- //===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // Detect the maximal Scops of a function. 
- // 
- // A static control part (Scop) is a subgraph of the control flow graph (CFG) 
- // that only has statically known control flow and can therefore be described 
- // within the polyhedral model. 
- // 
- // Every Scop fulfills these restrictions: 
- // 
- // * It is a single entry single exit region 
- // 
- // * Only affine linear bounds in the loops 
- // 
- // Every natural loop in a Scop must have a number of loop iterations that can 
- // be described as an affine linear function in surrounding loop iterators or 
- // parameters. (A parameter is a scalar that does not change its value during 
- // execution of the Scop). 
- // 
- // * Only comparisons of affine linear expressions in conditions 
- // 
- // * All loops and conditions perfectly nested 
- // 
- // The control flow needs to be structured such that it could be written using 
- // just 'for' and 'if' statements, without the need for any 'goto', 'break' or 
- // 'continue'. 
- // 
- // * Side effect free functions call 
- // 
- // Only function calls and intrinsics that do not have side effects are allowed 
- // (readnone). 
- // 
- // The Scop detection finds the largest Scops by checking if the largest 
- // region is a Scop. If this is not the case, its canonical subregions are 
- // checked until a region is a Scop. It is now tried to extend this Scop by 
- // creating a larger non canonical region. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef POLLY_SCOPDETECTION_H 
- #define POLLY_SCOPDETECTION_H 
-   
- #include "polly/ScopDetectionDiagnostic.h" 
- #include "polly/Support/ScopHelper.h" 
- #include "llvm/Analysis/AliasAnalysis.h" 
- #include "llvm/Analysis/AliasSetTracker.h" 
- #include "llvm/Analysis/RegionInfo.h" 
- #include "llvm/Analysis/ScalarEvolutionExpressions.h" 
- #include "llvm/Pass.h" 
- #include <set> 
-   
- namespace polly { 
- using llvm::AAResults; 
- using llvm::AliasSetTracker; 
- using llvm::AnalysisInfoMixin; 
- using llvm::AnalysisKey; 
- using llvm::AnalysisUsage; 
- using llvm::BatchAAResults; 
- using llvm::BranchInst; 
- using llvm::CallInst; 
- using llvm::DenseMap; 
- using llvm::DominatorTree; 
- using llvm::Function; 
- using llvm::FunctionAnalysisManager; 
- using llvm::FunctionPass; 
- using llvm::IntrinsicInst; 
- using llvm::LoopInfo; 
- using llvm::Module; 
- using llvm::OptimizationRemarkEmitter; 
- using llvm::PassInfoMixin; 
- using llvm::PreservedAnalyses; 
- using llvm::RegionInfo; 
- using llvm::ScalarEvolution; 
- using llvm::SCEVUnknown; 
- using llvm::SetVector; 
- using llvm::SmallSetVector; 
- using llvm::SmallVectorImpl; 
- using llvm::StringRef; 
- using llvm::SwitchInst; 
-   
- using ParamSetType = std::set<const SCEV *>; 
-   
- // Description of the shape of an array. 
- struct ArrayShape { 
-   // Base pointer identifying all accesses to this array. 
-   const SCEVUnknown *BasePointer; 
-   
-   // Sizes of each delinearized dimension. 
-   SmallVector<const SCEV *, 4> DelinearizedSizes; 
-   
-   ArrayShape(const SCEVUnknown *B) : BasePointer(B) {} 
- }; 
-   
- struct MemAcc { 
-   const Instruction *Insn; 
-   
-   // A pointer to the shape description of the array. 
-   std::shared_ptr<ArrayShape> Shape; 
-   
-   // Subscripts computed by delinearization. 
-   SmallVector<const SCEV *, 4> DelinearizedSubscripts; 
-   
-   MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S) 
-       : Insn(I), Shape(S) {} 
- }; 
-   
- using MapInsnToMemAcc = std::map<const Instruction *, MemAcc>; 
- using PairInstSCEV = std::pair<const Instruction *, const SCEV *>; 
- using AFs = std::vector<PairInstSCEV>; 
- using BaseToAFs = std::map<const SCEVUnknown *, AFs>; 
- using BaseToElSize = std::map<const SCEVUnknown *, const SCEV *>; 
-   
- extern bool PollyTrackFailures; 
- extern bool PollyDelinearize; 
- extern bool PollyUseRuntimeAliasChecks; 
- extern bool PollyProcessUnprofitable; 
- extern bool PollyInvariantLoadHoisting; 
- extern bool PollyAllowUnsignedOperations; 
- extern bool PollyAllowFullFunction; 
-   
- /// A function attribute which will cause Polly to skip the function 
- extern StringRef PollySkipFnAttr; 
-   
- //===----------------------------------------------------------------------===// 
- /// Pass to detect the maximal static control parts (Scops) of a 
- /// function. 
- class ScopDetection { 
- public: 
-   using RegionSet = SetVector<const Region *>; 
-   
-   // Remember the valid regions 
-   RegionSet ValidRegions; 
-   
-   /// Context variables for SCoP detection. 
-   struct DetectionContext { 
-     Region &CurRegion;   // The region to check. 
-     BatchAAResults BAA;  // The batched alias analysis results. 
-     AliasSetTracker AST; // The AliasSetTracker to hold the alias information. 
-     bool Verifying;      // If we are in the verification phase? 
-   
-     /// If this flag is set, the SCoP must eventually be rejected, even with 
-     /// KeepGoing. 
-     bool IsInvalid = false; 
-   
-     /// Container to remember rejection reasons for this region. 
-     RejectLog Log; 
-   
-     /// Map a base pointer to all access functions accessing it. 
-     /// 
-     /// This map is indexed by the base pointer. Each element of the map 
-     /// is a list of memory accesses that reference this base pointer. 
-     BaseToAFs Accesses; 
-   
-     /// The set of base pointers with non-affine accesses. 
-     /// 
-     /// This set contains all base pointers and the locations where they are 
-     /// used for memory accesses that can not be detected as affine accesses. 
-     llvm::SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses; 
-     BaseToElSize ElementSize; 
-   
-     /// The region has at least one load instruction. 
-     bool hasLoads = false; 
-   
-     /// The region has at least one store instruction. 
-     bool hasStores = false; 
-   
-     /// Flag to indicate the region has at least one unknown access. 
-     bool HasUnknownAccess = false; 
-   
-     /// The set of non-affine subregions in the region we analyze. 
-     RegionSet NonAffineSubRegionSet; 
-   
-     /// The set of loops contained in non-affine regions. 
-     BoxedLoopsSetTy BoxedLoopsSet; 
-   
-     /// Loads that need to be invariant during execution. 
-     InvariantLoadsSetTy RequiredILS; 
-   
-     /// Map to memory access description for the corresponding LLVM 
-     ///        instructions. 
-     MapInsnToMemAcc InsnToMemAcc; 
-   
-     /// Initialize a DetectionContext from scratch. 
-     DetectionContext(Region &R, AAResults &AA, bool Verify) 
-         : CurRegion(R), BAA(AA), AST(BAA), Verifying(Verify), Log(&R) {} 
-   }; 
-   
-   /// Helper data structure to collect statistics about loop counts. 
-   struct LoopStats { 
-     int NumLoops; 
-     int MaxDepth; 
-   }; 
-   
-   int NextScopID = 0; 
-   int getNextID() { return NextScopID++; } 
-   
- private: 
-   //===--------------------------------------------------------------------===// 
-   
-   /// Analyses used 
-   //@{ 
-   const DominatorTree &DT; 
-   ScalarEvolution &SE; 
-   LoopInfo &LI; 
-   RegionInfo &RI; 
-   AAResults &AA; 
-   //@} 
-   
-   /// Map to remember detection contexts for all regions. 
-   using DetectionContextMapTy = 
-       DenseMap<BBPair, std::unique_ptr<DetectionContext>>; 
-   DetectionContextMapTy DetectionContextMap; 
-   
-   /// Cache for the isErrorBlock function. 
-   DenseMap<std::tuple<const BasicBlock *, const Region *>, bool> 
-       ErrorBlockCache; 
-   
-   /// Remove cached results for @p R. 
-   void removeCachedResults(const Region &R); 
-   
-   /// Remove cached results for the children of @p R recursively. 
-   void removeCachedResultsRecursively(const Region &R); 
-   
-   /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers. 
-   /// 
-   /// @param S0    A expression to check. 
-   /// @param S1    Another expression to check or nullptr. 
-   /// @param Scope The loop/scope the expressions are checked in. 
-   /// 
-   /// @returns True, if multiple possibly aliasing pointers are used in @p S0 
-   ///          (and @p S1 if given). 
-   bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const; 
-   
-   /// Add the region @p AR as over approximated sub-region in @p Context. 
-   /// 
-   /// @param AR      The non-affine subregion. 
-   /// @param Context The current detection context. 
-   /// 
-   /// @returns True if the subregion can be over approximated, false otherwise. 
-   bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const; 
-   
-   /// Find for a given base pointer terms that hint towards dimension 
-   ///        sizes of a multi-dimensional array. 
-   /// 
-   /// @param Context      The current detection context. 
-   /// @param BasePointer  A base pointer indicating the virtual array we are 
-   ///                     interested in. 
-   SmallVector<const SCEV *, 4> 
-   getDelinearizationTerms(DetectionContext &Context, 
-                           const SCEVUnknown *BasePointer) const; 
-   
-   /// Check if the dimension size of a delinearized array is valid. 
-   /// 
-   /// @param Context     The current detection context. 
-   /// @param Sizes       The sizes of the different array dimensions. 
-   /// @param BasePointer The base pointer we are interested in. 
-   /// @param Scope       The location where @p BasePointer is being used. 
-   /// @returns True if one or more array sizes could be derived - meaning: we 
-   ///          see this array as multi-dimensional. 
-   bool hasValidArraySizes(DetectionContext &Context, 
-                           SmallVectorImpl<const SCEV *> &Sizes, 
-                           const SCEVUnknown *BasePointer, Loop *Scope) const; 
-   
-   /// Derive access functions for a given base pointer. 
-   /// 
-   /// @param Context     The current detection context. 
-   /// @param Sizes       The sizes of the different array dimensions. 
-   /// @param BasePointer The base pointer of all the array for which to compute 
-   ///                    access functions. 
-   /// @param Shape       The shape that describes the derived array sizes and 
-   ///                    which should be filled with newly computed access 
-   ///                    functions. 
-   /// @returns True if a set of affine access functions could be derived. 
-   bool computeAccessFunctions(DetectionContext &Context, 
-                               const SCEVUnknown *BasePointer, 
-                               std::shared_ptr<ArrayShape> Shape) const; 
-   
-   /// Check if all accesses to a given BasePointer are affine. 
-   /// 
-   /// @param Context     The current detection context. 
-   /// @param BasePointer the base pointer we are interested in. 
-   /// @param Scope       The location where @p BasePointer is being used. 
-   /// @param True if consistent (multi-dimensional) array accesses could be 
-   ///        derived for this array. 
-   bool hasBaseAffineAccesses(DetectionContext &Context, 
-                              const SCEVUnknown *BasePointer, Loop *Scope) const; 
-   
-   /// Delinearize all non affine memory accesses and return false when there 
-   /// exists a non affine memory access that cannot be delinearized. Return true 
-   /// when all array accesses are affine after delinearization. 
-   bool hasAffineMemoryAccesses(DetectionContext &Context) const; 
-   
-   /// Try to expand the region R. If R can be expanded return the expanded 
-   /// region, NULL otherwise. 
-   Region *expandRegion(Region &R); 
-   
-   /// Find the Scops in this region tree. 
-   /// 
-   /// @param The region tree to scan for scops. 
-   void findScops(Region &R); 
-   
-   /// Check if all basic block in the region are valid. 
-   /// 
-   /// @param Context The context of scop detection. 
-   bool allBlocksValid(DetectionContext &Context); 
-   
-   /// Check if a region has sufficient compute instructions. 
-   /// 
-   /// This function checks if a region has a non-trivial number of instructions 
-   /// in each loop. This can be used as an indicator whether a loop is worth 
-   /// optimizing. 
-   /// 
-   /// @param Context  The context of scop detection. 
-   /// @param NumLoops The number of loops in the region. 
-   /// 
-   /// @return True if region is has sufficient compute instructions, 
-   ///         false otherwise. 
-   bool hasSufficientCompute(DetectionContext &Context, 
-                             int NumAffineLoops) const; 
-   
-   /// Check if the unique affine loop might be amendable to distribution. 
-   /// 
-   /// This function checks if the number of non-trivial blocks in the unique 
-   /// affine loop in Context.CurRegion is at least two, thus if the loop might 
-   /// be amendable to distribution. 
-   /// 
-   /// @param Context  The context of scop detection. 
-   /// 
-   /// @return True only if the affine loop might be amendable to distributable. 
-   bool hasPossiblyDistributableLoop(DetectionContext &Context) const; 
-   
-   /// Check if a region is profitable to optimize. 
-   /// 
-   /// Regions that are unlikely to expose interesting optimization opportunities 
-   /// are called 'unprofitable' and may be skipped during scop detection. 
-   /// 
-   /// @param Context The context of scop detection. 
-   /// 
-   /// @return True if region is profitable to optimize, false otherwise. 
-   bool isProfitableRegion(DetectionContext &Context) const; 
-   
-   /// Check if a region is a Scop. 
-   /// 
-   /// @param Context The context of scop detection. 
-   /// 
-   /// @return If we short-circuited early to not waste time on known-invalid 
-   ///         SCoPs. Use Context.IsInvalid to determine whether the region is a 
-   ///         valid SCoP. 
-   bool isValidRegion(DetectionContext &Context); 
-   
-   /// Check if an intrinsic call can be part of a Scop. 
-   /// 
-   /// @param II      The intrinsic call instruction to check. 
-   /// @param Context The current detection context. 
-   bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const; 
-   
-   /// Check if a call instruction can be part of a Scop. 
-   /// 
-   /// @param CI      The call instruction to check. 
-   /// @param Context The current detection context. 
-   bool isValidCallInst(CallInst &CI, DetectionContext &Context) const; 
-   
-   /// Check if the given loads could be invariant and can be hoisted. 
-   /// 
-   /// If true is returned the loads are added to the required invariant loads 
-   /// contained in the @p Context. 
-   /// 
-   /// @param RequiredILS The loads to check. 
-   /// @param Context     The current detection context. 
-   /// 
-   /// @return True if all loads can be assumed invariant. 
-   bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS, 
-                                        DetectionContext &Context) const; 
-   
-   /// Check if a value is invariant in the region Reg. 
-   /// 
-   /// @param Val Value to check for invariance. 
-   /// @param Reg The region to consider for the invariance of Val. 
-   /// @param Ctx The current detection context. 
-   /// 
-   /// @return True if the value represented by Val is invariant in the region 
-   ///         identified by Reg. 
-   bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const; 
-   
-   /// Check if the memory access caused by @p Inst is valid. 
-   /// 
-   /// @param Inst    The access instruction. 
-   /// @param AF      The access function. 
-   /// @param BP      The access base pointer. 
-   /// @param Context The current detection context. 
-   bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP, 
-                      DetectionContext &Context) const; 
-   
-   /// Check if a memory access can be part of a Scop. 
-   /// 
-   /// @param Inst The instruction accessing the memory. 
-   /// @param Context The context of scop detection. 
-   bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const; 
-   
-   /// Check if an instruction can be part of a Scop. 
-   /// 
-   /// @param Inst The instruction to check. 
-   /// @param Context The context of scop detection. 
-   bool isValidInstruction(Instruction &Inst, DetectionContext &Context); 
-   
-   /// Check if the switch @p SI with condition @p Condition is valid. 
-   /// 
-   /// @param BB           The block to check. 
-   /// @param SI           The switch to check. 
-   /// @param Condition    The switch condition. 
-   /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. 
-   /// @param Context      The context of scop detection. 
-   bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition, 
-                      bool IsLoopBranch, DetectionContext &Context) const; 
-   
-   /// Check if the branch @p BI with condition @p Condition is valid. 
-   /// 
-   /// @param BB           The block to check. 
-   /// @param BI           The branch to check. 
-   /// @param Condition    The branch condition. 
-   /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. 
-   /// @param Context      The context of scop detection. 
-   bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition, 
-                      bool IsLoopBranch, DetectionContext &Context); 
-   
-   /// Check if the SCEV @p S is affine in the current @p Context. 
-   /// 
-   /// This will also use a heuristic to decide if we want to require loads to be 
-   /// invariant to make the expression affine or if we want to treat is as 
-   /// non-affine. 
-   /// 
-   /// @param S           The expression to be checked. 
-   /// @param Scope       The loop nest in which @p S is used. 
-   /// @param Context     The context of scop detection. 
-   bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const; 
-   
-   /// Check if the control flow in a basic block is valid. 
-   /// 
-   /// This function checks if a certain basic block is terminated by a 
-   /// Terminator instruction we can handle or, if this is not the case, 
-   /// registers this basic block as the start of a non-affine region. 
-   /// 
-   /// This function optionally allows unreachable statements. 
-   /// 
-   /// @param BB               The BB to check the control flow. 
-   /// @param IsLoopBranch     Flag to indicate the branch is a loop exit/latch. 
-   ///  @param AllowUnreachable Allow unreachable statements. 
-   /// @param Context          The context of scop detection. 
-   bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable, 
-                   DetectionContext &Context); 
-   
-   /// Is a loop valid with respect to a given region. 
-   /// 
-   /// @param L The loop to check. 
-   /// @param Context The context of scop detection. 
-   bool isValidLoop(Loop *L, DetectionContext &Context); 
-   
-   /// Count the number of loops and the maximal loop depth in @p L. 
-   /// 
-   /// @param L The loop to check. 
-   /// @param SE The scalar evolution analysis. 
-   /// @param MinProfitableTrips The minimum number of trip counts from which 
-   ///                           a loop is assumed to be profitable and 
-   ///                           consequently is counted. 
-   /// returns A tuple of number of loops and their maximal depth. 
-   static ScopDetection::LoopStats 
-   countBeneficialSubLoops(Loop *L, ScalarEvolution &SE, 
-                           unsigned MinProfitableTrips); 
-   
-   /// Check if the function @p F is marked as invalid. 
-   /// 
-   /// @note An OpenMP subfunction will be marked as invalid. 
-   static bool isValidFunction(Function &F); 
-   
-   /// Can ISL compute the trip count of a loop. 
-   /// 
-   /// @param L The loop to check. 
-   /// @param Context The context of scop detection. 
-   /// 
-   /// @return True if ISL can compute the trip count of the loop. 
-   bool canUseISLTripCount(Loop *L, DetectionContext &Context); 
-   
-   /// Print the locations of all detected scops. 
-   void printLocations(Function &F); 
-   
-   /// Check if a region is reducible or not. 
-   /// 
-   /// @param Region The region to check. 
-   /// @param DbgLoc Parameter to save the location of instruction that 
-   ///               causes irregular control flow if the region is irreducible. 
-   /// 
-   /// @return True if R is reducible, false otherwise. 
-   bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const; 
-   
-   /// Track diagnostics for invalid scops. 
-   /// 
-   /// @param Context The context of scop detection. 
-   /// @param Assert Throw an assert in verify mode or not. 
-   /// @param Args Argument list that gets passed to the constructor of RR. 
-   template <class RR, typename... Args> 
-   inline bool invalid(DetectionContext &Context, bool Assert, 
-                       Args &&...Arguments) const; 
-   
- public: 
-   ScopDetection(const DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, 
-                 RegionInfo &RI, AAResults &AA, OptimizationRemarkEmitter &ORE); 
-   
-   void detect(Function &F); 
-   
-   /// Get the RegionInfo stored in this pass. 
-   /// 
-   /// This was added to give the DOT printer easy access to this information. 
-   RegionInfo *getRI() const { return &RI; } 
-   
-   /// Get the LoopInfo stored in this pass. 
-   LoopInfo *getLI() const { return &LI; } 
-   
-   /// Is the region is the maximum region of a Scop? 
-   /// 
-   /// @param R The Region to test if it is maximum. 
-   /// @param Verify Rerun the scop detection to verify SCoP was not invalidated 
-   ///               meanwhile. Do not use if the region's DetectionContect is 
-   ///               referenced by a Scop that is still to be processed. 
-   /// 
-   /// @return Return true if R is the maximum Region in a Scop, false otherwise. 
-   bool isMaxRegionInScop(const Region &R, bool Verify = true); 
-   
-   /// Return the detection context for @p R, nullptr if @p R was invalid. 
-   DetectionContext *getDetectionContext(const Region *R) const; 
-   
-   /// Return the set of rejection causes for @p R. 
-   const RejectLog *lookupRejectionLog(const Region *R) const; 
-   
-   /// Get a message why a region is invalid 
-   /// 
-   /// @param R The region for which we get the error message 
-   /// 
-   /// @return The error or "" if no error appeared. 
-   std::string regionIsInvalidBecause(const Region *R) const; 
-   
-   /// @name Maximum Region In Scops Iterators 
-   /// 
-   /// These iterators iterator over all maximum region in Scops of this 
-   /// function. 
-   //@{ 
-   using iterator = RegionSet::iterator; 
-   using const_iterator = RegionSet::const_iterator; 
-   
-   iterator begin() { return ValidRegions.begin(); } 
-   iterator end() { return ValidRegions.end(); } 
-   
-   const_iterator begin() const { return ValidRegions.begin(); } 
-   const_iterator end() const { return ValidRegions.end(); } 
-   //@} 
-   
-   /// Emit rejection remarks for all rejected regions. 
-   /// 
-   /// @param F The function to emit remarks for. 
-   void emitMissedRemarks(const Function &F); 
-   
-   /// Mark the function as invalid so we will not extract any scop from 
-   ///        the function. 
-   /// 
-   /// @param F The function to mark as invalid. 
-   static void markFunctionAsInvalid(Function *F); 
-   
-   /// Verify if all valid Regions in this Function are still valid 
-   /// after some transformations. 
-   void verifyAnalysis(); 
-   
-   /// Verify if R is still a valid part of Scop after some transformations. 
-   /// 
-   /// @param R The Region to verify. 
-   void verifyRegion(const Region &R); 
-   
-   /// Count the number of loops and the maximal loop depth in @p R. 
-   /// 
-   /// @param R The region to check 
-   /// @param SE The scalar evolution analysis. 
-   /// @param MinProfitableTrips The minimum number of trip counts from which 
-   ///                           a loop is assumed to be profitable and 
-   ///                           consequently is counted. 
-   /// returns A tuple of number of loops and their maximal depth. 
-   static ScopDetection::LoopStats 
-   countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI, 
-                        unsigned MinProfitableTrips); 
-   
-   /// Check if the block is a error block. 
-   /// 
-   /// A error block is currently any block that fulfills at least one of 
-   /// the following conditions: 
-   /// 
-   ///  - It is terminated by an unreachable instruction 
-   ///  - It contains a call to a non-pure function that is not immediately 
-   ///    dominated by a loop header and that does not dominate the region exit. 
-   ///    This is a heuristic to pick only error blocks that are conditionally 
-   ///    executed and can be assumed to be not executed at all without the 
-   ///    domains being available. 
-   /// 
-   /// @param BB The block to check. 
-   /// @param R  The analyzed region. 
-   /// 
-   /// @return True if the block is a error block, false otherwise. 
-   bool isErrorBlock(llvm::BasicBlock &BB, const llvm::Region &R); 
-   
- private: 
-   /// OptimizationRemarkEmitter object used to emit diagnostic remarks 
-   OptimizationRemarkEmitter &ORE; 
- }; 
-   
- struct ScopAnalysis : AnalysisInfoMixin<ScopAnalysis> { 
-   static AnalysisKey Key; 
-   
-   using Result = ScopDetection; 
-   
-   ScopAnalysis(); 
-   
-   Result run(Function &F, FunctionAnalysisManager &FAM); 
- }; 
-   
- struct ScopAnalysisPrinterPass final : PassInfoMixin<ScopAnalysisPrinterPass> { 
-   ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {} 
-   
-   PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); 
-   
-   raw_ostream &OS; 
- }; 
-   
- class ScopDetectionWrapperPass final : public FunctionPass { 
-   std::unique_ptr<ScopDetection> Result; 
-   
- public: 
-   ScopDetectionWrapperPass(); 
-   
-   /// @name FunctionPass interface 
-   ///@{ 
-   static char ID; 
-   void getAnalysisUsage(AnalysisUsage &AU) const override; 
-   void releaseMemory() override; 
-   bool runOnFunction(Function &F) override; 
-   void print(raw_ostream &OS, const Module *M = nullptr) const override; 
-   ///@} 
-   
-   ScopDetection &getSD() const { return *Result; } 
- }; 
-   
- llvm::Pass *createScopDetectionPrinterLegacyPass(llvm::raw_ostream &OS); 
- } // namespace polly 
-   
- namespace llvm { 
- void initializeScopDetectionWrapperPassPass(llvm::PassRegistry &); 
- void initializeScopDetectionPrinterLegacyPassPass(llvm::PassRegistry &); 
- } // namespace llvm 
-   
- #endif // POLLY_SCOPDETECTION_H 
-