subregions can have multiple exiting blocks that are incoming
  1227.   /// blocks of the PHI nodes. This map ensures that there is only one write
  1228.   /// operation for the complete subregion. A PHI selecting the relevant value
  1229.   /// will be inserted.
  1230.   DenseMap<PHINode *, MemoryAccess *> PHIWrites;
  1231.  
  1232.   /// Map from PHI nodes to its read access in this statement.
  1233.   DenseMap<PHINode *, MemoryAccess *> PHIReads;
  1234.  
  1235.   //@}
  1236.  
  1237.   /// A SCoP statement represents either a basic block (affine/precise case) or
  1238.   /// a whole region (non-affine case).
  1239.   ///
  1240.   /// Only one of the following two members will therefore be set and indicate
  1241.   /// which kind of statement this is.
  1242.   ///
  1243.   ///{
  1244.  
  1245.   /// The BasicBlock represented by this statement (in the affine case).
  1246.   BasicBlock *BB = nullptr;
  1247.  
  1248.   /// The region represented by this statement (in the non-affine case).
  1249.   Region *R = nullptr;
  1250.  
  1251.   ///}
  1252.  
  1253.   /// The isl AST build for the new generated AST.
  1254.   isl::ast_build Build;
  1255.  
  1256.   SmallVector<Loop *, 4> NestLoops;
  1257.  
  1258.   std::string BaseName;
  1259.  
  1260.   /// The closest loop that contains this statement.
  1261.   Loop *SurroundingLoop;
  1262.  
  1263.   /// Vector for Instructions in this statement.
  1264.   std::vector<Instruction *> Instructions;
  1265.  
  1266.   /// Remove @p MA from dictionaries pointing to them.
  1267.   void removeAccessData(MemoryAccess *MA);
  1268.  
  1269. public:
  1270.   /// Get an isl_ctx pointer.
  1271.   isl::ctx getIslCtx() const;
  1272.  
  1273.   /// Get the iteration domain of this ScopStmt.
  1274.   ///
  1275.   /// @return The iteration domain of this ScopStmt.
  1276.   isl::set getDomain() const;
  1277.  
  1278.   /// Get the space of the iteration domain
  1279.   ///
  1280.   /// @return The space of the iteration domain
  1281.   isl::space getDomainSpace() const;
  1282.  
  1283.   /// Get the id of the iteration domain space
  1284.   ///
  1285.   /// @return The id of the iteration domain space
  1286.   isl::id getDomainId() const;
  1287.  
  1288.   /// Get an isl string representing this domain.
  1289.   std::string getDomainStr() const;
  1290.  
  1291.   /// Get the schedule function of this ScopStmt.
  1292.   ///
  1293.   /// @return The schedule function of this ScopStmt, if it does not contain
  1294.   /// extension nodes, and nullptr, otherwise.
  1295.   isl::map getSchedule() const;
  1296.  
  1297.   /// Get an isl string representing this schedule.
  1298.   ///
  1299.   /// @return An isl string representing this schedule, if it does not contain
  1300.   /// extension nodes, and an empty string, otherwise.
  1301.   std::string getScheduleStr() const;
  1302.  
  1303.   /// Get the invalid domain for this statement.
  1304.   isl::set getInvalidDomain() const { return InvalidDomain; }
  1305.  
  1306.   /// Get the invalid context for this statement.
  1307.   isl::set getInvalidContext() const { return getInvalidDomain().params(); }
  1308.  
  1309.   /// Set the invalid context for this statement to @p ID.
  1310.   void setInvalidDomain(isl::set ID);
  1311.  
  1312.   /// Get the BasicBlock represented by this ScopStmt (if any).
  1313.   ///
  1314.   /// @return The BasicBlock represented by this ScopStmt, or null if the
  1315.   ///         statement represents a region.
  1316.   BasicBlock *getBasicBlock() const { return BB; }
  1317.  
  1318.   /// Return true if this statement represents a single basic block.
  1319.   bool isBlockStmt() const { return BB != nullptr; }
  1320.  
  1321.   /// Return true if this is a copy statement.
  1322.   bool isCopyStmt() const { return BB == nullptr && R == nullptr; }
  1323.  
  1324.   /// Get the region represented by this ScopStmt (if any).
  1325.   ///
  1326.   /// @return The region represented by this ScopStmt, or null if the statement
  1327.   ///         represents a basic block.
  1328.   Region *getRegion() const { return R; }
  1329.  
  1330.   /// Return true if this statement represents a whole region.
  1331.   bool isRegionStmt() const { return R != nullptr; }
  1332.  
  1333.   /// Return a BasicBlock from this statement.
  1334.   ///
  1335.   /// For block statements, it returns the BasicBlock itself. For subregion
  1336.   /// statements, return its entry block.
  1337.   BasicBlock *getEntryBlock() const;
  1338.  
  1339.   /// Return whether @p L is boxed within this statement.
  1340.   bool contains(const Loop *L) const {
  1341.     // Block statements never contain loops.
  1342.     if (isBlockStmt())
  1343.       return false;
  1344.  
  1345.     return getRegion()->contains(L);
  1346.   }
  1347.  
  1348.   /// Return whether this statement represents @p BB.
  1349.   bool represents(BasicBlock *BB) const {
  1350.     if (isCopyStmt())
  1351.       return false;
  1352.     if (isBlockStmt())
  1353.       return BB == getBasicBlock();
  1354.     return getRegion()->contains(BB);
  1355.   }
  1356.  
  1357.   /// Return whether this statement contains @p Inst.
  1358.   bool contains(Instruction *Inst) const {
  1359.     if (!Inst)
  1360.       return false;
  1361.     if (isBlockStmt())
  1362.       return llvm::is_contained(Instructions, Inst);
  1363.     return represents(Inst->getParent());
  1364.   }
  1365.  
  1366.   /// Return the closest innermost loop that contains this statement, but is not
  1367.   /// contained in it.
  1368.   ///
  1369.   /// For block statement, this is just the loop that contains the block. Region
  1370.   /// statements can contain boxed loops, so getting the loop of one of the
  1371.   /// region's BBs might return such an inner loop. For instance, the region's
  1372.   /// entry could be a header of a loop, but the region might extend to BBs
  1373.   /// after the loop exit. Similarly, the region might only contain parts of the
  1374.   /// loop body and still include the loop header.
  1375.   ///
  1376.   /// Most of the time the surrounding loop is the top element of #NestLoops,
  1377.   /// except when it is empty. In that case it return the loop that the whole
  1378.   /// SCoP is contained in. That can be nullptr if there is no such loop.
  1379.   Loop *getSurroundingLoop() const {
  1380.     assert(!isCopyStmt() &&
  1381.            "No surrounding loop for artificially created statements");
  1382.     return SurroundingLoop;
  1383.   }
  1384.  
  1385.   /// Return true if this statement does not contain any accesses.
  1386.   bool isEmpty() const { return MemAccs.empty(); }
  1387.  
  1388.   /// Find all array accesses for @p Inst.
  1389.   ///
  1390.   /// @param Inst The instruction accessing an array.
  1391.   ///
  1392.   /// @return A list of array accesses (MemoryKind::Array) accessed by @p Inst.
  1393.   ///         If there is no such access, it returns nullptr.
  1394.   const MemoryAccessList *
  1395.   lookupArrayAccessesFor(const Instruction *Inst) const {
  1396.     auto It = InstructionToAccess.find(Inst);
  1397.     if (It == InstructionToAccess.end())
  1398.       return nullptr;
  1399.     if (It->second.empty())
  1400.       return nullptr;
  1401.     return &It->second;
  1402.   }
  1403.  
  1404.   /// Return the only array access for @p Inst, if existing.
  1405.   ///
  1406.   /// @param Inst The instruction for which to look up the access.
  1407.   /// @returns The unique array memory access related to Inst or nullptr if
  1408.   ///          no array access exists
  1409.   MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
  1410.     auto It = InstructionToAccess.find(Inst);
  1411.     if (It == InstructionToAccess.end())
  1412.       return nullptr;
  1413.  
  1414.     MemoryAccess *ArrayAccess = nullptr;
  1415.  
  1416.     for (auto Access : It->getSecond()) {
  1417.       if (!Access->isArrayKind())
  1418.         continue;
  1419.  
  1420.       assert(!ArrayAccess && "More then one array access for instruction");
  1421.  
  1422.       ArrayAccess = Access;
  1423.     }
  1424.  
  1425.     return ArrayAccess;
  1426.   }
  1427.  
  1428.   /// Return the only array access for @p Inst.
  1429.   ///
  1430.   /// @param Inst The instruction for which to look up the access.
  1431.   /// @returns The unique array memory access related to Inst.
  1432.   MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
  1433.     MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);
  1434.  
  1435.     assert(ArrayAccess && "No array access found for instruction!");
  1436.     return *ArrayAccess;
  1437.   }
  1438.  
  1439.   /// Return the MemoryAccess that writes the value of an instruction
  1440.   ///        defined in this statement, or nullptr if not existing, respectively
  1441.   ///        not yet added.
  1442.   MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
  1443.     assert((isRegionStmt() && R->contains(Inst)) ||
  1444.            (!isRegionStmt() && Inst->getParent() == BB));
  1445.     return ValueWrites.lookup(Inst);
  1446.   }
  1447.  
  1448.   /// Return the MemoryAccess that reloads a value, or nullptr if not
  1449.   ///        existing, respectively not yet added.
  1450.   MemoryAccess *lookupValueReadOf(Value *Inst) const {
  1451.     return ValueReads.lookup(Inst);
  1452.   }
  1453.  
  1454.   /// Return the MemoryAccess that loads a PHINode value, or nullptr if not
  1455.   /// existing, respectively not yet added.
  1456.   MemoryAccess *lookupPHIReadOf(PHINode *PHI) const {
  1457.     return PHIReads.lookup(PHI);
  1458.   }
  1459.  
  1460.   /// Return the PHI write MemoryAccess for the incoming values from any
  1461.   ///        basic block in this ScopStmt, or nullptr if not existing,
  1462.   ///        respectively not yet added.
  1463.   MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
  1464.     assert(isBlockStmt() || R->getExit() == PHI->getParent());
  1465.     return PHIWrites.lookup(PHI);
  1466.   }
  1467.  
  1468.   /// Return the input access of the value, or null if no such MemoryAccess
  1469.   /// exists.
  1470.   ///
  1471.   /// The input access is the MemoryAccess that makes an inter-statement value
  1472.   /// available in this statement by reading it at the start of this statement.
  1473.   /// This can be a MemoryKind::Value if defined in another statement or a
  1474.   /// MemoryKind::PHI if the value is a PHINode in this statement.
  1475.   MemoryAccess *lookupInputAccessOf(Value *Val) const {
  1476.     if (isa<PHINode>(Val))
  1477.       if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) {
  1478.         assert(!lookupValueReadOf(Val) && "input accesses must be unique; a "
  1479.                                           "statement cannot read a .s2a and "
  1480.                                           ".phiops simultaneously");
  1481.         return InputMA;
  1482.       }
  1483.  
  1484.     if (auto *InputMA = lookupValueReadOf(Val))
  1485.       return InputMA;
  1486.  
  1487.     return nullptr;
  1488.   }
  1489.  
  1490.   /// Add @p Access to this statement's list of accesses.
  1491.   ///
  1492.   /// @param Access  The access to add.
  1493.   /// @param Prepend If true, will add @p Access before all other instructions
  1494.   ///                (instead of appending it).
  1495.   void addAccess(MemoryAccess *Access, bool Preprend = false);
  1496.  
  1497.   /// Remove a MemoryAccess from this statement.
  1498.   ///
  1499.   /// Note that scalar accesses that are caused by MA will
  1500.   /// be eliminated too.
  1501.   void removeMemoryAccess(MemoryAccess *MA);
  1502.  
  1503.   /// Remove @p MA from this statement.
  1504.   ///
  1505.   /// In contrast to removeMemoryAccess(), no other access will be eliminated.
  1506.   ///
  1507.   /// @param MA            The MemoryAccess to be removed.
  1508.   /// @param AfterHoisting If true, also remove from data access lists.
  1509.   ///                      These lists are filled during
  1510.   ///                      ScopBuilder::buildAccessRelations. Therefore, if this
  1511.   ///                      method is called before buildAccessRelations, false
  1512.   ///                      must be passed.
  1513.   void removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting = true);
  1514.  
  1515.   using iterator = MemoryAccessVec::iterator;
  1516.   using const_iterator = MemoryAccessVec::const_iterator;
  1517.  
  1518.   iterator begin() { return MemAccs.begin(); }
  1519.   iterator end() { return MemAccs.end(); }
  1520.   const_iterator begin() const { return MemAccs.begin(); }
  1521.   const_iterator end() const { return MemAccs.end(); }
  1522.   size_t size() const { return MemAccs.size(); }
  1523.  
  1524.   unsigned getNumIterators() const;
  1525.  
  1526.   Scop *getParent() { return &Parent; }
  1527.   const Scop *getParent() const { return &Parent; }
  1528.  
  1529.   const std::vector<Instruction *> &getInstructions() const {
  1530.     return Instructions;
  1531.   }
  1532.  
  1533.   /// Set the list of instructions for this statement. It replaces the current
  1534.   /// list.
  1535.   void setInstructions(ArrayRef<Instruction *> Range) {
  1536.     Instructions.assign(Range.begin(), Range.end());
  1537.   }
  1538.  
  1539.   std::vector<Instruction *>::const_iterator insts_begin() const {
  1540.     return Instructions.begin();
  1541.   }
  1542.  
  1543.   std::vector<Instruction *>::const_iterator insts_end() const {
  1544.     return Instructions.end();
  1545.   }
  1546.  
  1547.   /// The range of instructions in this statement.
  1548.   iterator_range<std::vector<Instruction *>::const_iterator> insts() const {
  1549.     return {insts_begin(), insts_end()};
  1550.   }
  1551.  
  1552.   /// Insert an instruction before all other instructions in this statement.
  1553.   void prependInstruction(Instruction *Inst) {
  1554.     Instructions.insert(Instructions.begin(), Inst);
  1555.   }
  1556.  
  1557.   const char *getBaseName() const;
  1558.  
  1559.   /// Set the isl AST build.
  1560.   void setAstBuild(isl::ast_build B) { Build = B; }
  1561.  
  1562.   /// Get the isl AST build.
  1563.   isl::ast_build getAstBuild() const { return Build; }
  1564.  
  1565.   /// Restrict the domain of the statement.
  1566.   ///
  1567.   /// @param NewDomain The new statement domain.
  1568.   void restrictDomain(isl::set NewDomain);
  1569.  
  1570.   /// Get the loop for a dimension.
  1571.   ///
  1572.   /// @param Dimension The dimension of the induction variable
  1573.   /// @return The loop at a certain dimension.
  1574.   Loop *getLoopForDimension(unsigned Dimension) const;
  1575.  
  1576.   /// Align the parameters in the statement to the scop context
  1577.   void realignParams();
  1578.  
  1579.   /// Print the ScopStmt.
  1580.   ///
  1581.   /// @param OS                The output stream the ScopStmt is printed to.
  1582.   /// @param PrintInstructions Whether to print the statement's instructions as
  1583.   ///                          well.
  1584.   void print(raw_ostream &OS, bool PrintInstructions) const;
  1585.  
  1586.   /// Print the instructions in ScopStmt.
  1587.   ///
  1588.   void printInstructions(raw_ostream &OS) const;
  1589.  
  1590.   /// Check whether there is a value read access for @p V in this statement, and
  1591.   /// if not, create one.
  1592.   ///
  1593.   /// This allows to add MemoryAccesses after the initial creation of the Scop
  1594.   /// by ScopBuilder.
  1595.   ///
  1596.   /// @return The already existing or newly created MemoryKind::Value READ
  1597.   /// MemoryAccess.
  1598.   ///
  1599.   /// @see ScopBuilder::ensureValueRead(Value*,ScopStmt*)
  1600.   MemoryAccess *ensureValueRead(Value *V);
  1601.  
  1602. #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  1603.   /// Print the ScopStmt to stderr.
  1604.   void dump() const;
  1605. #endif
  1606. };
  1607.  
  1608. /// Print ScopStmt S to raw_ostream OS.
  1609. raw_ostream &operator<<(raw_ostream &OS, const ScopStmt &S);
  1610.  
  1611. /// Static Control Part
  1612. ///
  1613. /// A Scop is the polyhedral representation of a control flow region detected
  1614. /// by the Scop detection. It is generated by translating the LLVM-IR and
  1615. /// abstracting its effects.
  1616. ///
  1617. /// A Scop consists of a set of:
  1618. ///
  1619. ///   * A set of statements executed in the Scop.
  1620. ///
  1621. ///   * A set of global parameters
  1622. ///   Those parameters are scalar integer values, which are constant during
  1623. ///   execution.
  1624. ///
  1625. ///   * A context
  1626. ///   This context contains information about the values the parameters
  1627. ///   can take and relations between different parameters.
  1628. class Scop final {
  1629. public:
  1630.   /// Type to represent a pair of minimal/maximal access to an array.
  1631.   using MinMaxAccessTy = std::pair<isl::pw_multi_aff, isl::pw_multi_aff>;
  1632.  
  1633.   /// Vector of minimal/maximal accesses to different arrays.
  1634.   using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
  1635.  
  1636.   /// Pair of minimal/maximal access vectors representing
  1637.   /// read write and read only accesses
  1638.   using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;
  1639.  
  1640.   /// Vector of pair of minimal/maximal access vectors representing
  1641.   /// non read only and read only accesses for each alias group.
  1642.   using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;
  1643.  
  1644. private:
  1645.   friend class ScopBuilder;
  1646.  
  1647.   /// Isl context.
  1648.   ///
  1649.   /// We need a shared_ptr with reference counter to delete the context when all
  1650.   /// isl objects are deleted. We will distribute the shared_ptr to all objects
  1651.   /// that use the context to create isl objects, and increase the reference
  1652.   /// counter. By doing this, we guarantee that the context is deleted when we
  1653.   /// delete the last object that creates isl objects with the context. This
  1654.   /// declaration needs to be the first in class to gracefully destroy all isl
  1655.   /// objects before the context.
  1656.   std::shared_ptr<isl_ctx> IslCtx;
  1657.  
  1658.   ScalarEvolution *SE;
  1659.   DominatorTree *DT;
  1660.  
  1661.   /// The underlying Region.
  1662.   Region &R;
  1663.  
  1664.   /// The name of the SCoP (identical to the regions name)
  1665.   std::optional<std::string> name;
  1666.  
  1667.   // Access functions of the SCoP.
  1668.   //
  1669.   // This owns all the MemoryAccess objects of the Scop created in this pass.
  1670.   AccFuncVector AccessFunctions;
  1671.  
  1672.   /// Flag to indicate that the scheduler actually optimized the SCoP.
  1673.   bool IsOptimized = false;
  1674.  
  1675.   /// True if the underlying region has a single exiting block.
  1676.   bool HasSingleExitEdge;
  1677.  
  1678.   /// Flag to remember if the SCoP contained an error block or not.
  1679.   bool HasErrorBlock = false;
  1680.  
  1681.   /// Max loop depth.
  1682.   unsigned MaxLoopDepth = 0;
  1683.  
  1684.   /// Number of copy statements.
  1685.   unsigned CopyStmtsNum = 0;
  1686.  
  1687.   /// Flag to indicate if the Scop is to be skipped.
  1688.   bool SkipScop = false;
  1689.  
  1690.   using StmtSet = std::list<ScopStmt>;
  1691.  
  1692.   /// The statements in this Scop.
  1693.   StmtSet Stmts;
  1694.  
  1695.   /// Parameters of this Scop
  1696.   ParameterSetTy Parameters;
  1697.  
  1698.   /// Mapping from parameters to their ids.
  1699.   DenseMap<const SCEV *, isl::id> ParameterIds;
  1700.  
  1701.   /// The context of the SCoP created during SCoP detection.
  1702.   ScopDetection::DetectionContext &DC;
  1703.  
  1704.   /// OptimizationRemarkEmitter object for displaying diagnostic remarks
  1705.   OptimizationRemarkEmitter &ORE;
  1706.  
  1707.   /// A map from basic blocks to vector of SCoP statements. Currently this
  1708.   /// vector comprises only of a single statement.
  1709.   DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap;
  1710.  
  1711.   /// A map from instructions to SCoP statements.
  1712.   DenseMap<Instruction *, ScopStmt *> InstStmtMap;
  1713.  
  1714.   /// A map from basic blocks to their domains.
  1715.   DenseMap<BasicBlock *, isl::set> DomainMap;
  1716.  
  1717.   /// Constraints on parameters.
  1718.   isl::set Context;
  1719.  
  1720.   /// The affinator used to translate SCEVs to isl expressions.
  1721.   SCEVAffinator Affinator;
  1722.  
  1723.   using ArrayInfoMapTy =
  1724.       std::map<std::pair<AssertingVH<const Value>, MemoryKind>,
  1725.                std::unique_ptr<ScopArrayInfo>>;
  1726.  
  1727.   using ArrayNameMapTy = StringMap<std::unique_ptr<ScopArrayInfo>>;
  1728.  
  1729.   using ArrayInfoSetTy = SetVector<ScopArrayInfo *>;
  1730.  
  1731.   /// A map to remember ScopArrayInfo objects for all base pointers.
  1732.   ///
  1733.   /// As PHI nodes may have two array info objects associated, we add a flag
  1734.   /// that distinguishes between the PHI node specific ArrayInfo object
  1735.   /// and the normal one.
  1736.   ArrayInfoMapTy ScopArrayInfoMap;
  1737.  
  1738.   /// A map to remember ScopArrayInfo objects for all names of memory
  1739.   ///        references.
  1740.   ArrayNameMapTy ScopArrayNameMap;
  1741.  
  1742.   /// A set to remember ScopArrayInfo objects.
  1743.   /// @see Scop::ScopArrayInfoMap
  1744.   ArrayInfoSetTy ScopArrayInfoSet;
  1745.  
  1746.   /// The assumptions under which this scop was built.
  1747.   ///
  1748.   /// When constructing a scop sometimes the exact representation of a statement
  1749.   /// or condition would be very complex, but there is a common case which is a
  1750.   /// lot simpler, but which is only valid under certain assumptions. The
  1751.   /// assumed context records the assumptions taken during the construction of
  1752.   /// this scop and that need to be code generated as a run-time test.
  1753.   isl::set AssumedContext;
  1754.  
  1755.   /// The restrictions under which this SCoP was built.
  1756.   ///
  1757.   /// The invalid context is similar to the assumed context as it contains
  1758.   /// constraints over the parameters. However, while we need the constraints
  1759.   /// in the assumed context to be "true" the constraints in the invalid context
  1760.   /// need to be "false". Otherwise they behave the same.
  1761.   isl::set InvalidContext;
  1762.  
  1763.   /// The context under which the SCoP must have defined behavior. Optimizer and
  1764.   /// code generator can assume that the SCoP will only be executed with
  1765.   /// parameter values within this context. This might be either because we can
  1766.   /// prove that other values are impossible or explicitly have undefined
  1767.   /// behavior, such as due to no-wrap flags. If this becomes too complex, can
  1768.   /// also be nullptr.
  1769.   ///
  1770.   /// In contrast to Scop::AssumedContext and Scop::InvalidContext, these do not
  1771.   /// need to be checked at runtime.
  1772.   ///
  1773.   /// Scop::Context on the other side is an overapproximation and does not
  1774.   /// include all requirements, but is always defined. However, there is still
  1775.   /// no guarantee that there is no undefined behavior in
  1776.   /// DefinedBehaviorContext.
  1777.   isl::set DefinedBehaviorContext;
  1778.  
  1779.   /// The schedule of the SCoP
  1780.   ///
  1781.   /// The schedule of the SCoP describes the execution order of the statements
  1782.   /// in the scop by assigning each statement instance a possibly
  1783.   /// multi-dimensional execution time. The schedule is stored as a tree of
  1784.   /// schedule nodes.
  1785.   ///
  1786.   /// The most common nodes in a schedule tree are so-called band nodes. Band
  1787.   /// nodes map statement instances into a multi dimensional schedule space.
  1788.   /// This space can be seen as a multi-dimensional clock.
  1789.   ///
  1790.   /// Example:
  1791.   ///
  1792.   /// <S,(5,4)>  may be mapped to (5,4) by this schedule:
  1793.   ///
  1794.   /// s0 = i (Year of execution)
  1795.   /// s1 = j (Day of execution)
  1796.   ///
  1797.   /// or to (9, 20) by this schedule:
  1798.   ///
  1799.   /// s0 = i + j (Year of execution)
  1800.   /// s1 = 20 (Day of execution)
  1801.   ///
  1802.   /// The order statement instances are executed is defined by the
  1803.   /// schedule vectors they are mapped to. A statement instance
  1804.   /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
  1805.   /// the schedule vector of A is lexicographic smaller than the schedule
  1806.   /// vector of B.
  1807.   ///
  1808.   /// Besides band nodes, schedule trees contain additional nodes that specify
  1809.   /// a textual ordering between two subtrees or filter nodes that filter the
  1810.   /// set of statement instances that will be scheduled in a subtree. There
  1811.   /// are also several other nodes. A full description of the different nodes
  1812.   /// in a schedule tree is given in the isl manual.
  1813.   isl::schedule Schedule;
  1814.  
  1815.   /// Is this Scop marked as not to be transformed by an optimization heuristic?
  1816.   bool HasDisableHeuristicsHint = false;
  1817.  
  1818.   /// Whether the schedule has been modified after derived from the CFG by
  1819.   /// ScopBuilder.
  1820.   bool ScheduleModified = false;
  1821.  
  1822.   /// The set of minimal/maximal accesses for each alias group.
  1823.   ///
  1824.   /// When building runtime alias checks we look at all memory instructions and
  1825.   /// build so called alias groups. Each group contains a set of accesses to
  1826.   /// different base arrays which might alias with each other. However, between
  1827.   /// alias groups there is no aliasing possible.
  1828.   ///
  1829.   /// In a program with int and float pointers annotated with tbaa information
  1830.   /// we would probably generate two alias groups, one for the int pointers and
  1831.   /// one for the float pointers.
  1832.   ///
  1833.   /// During code generation we will create a runtime alias check for each alias
  1834.   /// group to ensure the SCoP is executed in an alias free environment.
  1835.   MinMaxVectorPairVectorTy MinMaxAliasGroups;
  1836.  
  1837.   /// Mapping from invariant loads to the representing invariant load of
  1838.   ///        their equivalence class.
  1839.   ValueToValueMap InvEquivClassVMap;
  1840.  
  1841.   /// List of invariant accesses.
  1842.   InvariantEquivClassesTy InvariantEquivClasses;
  1843.  
  1844.   /// The smallest array index not yet assigned.
  1845.   long ArrayIdx = 0;
  1846.  
  1847.   /// The smallest statement index not yet assigned.
  1848.   long StmtIdx = 0;
  1849.  
  1850.   /// A number that uniquely represents a Scop within its function
  1851.   const int ID;
  1852.  
  1853.   /// Map of values to the MemoryAccess that writes its definition.
  1854.   ///
  1855.   /// There must be at most one definition per llvm::Instruction in a SCoP.
  1856.   DenseMap<Value *, MemoryAccess *> ValueDefAccs;
  1857.  
  1858.   /// Map of values to the MemoryAccess that reads a PHI.
  1859.   DenseMap<PHINode *, MemoryAccess *> PHIReadAccs;
  1860.  
  1861.   /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value
  1862.   /// scalar.
  1863.   DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs;
  1864.  
  1865.   /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or
  1866.   /// MemoryKind::ExitPHI scalar.
  1867.   DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>>
  1868.       PHIIncomingAccs;
  1869.  
  1870.   /// Scop constructor; invoked from ScopBuilder::buildScop.
  1871.   Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT,
  1872.        ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE,
  1873.        int ID);
  1874.  
  1875.   //@}
  1876.  
  1877.   /// Return the access for the base ptr of @p MA if any.
  1878.   MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);
  1879.  
  1880.   /// Create an id for @p Param and store it in the ParameterIds map.
  1881.   void createParameterId(const SCEV *Param);
  1882.  
  1883.   /// Build the Context of the Scop.
  1884.   void buildContext();
  1885.  
  1886.   /// Add the bounds of the parameters to the context.
  1887.   void addParameterBounds();
  1888.  
  1889.   /// Simplify the assumed and invalid context.
  1890.   void simplifyContexts();
  1891.  
  1892.   /// Create a new SCoP statement for @p BB.
  1893.   ///
  1894.   /// A new statement for @p BB will be created and added to the statement
  1895.   /// vector
  1896.   /// and map.
  1897.   ///
  1898.   /// @param BB              The basic block we build the statement for.
  1899.   /// @param Name            The name of the new statement.
  1900.   /// @param SurroundingLoop The loop the created statement is contained in.
  1901.   /// @param Instructions    The instructions in the statement.
  1902.   void addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
  1903.                    std::vector<Instruction *> Instructions);
  1904.  
  1905.   /// Create a new SCoP statement for @p R.
  1906.   ///
  1907.   /// A new statement for @p R will be created and added to the statement vector
  1908.   /// and map.
  1909.   ///
  1910.   /// @param R                      The region we build the statement for.
  1911.   /// @param Name                   The name of the new statement.
  1912.   /// @param SurroundingLoop        The loop the created statement is contained
  1913.   ///                               in.
  1914.   /// @param EntryBlockInstructions The (interesting) instructions in the
  1915.   ///                               entry block of the region statement.
  1916.   void addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
  1917.                    std::vector<Instruction *> EntryBlockInstructions);
  1918.  
  1919.   /// Removes @p Stmt from the StmtMap.
  1920.   void removeFromStmtMap(ScopStmt &Stmt);
  1921.  
  1922.   /// Removes all statements where the entry block of the statement does not
  1923.   /// have a corresponding domain in the domain map (or it is empty).
  1924.   void removeStmtNotInDomainMap();
  1925.  
  1926.   /// Collect all memory access relations of a given type.
  1927.   ///
  1928.   /// @param Predicate A predicate function that returns true if an access is
  1929.   ///                  of a given type.
  1930.   ///
  1931.   /// @returns The set of memory accesses in the scop that match the predicate.
  1932.   isl::union_map
  1933.   getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);
  1934.  
  1935.   /// @name Helper functions for printing the Scop.
  1936.   ///
  1937.   //@{
  1938.   void printContext(raw_ostream &OS) const;
  1939.   void printArrayInfo(raw_ostream &OS) const;
  1940.   void printStatements(raw_ostream &OS, bool PrintInstructions) const;
  1941.   void printAliasAssumptions(raw_ostream &OS) const;
  1942.   //@}
  1943.  
  1944. public:
  1945.   Scop(const Scop &) = delete;
  1946.   Scop &operator=(const Scop &) = delete;
  1947.   ~Scop();
  1948.  
  1949.   /// Increment actual number of aliasing assumptions taken
  1950.   ///
  1951.   /// @param Step    Number of new aliasing assumptions which should be added to
  1952.   /// the number of already taken assumptions.
  1953.   static void incrementNumberOfAliasingAssumptions(unsigned Step);
  1954.  
  1955.   /// Get the count of copy statements added to this Scop.
  1956.   ///
  1957.   /// @return The count of copy statements added to this Scop.
  1958.   unsigned getCopyStmtsNum() { return CopyStmtsNum; }
  1959.  
  1960.   /// Create a new copy statement.
  1961.   ///
  1962.   /// A new statement will be created and added to the statement vector.
  1963.   ///
  1964.   /// @param SourceRel  The source location.
  1965.   /// @param TargetRel  The target location.
  1966.   /// @param Domain     The original domain under which the copy statement would
  1967.   ///                   be executed.
  1968.   ScopStmt *addScopStmt(isl::map SourceRel, isl::map TargetRel,
  1969.                         isl::set Domain);
  1970.  
  1971.   /// Add the access function to all MemoryAccess objects of the Scop
  1972.   ///        created in this pass.
  1973.   void addAccessFunction(MemoryAccess *Access) {
  1974.     AccessFunctions.emplace_back(Access);
  1975.  
  1976.     // Register value definitions.
  1977.     if (Access->isWrite() && Access->isOriginalValueKind()) {
  1978.       assert(!ValueDefAccs.count(Access->getAccessValue()) &&
  1979.              "there can be just one definition per value");
  1980.       ValueDefAccs[Access->getAccessValue()] = Access;
  1981.     } else if (Access->isRead() && Access->isOriginalPHIKind()) {
  1982.       PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
  1983.       assert(!PHIReadAccs.count(PHI) &&
  1984.              "there can be just one PHI read per PHINode");
  1985.       PHIReadAccs[PHI] = Access;
  1986.     }
  1987.   }
  1988.  
  1989.   /// Add metadata for @p Access.
  1990.   void addAccessData(MemoryAccess *Access);
  1991.  
  1992.   /// Add new invariant access equivalence class
  1993.   void
  1994.   addInvariantEquivClass(const InvariantEquivClassTy &InvariantEquivClass) {
  1995.     InvariantEquivClasses.emplace_back(InvariantEquivClass);
  1996.   }
  1997.  
  1998.   /// Add mapping from invariant loads to the representing invariant load of
  1999.   ///        their equivalence class.
  2000.   void addInvariantLoadMapping(const Value *LoadInst, Value *ClassRep) {
  2001.     InvEquivClassVMap[LoadInst] = ClassRep;
  2002.   }
  2003.  
  2004.   /// Remove the metadata stored for @p Access.
  2005.   void removeAccessData(MemoryAccess *Access);
  2006.  
  2007.   /// Return the scalar evolution.
  2008.   ScalarEvolution *getSE() const;
  2009.  
  2010.   /// Return the dominator tree.
  2011.   DominatorTree *getDT() const { return DT; }
  2012.  
  2013.   /// Return the LoopInfo used for this Scop.
  2014.   LoopInfo *getLI() const { return Affinator.getLI(); }
  2015.  
  2016.   /// Get the count of parameters used in this Scop.
  2017.   ///
  2018.   /// @return The count of parameters used in this Scop.
  2019.   size_t getNumParams() const { return Parameters.size(); }
  2020.  
  2021.   /// Return whether given SCEV is used as the parameter in this Scop.
  2022.   bool isParam(const SCEV *Param) const { return Parameters.count(Param); }
  2023.  
  2024.   /// Take a list of parameters and add the new ones to the scop.
  2025.   void addParams(const ParameterSetTy &NewParameters);
  2026.  
  2027.   /// Return an iterator range containing the scop parameters.
  2028.   iterator_range<ParameterSetTy::iterator> parameters() const {
  2029.     return make_range(Parameters.begin(), Parameters.end());
  2030.   }
  2031.  
  2032.   /// Return an iterator range containing invariant accesses.
  2033.   iterator_range<InvariantEquivClassesTy::iterator> invariantEquivClasses() {
  2034.     return make_range(InvariantEquivClasses.begin(),
  2035.                       InvariantEquivClasses.end());
  2036.   }
  2037.  
  2038.   /// Return an iterator range containing all the MemoryAccess objects of the
  2039.   /// Scop.
  2040.   iterator_range<AccFuncVector::iterator> access_functions() {
  2041.     return make_range(AccessFunctions.begin(), AccessFunctions.end());
  2042.   }
  2043.  
  2044.   /// Return whether this scop is empty, i.e. contains no statements that
  2045.   /// could be executed.
  2046.   bool isEmpty() const { return Stmts.empty(); }
  2047.  
  2048.   StringRef getName() {
  2049.     if (!name)
  2050.       name = R.getNameStr();
  2051.     return *name;
  2052.   }
  2053.  
  2054.   using array_iterator = ArrayInfoSetTy::iterator;
  2055.   using const_array_iterator = ArrayInfoSetTy::const_iterator;
  2056.   using array_range = iterator_range<ArrayInfoSetTy::iterator>;
  2057.   using const_array_range = iterator_range<ArrayInfoSetTy::const_iterator>;
  2058.  
  2059.   inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }
  2060.  
  2061.   inline array_iterator array_end() { return ScopArrayInfoSet.end(); }
  2062.  
  2063.   inline const_array_iterator array_begin() const {
  2064.     return ScopArrayInfoSet.begin();
  2065.   }
  2066.  
  2067.   inline const_array_iterator array_end() const {
  2068.     return ScopArrayInfoSet.end();
  2069.   }
  2070.  
  2071.   inline array_range arrays() {
  2072.     return array_range(array_begin(), array_end());
  2073.   }
  2074.  
  2075.   inline const_array_range arrays() const {
  2076.     return const_array_range(array_begin(), array_end());
  2077.   }
  2078.  
  2079.   /// Return the isl_id that represents a certain parameter.
  2080.   ///
  2081.   /// @param Parameter A SCEV that was recognized as a Parameter.
  2082.   ///
  2083.   /// @return The corresponding isl_id or NULL otherwise.
  2084.   isl::id getIdForParam(const SCEV *Parameter) const;
  2085.  
  2086.   /// Get the maximum region of this static control part.
  2087.   ///
  2088.   /// @return The maximum region of this static control part.
  2089.   inline const Region &getRegion() const { return R; }
  2090.   inline Region &getRegion() { return R; }
  2091.  
  2092.   /// Return the function this SCoP is in.
  2093.   Function &getFunction() const { return *R.getEntry()->getParent(); }
  2094.  
  2095.   /// Check if @p L is contained in the SCoP.
  2096.   bool contains(const Loop *L) const { return R.contains(L); }
  2097.  
  2098.   /// Check if @p BB is contained in the SCoP.
  2099.   bool contains(const BasicBlock *BB) const { return R.contains(BB); }
  2100.  
  2101.   /// Check if @p I is contained in the SCoP.
  2102.   bool contains(const Instruction *I) const { return R.contains(I); }
  2103.  
  2104.   /// Return the unique exit block of the SCoP.
  2105.   BasicBlock *getExit() const { return R.getExit(); }
  2106.  
  2107.   /// Return the unique exiting block of the SCoP if any.
  2108.   BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }
  2109.  
  2110.   /// Return the unique entry block of the SCoP.
  2111.   BasicBlock *getEntry() const { return R.getEntry(); }
  2112.  
  2113.   /// Return the unique entering block of the SCoP if any.
  2114.   BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }
  2115.  
  2116.   /// Return true if @p BB is the exit block of the SCoP.
  2117.   bool isExit(BasicBlock *BB) const { return getExit() == BB; }
  2118.  
  2119.   /// Return a range of all basic blocks in the SCoP.
  2120.   Region::block_range blocks() const { return R.blocks(); }
  2121.  
  2122.   /// Return true if and only if @p BB dominates the SCoP.
  2123.   bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;
  2124.  
  2125.   /// Get the maximum depth of the loop.
  2126.   ///
  2127.   /// @return The maximum depth of the loop.
  2128.   inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
  2129.  
  2130.   /// Return the invariant equivalence class for @p Val if any.
  2131.   InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);
  2132.  
  2133.   /// Return the set of invariant accesses.
  2134.   InvariantEquivClassesTy &getInvariantAccesses() {
  2135.     return InvariantEquivClasses;
  2136.   }
  2137.  
  2138.   /// Check if the scop has any invariant access.
  2139.   bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }
  2140.  
  2141.   /// Mark the SCoP as optimized by the scheduler.
  2142.   void markAsOptimized() { IsOptimized = true; }
  2143.  
  2144.   /// Check if the SCoP has been optimized by the scheduler.
  2145.   bool isOptimized() const { return IsOptimized; }
  2146.  
  2147.   /// Mark the SCoP to be skipped by ScopPass passes.
  2148.   void markAsToBeSkipped() { SkipScop = true; }
  2149.  
  2150.   /// Check if the SCoP is to be skipped by ScopPass passes.
  2151.   bool isToBeSkipped() const { return SkipScop; }
  2152.  
  2153.   /// Return the ID of the Scop
  2154.   int getID() const { return ID; }
  2155.  
  2156.   /// Get the name of the entry and exit blocks of this Scop.
  2157.   ///
  2158.   /// These along with the function name can uniquely identify a Scop.
  2159.   ///
  2160.   /// @return std::pair whose first element is the entry name & second element
  2161.   ///         is the exit name.
  2162.   std::pair<std::string, std::string> getEntryExitStr() const;
  2163.  
  2164.   /// Get the name of this Scop.
  2165.   std::string getNameStr() const;
  2166.  
  2167.   /// Get the constraint on parameter of this Scop.
  2168.   ///
  2169.   /// @return The constraint on parameter of this Scop.
  2170.   isl::set getContext() const;
  2171.  
  2172.   /// Return the context where execution behavior is defined. Might return
  2173.   /// nullptr.
  2174.   isl::set getDefinedBehaviorContext() const { return DefinedBehaviorContext; }
  2175.  
  2176.   /// Return the define behavior context, or if not available, its approximation
  2177.   /// from all other contexts.
  2178.   isl::set getBestKnownDefinedBehaviorContext() const {
  2179.     if (!DefinedBehaviorContext.is_null())
  2180.       return DefinedBehaviorContext;
  2181.  
  2182.     return Context.intersect_params(AssumedContext).subtract(InvalidContext);
  2183.   }
  2184.  
  2185.   /// Return space of isl context parameters.
  2186.   ///
  2187.   /// Returns the set of context parameters that are currently constrained. In
  2188.   /// case the full set of parameters is needed, see @getFullParamSpace.
  2189.   isl::space getParamSpace() const;
  2190.  
  2191.   /// Return the full space of parameters.
  2192.   ///
  2193.   /// getParamSpace will only return the parameters of the context that are
  2194.   /// actually constrained, whereas getFullParamSpace will return all
  2195.   //  parameters. This is useful in cases, where we need to ensure all
  2196.   //  parameters are available, as certain isl functions will abort if this is
  2197.   //  not the case.
  2198.   isl::space getFullParamSpace() const;
  2199.  
  2200.   /// Get the assumed context for this Scop.
  2201.   ///
  2202.   /// @return The assumed context of this Scop.
  2203.   isl::set getAssumedContext() const;
  2204.  
  2205.   /// Return true if the optimized SCoP can be executed.
  2206.   ///
  2207.   /// In addition to the runtime check context this will also utilize the domain
  2208.   /// constraints to decide it the optimized version can actually be executed.
  2209.   ///
  2210.   /// @returns True if the optimized SCoP can be executed.
  2211.   bool hasFeasibleRuntimeContext() const;
  2212.  
  2213.   /// Check if the assumption in @p Set is trivial or not.
  2214.   ///
  2215.   /// @param Set  The relations between parameters that are assumed to hold.
  2216.   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
  2217.   ///             (needed/assumptions) or negative (invalid/restrictions).
  2218.   ///
  2219.   /// @returns True if the assumption @p Set is not trivial.
  2220.   bool isEffectiveAssumption(isl::set Set, AssumptionSign Sign);
  2221.  
  2222.   /// Track and report an assumption.
  2223.   ///
  2224.   /// Use 'clang -Rpass-analysis=polly-scops' or 'opt
  2225.   /// -pass-remarks-analysis=polly-scops' to output the assumptions.
  2226.   ///
  2227.   /// @param Kind The assumption kind describing the underlying cause.
  2228.   /// @param Set  The relations between parameters that are assumed to hold.
  2229.   /// @param Loc  The location in the source that caused this assumption.
  2230.   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
  2231.   ///             (needed/assumptions) or negative (invalid/restrictions).
  2232.   /// @param BB   The block in which this assumption was taken. Used to
  2233.   ///             calculate hotness when emitting remark.
  2234.   ///
  2235.   /// @returns True if the assumption is not trivial.
  2236.   bool trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
  2237.                        AssumptionSign Sign, BasicBlock *BB);
  2238.  
  2239.   /// Add the conditions from @p Set (or subtract them if @p Sign is
  2240.   /// AS_RESTRICTION) to the defined behaviour context.
  2241.   void intersectDefinedBehavior(isl::set Set, AssumptionSign Sign);
  2242.  
  2243.   /// Add assumptions to assumed context.
  2244.   ///
  2245.   /// The assumptions added will be assumed to hold during the execution of the
  2246.   /// scop. However, as they are generally not statically provable, at code
  2247.   /// generation time run-time checks will be generated that ensure the
  2248.   /// assumptions hold.
  2249.   ///
  2250.   /// WARNING: We currently exploit in simplifyAssumedContext the knowledge
  2251.   ///          that assumptions do not change the set of statement instances
  2252.   ///          executed.
  2253.   ///
  2254.   /// @param Kind The assumption kind describing the underlying cause.
  2255.   /// @param Set  The relations between parameters that are assumed to hold.
  2256.   /// @param Loc  The location in the source that caused this assumption.
  2257.   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
  2258.   ///             (needed/assumptions) or negative (invalid/restrictions).
  2259.   /// @param BB   The block in which this assumption was taken. Used to
  2260.   ///             calculate hotness when emitting remark.
  2261.   /// @param RTC  Does the assumption require a runtime check?
  2262.   void addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
  2263.                      AssumptionSign Sign, BasicBlock *BB, bool RTC = true);
  2264.  
  2265.   /// Mark the scop as invalid.
  2266.   ///
  2267.   /// This method adds an assumption to the scop that is always invalid. As a
  2268.   /// result, the scop will not be optimized later on. This function is commonly
  2269.   /// called when a condition makes it impossible (or too compile time
  2270.   /// expensive) to process this scop any further.
  2271.   ///
  2272.   /// @param Kind The assumption kind describing the underlying cause.
  2273.   /// @param Loc  The location in the source that triggered .
  2274.   /// @param BB   The BasicBlock where it was triggered.
  2275.   void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr);
  2276.  
  2277.   /// Get the invalid context for this Scop.
  2278.   ///
  2279.   /// @return The invalid context of this Scop.
  2280.   isl::set getInvalidContext() const;
  2281.  
  2282.   /// Return true if and only if the InvalidContext is trivial (=empty).
  2283.   bool hasTrivialInvalidContext() const { return InvalidContext.is_empty(); }
  2284.  
  2285.   /// Return all alias groups for this SCoP.
  2286.   const MinMaxVectorPairVectorTy &getAliasGroups() const {
  2287.     return MinMaxAliasGroups;
  2288.   }
  2289.  
  2290.   void addAliasGroup(MinMaxVectorTy &MinMaxAccessesReadWrite,
  2291.                      MinMaxVectorTy &MinMaxAccessesReadOnly) {
  2292.     MinMaxAliasGroups.emplace_back();
  2293.     MinMaxAliasGroups.back().first = MinMaxAccessesReadWrite;
  2294.     MinMaxAliasGroups.back().second = MinMaxAccessesReadOnly;
  2295.   }
  2296.  
  2297.   /// Remove statements from the list of scop statements.
  2298.   ///
  2299.   /// @param ShouldDelete  A function that returns true if the statement passed
  2300.   ///                      to it should be deleted.
  2301.   /// @param AfterHoisting If true, also remove from data access lists.
  2302.   ///                      These lists are filled during
  2303.   ///                      ScopBuilder::buildAccessRelations. Therefore, if this
  2304.   ///                      method is called before buildAccessRelations, false
  2305.   ///                      must be passed.
  2306.   void removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete,
  2307.                    bool AfterHoisting = true);
  2308.  
  2309.   /// Get an isl string representing the context.
  2310.   std::string getContextStr() const;
  2311.  
  2312.   /// Get an isl string representing the assumed context.
  2313.   std::string getAssumedContextStr() const;
  2314.  
  2315.   /// Get an isl string representing the invalid context.
  2316.   std::string getInvalidContextStr() const;
  2317.  
  2318.   /// Return the list of ScopStmts that represent the given @p BB.
  2319.   ArrayRef<ScopStmt *> getStmtListFor(BasicBlock *BB) const;
  2320.  
  2321.   /// Get the statement to put a PHI WRITE into.
  2322.   ///
  2323.   /// @param U The operand of a PHINode.
  2324.   ScopStmt *getIncomingStmtFor(const Use &U) const;
  2325.  
  2326.   /// Return the last statement representing @p BB.
  2327.   ///
  2328.   /// Of the sequence of statements that represent a @p BB, this is the last one
  2329.   /// to be executed. It is typically used to determine which instruction to add
  2330.   /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required
  2331.   /// to be executed last, only that the incoming value is available in it.
  2332.   ScopStmt *getLastStmtFor(BasicBlock *BB) const;
  2333.  
  2334.   /// Return the ScopStmts that represents the Region @p R, or nullptr if
  2335.   ///        it is not represented by any statement in this Scop.
  2336.   ArrayRef<ScopStmt *> getStmtListFor(Region *R) const;
  2337.  
  2338.   /// Return the ScopStmts that represents @p RN; can return nullptr if
  2339.   ///        the RegionNode is not within the SCoP or has been removed due to
  2340.   ///        simplifications.
  2341.   ArrayRef<ScopStmt *> getStmtListFor(RegionNode *RN) const;
  2342.  
  2343.   /// Return the ScopStmt an instruction belongs to, or nullptr if it
  2344.   ///        does not belong to any statement in this Scop.
  2345.   ScopStmt *getStmtFor(Instruction *Inst) const {
  2346.     return InstStmtMap.lookup(Inst);
  2347.   }
  2348.  
  2349.   /// Return the number of statements in the SCoP.
  2350.   size_t getSize() const { return Stmts.size(); }
  2351.  
  2352.   /// @name Statements Iterators
  2353.   ///
  2354.   /// These iterators iterate over all statements of this Scop.
  2355.   //@{
  2356.   using iterator = StmtSet::iterator;
  2357.   using const_iterator = StmtSet::const_iterator;
  2358.  
  2359.   iterator begin() { return Stmts.begin(); }
  2360.   iterator end() { return Stmts.end(); }
  2361.   const_iterator begin() const { return Stmts.begin(); }
  2362.   const_iterator end() const { return Stmts.end(); }
  2363.  
  2364.   using reverse_iterator = StmtSet::reverse_iterator;
  2365.   using const_reverse_iterator = StmtSet::const_reverse_iterator;
  2366.  
  2367.   reverse_iterator rbegin() { return Stmts.rbegin(); }
  2368.   reverse_iterator rend() { return Stmts.rend(); }
  2369.   const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
  2370.   const_reverse_iterator rend() const { return Stmts.rend(); }
  2371.   //@}
  2372.  
  2373.   /// Return the set of required invariant loads.
  2374.   const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
  2375.     return DC.RequiredILS;
  2376.   }
  2377.  
  2378.   /// Add @p LI to the set of required invariant loads.
  2379.   void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }
  2380.  
  2381.   /// Return the set of boxed (thus overapproximated) loops.
  2382.   const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }
  2383.  
  2384.   /// Return true if and only if @p R is a non-affine subregion.
  2385.   bool isNonAffineSubRegion(const Region *R) {
  2386.     return DC.NonAffineSubRegionSet.count(R);
  2387.   }
  2388.  
  2389.   const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }
  2390.  
  2391.   /// Return the (possibly new) ScopArrayInfo object for @p Access.
  2392.   ///
  2393.   /// @param ElementType The type of the elements stored in this array.
  2394.   /// @param Kind        The kind of the array info object.
  2395.   /// @param BaseName    The optional name of this memory reference.
  2396.   ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
  2397.                                           ArrayRef<const SCEV *> Sizes,
  2398.                                           MemoryKind Kind,
  2399.                                           const char *BaseName = nullptr);
  2400.  
  2401.   /// Create an array and return the corresponding ScopArrayInfo object.
  2402.   ///
  2403.   /// @param ElementType The type of the elements stored in this array.
  2404.   /// @param BaseName    The name of this memory reference.
  2405.   /// @param Sizes       The sizes of dimensions.
  2406.   ScopArrayInfo *createScopArrayInfo(Type *ElementType,
  2407.                                      const std::string &BaseName,
  2408.                                      const std::vector<unsigned> &Sizes);
  2409.  
  2410.   /// Return the cached ScopArrayInfo object for @p BasePtr.
  2411.   ///
  2412.   /// @param BasePtr   The base pointer the object has been stored for.
  2413.   /// @param Kind      The kind of array info object.
  2414.   ///
  2415.   /// @returns The ScopArrayInfo pointer or NULL if no such pointer is
  2416.   ///          available.
  2417.   ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind);
  2418.  
  2419.   /// Return the cached ScopArrayInfo object for @p BasePtr.
  2420.   ///
  2421.   /// @param BasePtr   The base pointer the object has been stored for.
  2422.   /// @param Kind      The kind of array info object.
  2423.   ///
  2424.   /// @returns The ScopArrayInfo pointer (may assert if no such pointer is
  2425.   ///          available).
  2426.   ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind);
  2427.  
  2428.   /// Invalidate ScopArrayInfo object for base address.
  2429.   ///
  2430.   /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
  2431.   /// @param Kind    The Kind of the ScopArrayInfo object.
  2432.   void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
  2433.     auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
  2434.     if (It == ScopArrayInfoMap.end())
  2435.       return;
  2436.     ScopArrayInfoSet.remove(It->second.get());
  2437.     ScopArrayInfoMap.erase(It);
  2438.   }
  2439.  
  2440.   /// Set new isl context.
  2441.   void setContext(isl::set NewContext);
  2442.  
  2443.   /// Update maximal loop depth. If @p Depth is smaller than current value,
  2444.   /// then maximal loop depth is not updated.
  2445.   void updateMaxLoopDepth(unsigned Depth) {
  2446.     MaxLoopDepth = std::max(MaxLoopDepth, Depth);
  2447.   }
  2448.  
  2449.   /// Align the parameters in the statement to the scop context
  2450.   void realignParams();
  2451.  
  2452.   /// Return true if this SCoP can be profitably optimized.
  2453.   ///
  2454.   /// @param ScalarsAreUnprofitable Never consider statements with scalar writes
  2455.   ///                               as profitably optimizable.
  2456.   ///
  2457.   /// @return Whether this SCoP can be profitably optimized.
  2458.   bool isProfitable(bool ScalarsAreUnprofitable) const;
  2459.  
  2460.   /// Return true if the SCoP contained at least one error block.
  2461.   bool hasErrorBlock() const { return HasErrorBlock; }
  2462.  
  2463.   /// Notify SCoP that it contains an error block
  2464.   void notifyErrorBlock() { HasErrorBlock = true; }
  2465.  
  2466.   /// Return true if the underlying region has a single exiting block.
  2467.   bool hasSingleExitEdge() const { return HasSingleExitEdge; }
  2468.  
  2469.   /// Print the static control part.
  2470.   ///
  2471.   /// @param OS The output stream the static control part is printed to.
  2472.   /// @param PrintInstructions Whether to print the statement's instructions as
  2473.   ///                          well.
  2474.   void print(raw_ostream &OS, bool PrintInstructions) const;
  2475.  
  2476. #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  2477.   /// Print the ScopStmt to stderr.
  2478.   void dump() const;
  2479. #endif
  2480.  
  2481.   /// Get the isl context of this static control part.
  2482.   ///
  2483.   /// @return The isl context of this static control part.
  2484.   isl::ctx getIslCtx() const;
  2485.  
  2486.   /// Directly return the shared_ptr of the context.
  2487.   const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }
  2488.  
  2489.   /// Compute the isl representation for the SCEV @p E
  2490.   ///
  2491.   /// @param E  The SCEV that should be translated.
  2492.   /// @param BB An (optional) basic block in which the isl_pw_aff is computed.
  2493.   ///           SCEVs known to not reference any loops in the SCoP can be
  2494.   ///           passed without a @p BB.
  2495.   /// @param NonNegative Flag to indicate the @p E has to be non-negative.
  2496.   ///
  2497.   /// Note that this function will always return a valid isl_pw_aff. However, if
  2498.   /// the translation of @p E was deemed to complex the SCoP is invalidated and
  2499.   /// a dummy value of appropriate dimension is returned. This allows to bail
  2500.   /// for complex cases without "error handling code" needed on the users side.
  2501.   PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
  2502.                   bool NonNegative = false,
  2503.                   RecordedAssumptionsTy *RecordedAssumptions = nullptr);
  2504.  
  2505.   /// Compute the isl representation for the SCEV @p E
  2506.   ///
  2507.   /// This function is like @see Scop::getPwAff() but strips away the invalid
  2508.   /// domain part associated with the piecewise affine function.
  2509.   isl::pw_aff
  2510.   getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr,
  2511.                RecordedAssumptionsTy *RecordedAssumptions = nullptr);
  2512.  
  2513.   /// Check if an <nsw> AddRec for the loop L is cached.
  2514.   bool hasNSWAddRecForLoop(Loop *L) { return Affinator.hasNSWAddRecForLoop(L); }
  2515.  
  2516.   /// Return the domain of @p Stmt.
  2517.   ///
  2518.   /// @param Stmt The statement for which the conditions should be returned.
  2519.   isl::set getDomainConditions(const ScopStmt *Stmt) const;
  2520.  
  2521.   /// Return the domain of @p BB.
  2522.   ///
  2523.   /// @param BB The block for which the conditions should be returned.
  2524.   isl::set getDomainConditions(BasicBlock *BB) const;
  2525.  
  2526.   /// Return the domain of @p BB. If it does not exist, create an empty one.
  2527.   isl::set &getOrInitEmptyDomain(BasicBlock *BB) { return DomainMap[BB]; }
  2528.  
  2529.   /// Check if domain is determined for @p BB.
  2530.   bool isDomainDefined(BasicBlock *BB) const { return DomainMap.count(BB) > 0; }
  2531.  
  2532.   /// Set domain for @p BB.
  2533.   void setDomain(BasicBlock *BB, isl::set &Domain) { DomainMap[BB] = Domain; }
  2534.  
  2535.   /// Get a union set containing the iteration domains of all statements.
  2536.   isl::union_set getDomains() const;
  2537.  
  2538.   /// Get a union map of all may-writes performed in the SCoP.
  2539.   isl::union_map getMayWrites();
  2540.  
  2541.   /// Get a union map of all must-writes performed in the SCoP.
  2542.   isl::union_map getMustWrites();
  2543.  
  2544.   /// Get a union map of all writes performed in the SCoP.
  2545.   isl::union_map getWrites();
  2546.  
  2547.   /// Get a union map of all reads performed in the SCoP.
  2548.   isl::union_map getReads();
  2549.  
  2550.   /// Get a union map of all memory accesses performed in the SCoP.
  2551.   isl::union_map getAccesses();
  2552.  
  2553.   /// Get a union map of all memory accesses performed in the SCoP.
  2554.   ///
  2555.   /// @param Array The array to which the accesses should belong.
  2556.   isl::union_map getAccesses(ScopArrayInfo *Array);
  2557.  
  2558.   /// Get the schedule of all the statements in the SCoP.
  2559.   ///
  2560.   /// @return The schedule of all the statements in the SCoP, if the schedule of
  2561.   /// the Scop does not contain extension nodes, and nullptr, otherwise.
  2562.   isl::union_map getSchedule() const;
  2563.  
  2564.   /// Get a schedule tree describing the schedule of all statements.
  2565.   isl::schedule getScheduleTree() const;
  2566.  
  2567.   /// Update the current schedule
  2568.   ///
  2569.   /// NewSchedule The new schedule (given as a flat union-map).
  2570.   void setSchedule(isl::union_map NewSchedule);
  2571.  
  2572.   /// Update the current schedule
  2573.   ///
  2574.   /// NewSchedule The new schedule (given as schedule tree).
  2575.   void setScheduleTree(isl::schedule NewSchedule);
  2576.  
  2577.   /// Whether the schedule is the original schedule as derived from the CFG by
  2578.   /// ScopBuilder.
  2579.   bool isOriginalSchedule() const { return !ScheduleModified; }
  2580.  
  2581.   /// Intersects the domains of all statements in the SCoP.
  2582.   ///
  2583.   /// @return true if a change was made
  2584.   bool restrictDomains(isl::union_set Domain);
  2585.  
  2586.   /// Get the depth of a loop relative to the outermost loop in the Scop.
  2587.   ///
  2588.   /// This will return
  2589.   ///    0 if @p L is an outermost loop in the SCoP
  2590.   ///   >0 for other loops in the SCoP
  2591.   ///   -1 if @p L is nullptr or there is no outermost loop in the SCoP
  2592.   int getRelativeLoopDepth(const Loop *L) const;
  2593.  
  2594.   /// Find the ScopArrayInfo associated with an isl Id
  2595.   ///        that has name @p Name.
  2596.   ScopArrayInfo *getArrayInfoByName(const std::string BaseName);
  2597.  
  2598.   /// Simplify the SCoP representation.
  2599.   ///
  2600.   /// @param AfterHoisting Whether it is called after invariant load hoisting.
  2601.   ///                      When true, also removes statements without
  2602.   ///                      side-effects.
  2603.   void simplifySCoP(bool AfterHoisting);
  2604.  
  2605.   /// Get the next free array index.
  2606.   ///
  2607.   /// This function returns a unique index which can be used to identify an
  2608.   /// array.
  2609.   long getNextArrayIdx() { return ArrayIdx++; }
  2610.  
  2611.   /// Get the next free statement index.
  2612.   ///
  2613.   /// This function returns a unique index which can be used to identify a
  2614.   /// statement.
  2615.   long getNextStmtIdx() { return StmtIdx++; }
  2616.  
  2617.   /// Get the representing SCEV for @p S if applicable, otherwise @p S.
  2618.   ///
  2619.   /// Invariant loads of the same location are put in an equivalence class and
  2620.   /// only one of them is chosen as a representing element that will be
  2621.   /// modeled as a parameter. The others have to be normalized, i.e.,
  2622.   /// replaced by the representing element of their equivalence class, in order
  2623.   /// to get the correct parameter value, e.g., in the SCEVAffinator.
  2624.   ///
  2625.   /// @param S The SCEV to normalize.
  2626.   ///
  2627.   /// @return The representing SCEV for invariant loads or @p S if none.
  2628.   const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S) const;
  2629.  
  2630.   /// Return the MemoryAccess that writes an llvm::Value, represented by a
  2631.   /// ScopArrayInfo.
  2632.   ///
  2633.   /// There can be at most one such MemoryAccess per llvm::Value in the SCoP.
  2634.   /// Zero is possible for read-only values.
  2635.   MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const;
  2636.  
  2637.   /// Return all MemoryAccesses that us an llvm::Value, represented by a
  2638.   /// ScopArrayInfo.
  2639.   ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const;
  2640.  
  2641.   /// Return the MemoryAccess that represents an llvm::PHINode.
  2642.   ///
  2643.   /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr
  2644.   /// for them.
  2645.   MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const;
  2646.  
  2647.   /// Return all MemoryAccesses for all incoming statements of a PHINode,
  2648.   /// represented by a ScopArrayInfo.
  2649.   ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const;
  2650.  
  2651.   /// Return whether @p Inst has a use outside of this SCoP.
  2652.   bool isEscaping(Instruction *Inst);
  2653.  
  2654.   struct ScopStatistics {
  2655.     int NumAffineLoops = 0;
  2656.     int NumBoxedLoops = 0;
  2657.  
  2658.     int NumValueWrites = 0;
  2659.     int NumValueWritesInLoops = 0;
  2660.     int NumPHIWrites = 0;
  2661.     int NumPHIWritesInLoops = 0;
  2662.     int NumSingletonWrites = 0;
  2663.     int NumSingletonWritesInLoops = 0;
  2664.   };
  2665.  
  2666.   /// Collect statistic about this SCoP.
  2667.   ///
  2668.   /// These are most commonly used for LLVM's static counters (Statistic.h) in
  2669.   /// various places. If statistics are disabled, only zeros are returned to
  2670.   /// avoid the overhead.
  2671.   ScopStatistics getStatistics() const;
  2672.  
  2673.   /// Is this Scop marked as not to be transformed by an optimization heuristic?
  2674.   /// In this case, only user-directed transformations are allowed.
  2675.   bool hasDisableHeuristicsHint() const { return HasDisableHeuristicsHint; }
  2676.  
  2677.   /// Mark this Scop to not apply an optimization heuristic.
  2678.   void markDisableHeuristics() { HasDisableHeuristicsHint = true; }
  2679. };
  2680.  
  2681. /// Print Scop scop to raw_ostream OS.
  2682. raw_ostream &operator<<(raw_ostream &OS, const Scop &scop);
  2683.  
  2684. /// The legacy pass manager's analysis pass to compute scop information
  2685. ///        for a region.
  2686. class ScopInfoRegionPass final : public RegionPass {
  2687.   /// The Scop pointer which is used to construct a Scop.
  2688.   std::unique_ptr<Scop> S;
  2689.  
  2690. public:
  2691.   static char ID; // Pass identification, replacement for typeid
  2692.  
  2693.   ScopInfoRegionPass() : RegionPass(ID) {}
  2694.   ~ScopInfoRegionPass() override = default;
  2695.  
  2696.   /// Build Scop object, the Polly IR of static control
  2697.   ///        part for the current SESE-Region.
  2698.   ///
  2699.   /// @return If the current region is a valid for a static control part,
  2700.   ///         return the Polly IR representing this static control part,
  2701.   ///         return null otherwise.
  2702.   Scop *getScop() { return S.get(); }
  2703.   const Scop *getScop() const { return S.get(); }
  2704.  
  2705.   /// Calculate the polyhedral scop information for a given Region.
  2706.   bool runOnRegion(Region *R, RGPassManager &RGM) override;
  2707.  
  2708.   void releaseMemory() override { S.reset(); }
  2709.  
  2710.   void print(raw_ostream &O, const Module *M = nullptr) const override;
  2711.  
  2712.   void getAnalysisUsage(AnalysisUsage &AU) const override;
  2713. };
  2714.  
  2715. llvm::Pass *createScopInfoPrinterLegacyRegionPass(raw_ostream &OS);
  2716.  
  2717. class ScopInfo {
  2718. public:
  2719.   using RegionToScopMapTy = MapVector<Region *, std::unique_ptr<Scop>>;
  2720.   using reverse_iterator = RegionToScopMapTy::reverse_iterator;
  2721.   using const_reverse_iterator = RegionToScopMapTy::const_reverse_iterator;
  2722.   using iterator = RegionToScopMapTy::iterator;
  2723.   using const_iterator = RegionToScopMapTy::const_iterator;
  2724.  
  2725. private:
  2726.   /// A map of Region to its Scop object containing
  2727.   ///        Polly IR of static control part.
  2728.   RegionToScopMapTy RegionToScopMap;
  2729.   const DataLayout &DL;
  2730.   ScopDetection &SD;
  2731.   ScalarEvolution &SE;
  2732.   LoopInfo &LI;
  2733.   AAResults &AA;
  2734.   DominatorTree &DT;
  2735.   AssumptionCache &AC;
  2736.   OptimizationRemarkEmitter &ORE;
  2737.  
  2738. public:
  2739.   ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
  2740.            LoopInfo &LI, AAResults &AA, DominatorTree &DT, AssumptionCache &AC,
  2741.            OptimizationRemarkEmitter &ORE);
  2742.  
  2743.   /// Get the Scop object for the given Region.
  2744.   ///
  2745.   /// @return If the given region is the maximal region within a scop, return
  2746.   ///         the scop object. If the given region is a subregion, return a
  2747.   ///         nullptr. Top level region containing the entry block of a function
  2748.   ///         is not considered in the scop creation.
  2749.   Scop *getScop(Region *R) const {
  2750.     auto MapIt = RegionToScopMap.find(R);
  2751.     if (MapIt != RegionToScopMap.end())
  2752.       return MapIt->second.get();
  2753.     return nullptr;
  2754.   }
  2755.  
  2756.   /// Recompute the Scop-Information for a function.
  2757.   ///
  2758.   /// This invalidates any iterators.
  2759.   void recompute();
  2760.  
  2761.   /// Handle invalidation explicitly
  2762.   bool invalidate(Function &F, const PreservedAnalyses &PA,
  2763.                   FunctionAnalysisManager::Invalidator &Inv);
  2764.  
  2765.   iterator begin() { return RegionToScopMap.begin(); }
  2766.   iterator end() { return RegionToScopMap.end(); }
  2767.   const_iterator begin() const { return RegionToScopMap.begin(); }
  2768.   const_iterator end() const { return RegionToScopMap.end(); }
  2769.   reverse_iterator rbegin() { return RegionToScopMap.rbegin(); }
  2770.   reverse_iterator rend() { return RegionToScopMap.rend(); }
  2771.   const_reverse_iterator rbegin() const { return RegionToScopMap.rbegin(); }
  2772.   const_reverse_iterator rend() const { return RegionToScopMap.rend(); }
  2773.   bool empty() const { return RegionToScopMap.empty(); }
  2774. };
  2775.  
  2776. struct ScopInfoAnalysis : AnalysisInfoMixin<ScopInfoAnalysis> {
  2777.   static AnalysisKey Key;
  2778.  
  2779.   using Result = ScopInfo;
  2780.  
  2781.   Result run(Function &, FunctionAnalysisManager &);
  2782. };
  2783.  
  2784. struct ScopInfoPrinterPass final : PassInfoMixin<ScopInfoPrinterPass> {
  2785.   ScopInfoPrinterPass(raw_ostream &OS) : Stream(OS) {}
  2786.  
  2787.   PreservedAnalyses run(Function &, FunctionAnalysisManager &);
  2788.  
  2789.   raw_ostream &Stream;
  2790. };
  2791.  
  2792. //===----------------------------------------------------------------------===//
  2793. /// The legacy pass manager's analysis pass to compute scop information
  2794. ///        for the whole function.
  2795. ///
  2796. /// This pass will maintain a map of the maximal region within a scop to its
  2797. /// scop object for all the feasible scops present in a function.
  2798. /// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
  2799. /// region pass manager.
  2800. class ScopInfoWrapperPass final : public FunctionPass {
  2801.   std::unique_ptr<ScopInfo> Result;
  2802.  
  2803. public:
  2804.   ScopInfoWrapperPass() : FunctionPass(ID) {}
  2805.   ~ScopInfoWrapperPass() override = default;
  2806.  
  2807.   static char ID; // Pass identification, replacement for typeid
  2808.  
  2809.   ScopInfo *getSI() { return Result.get(); }
  2810.   const ScopInfo *getSI() const { return Result.get(); }
  2811.  
  2812.   /// Calculate all the polyhedral scops for a given function.
  2813.   bool runOnFunction(Function &F) override;
  2814.  
  2815.   void releaseMemory() override { Result.reset(); }
  2816.  
  2817.   void print(raw_ostream &O, const Module *M = nullptr) const override;
  2818.  
  2819.   void getAnalysisUsage(AnalysisUsage &AU) const override;
  2820. };
  2821.  
  2822. llvm::Pass *createScopInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS);
  2823. } // end namespace polly
  2824.  
  2825. namespace llvm {
  2826. void initializeScopInfoRegionPassPass(PassRegistry &);
  2827. void initializeScopInfoPrinterLegacyRegionPassPass(PassRegistry &);
  2828. void initializeScopInfoWrapperPassPass(PassRegistry &);
  2829. void initializeScopInfoPrinterLegacyFunctionPassPass(PassRegistry &);
  2830. } // end namespace llvm
  2831.  
  2832. #endif // POLLY_SCOPINFO_H
  2833.