Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // Detect the maximal Scops of a function.
  10. //
  11. // A static control part (Scop) is a subgraph of the control flow graph (CFG)
  12. // that only has statically known control flow and can therefore be described
  13. // within the polyhedral model.
  14. //
  15. // Every Scop fulfills these restrictions:
  16. //
  17. // * It is a single entry single exit region
  18. //
  19. // * Only affine linear bounds in the loops
  20. //
  21. // Every natural loop in a Scop must have a number of loop iterations that can
  22. // be described as an affine linear function in surrounding loop iterators or
  23. // parameters. (A parameter is a scalar that does not change its value during
  24. // execution of the Scop).
  25. //
  26. // * Only comparisons of affine linear expressions in conditions
  27. //
  28. // * All loops and conditions perfectly nested
  29. //
  30. // The control flow needs to be structured such that it could be written using
  31. // just 'for' and 'if' statements, without the need for any 'goto', 'break' or
  32. // 'continue'.
  33. //
  34. // * Side effect free functions call
  35. //
  36. // Only function calls and intrinsics that do not have side effects are allowed
  37. // (readnone).
  38. //
  39. // The Scop detection finds the largest Scops by checking if the largest
  40. // region is a Scop. If this is not the case, its canonical subregions are
  41. // checked until a region is a Scop. It is now tried to extend this Scop by
  42. // creating a larger non canonical region.
  43. //
  44. //===----------------------------------------------------------------------===//
  45.  
  46. #ifndef POLLY_SCOPDETECTION_H
  47. #define POLLY_SCOPDETECTION_H
  48.  
  49. #include "polly/ScopDetectionDiagnostic.h"
  50. #include "polly/Support/ScopHelper.h"
  51. #include "llvm/Analysis/AliasAnalysis.h"
  52. #include "llvm/Analysis/AliasSetTracker.h"
  53. #include "llvm/Analysis/RegionInfo.h"
  54. #include "llvm/Analysis/ScalarEvolutionExpressions.h"
  55. #include "llvm/Pass.h"
  56. #include <set>
  57.  
  58. namespace polly {
  59. using llvm::AAResults;
  60. using llvm::AliasSetTracker;
  61. using llvm::AnalysisInfoMixin;
  62. using llvm::AnalysisKey;
  63. using llvm::AnalysisUsage;
  64. using llvm::BatchAAResults;
  65. using llvm::BranchInst;
  66. using llvm::CallInst;
  67. using llvm::DenseMap;
  68. using llvm::DominatorTree;
  69. using llvm::Function;
  70. using llvm::FunctionAnalysisManager;
  71. using llvm::FunctionPass;
  72. using llvm::IntrinsicInst;
  73. using llvm::LoopInfo;
  74. using llvm::Module;
  75. using llvm::OptimizationRemarkEmitter;
  76. using llvm::PassInfoMixin;
  77. using llvm::PreservedAnalyses;
  78. using llvm::RegionInfo;
  79. using llvm::ScalarEvolution;
  80. using llvm::SCEVUnknown;
  81. using llvm::SetVector;
  82. using llvm::SmallSetVector;
  83. using llvm::SmallVectorImpl;
  84. using llvm::StringRef;
  85. using llvm::SwitchInst;
  86.  
  87. using ParamSetType = std::set<const SCEV *>;
  88.  
  89. // Description of the shape of an array.
  90. struct ArrayShape {
  91.   // Base pointer identifying all accesses to this array.
  92.   const SCEVUnknown *BasePointer;
  93.  
  94.   // Sizes of each delinearized dimension.
  95.   SmallVector<const SCEV *, 4> DelinearizedSizes;
  96.  
  97.   ArrayShape(const SCEVUnknown *B) : BasePointer(B) {}
  98. };
  99.  
  100. struct MemAcc {
  101.   const Instruction *Insn;
  102.  
  103.   // A pointer to the shape description of the array.
  104.   std::shared_ptr<ArrayShape> Shape;
  105.  
  106.   // Subscripts computed by delinearization.
  107.   SmallVector<const SCEV *, 4> DelinearizedSubscripts;
  108.  
  109.   MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S)
  110.       : Insn(I), Shape(S) {}
  111. };
  112.  
  113. using MapInsnToMemAcc = std::map<const Instruction *, MemAcc>;
  114. using PairInstSCEV = std::pair<const Instruction *, const SCEV *>;
  115. using AFs = std::vector<PairInstSCEV>;
  116. using BaseToAFs = std::map<const SCEVUnknown *, AFs>;
  117. using BaseToElSize = std::map<const SCEVUnknown *, const SCEV *>;
  118.  
  119. extern bool PollyTrackFailures;
  120. extern bool PollyDelinearize;
  121. extern bool PollyUseRuntimeAliasChecks;
  122. extern bool PollyProcessUnprofitable;
  123. extern bool PollyInvariantLoadHoisting;
  124. extern bool PollyAllowUnsignedOperations;
  125. extern bool PollyAllowFullFunction;
  126.  
  127. /// A function attribute which will cause Polly to skip the function
  128. extern StringRef PollySkipFnAttr;
  129.  
  130. //===----------------------------------------------------------------------===//
  131. /// Pass to detect the maximal static control parts (Scops) of a
  132. /// function.
  133. class ScopDetection {
  134. public:
  135.   using RegionSet = SetVector<const Region *>;
  136.  
  137.   // Remember the valid regions
  138.   RegionSet ValidRegions;
  139.  
  140.   /// Context variables for SCoP detection.
  141.   struct DetectionContext {
  142.     Region &CurRegion;   // The region to check.
  143.     BatchAAResults BAA;  // The batched alias analysis results.
  144.     AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
  145.     bool Verifying;      // If we are in the verification phase?
  146.  
  147.     /// If this flag is set, the SCoP must eventually be rejected, even with
  148.     /// KeepGoing.
  149.     bool IsInvalid = false;
  150.  
  151.     /// Container to remember rejection reasons for this region.
  152.     RejectLog Log;
  153.  
  154.     /// Map a base pointer to all access functions accessing it.
  155.     ///
  156.     /// This map is indexed by the base pointer. Each element of the map
  157.     /// is a list of memory accesses that reference this base pointer.
  158.     BaseToAFs Accesses;
  159.  
  160.     /// The set of base pointers with non-affine accesses.
  161.     ///
  162.     /// This set contains all base pointers and the locations where they are
  163.     /// used for memory accesses that can not be detected as affine accesses.
  164.     llvm::SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses;
  165.     BaseToElSize ElementSize;
  166.  
  167.     /// The region has at least one load instruction.
  168.     bool hasLoads = false;
  169.  
  170.     /// The region has at least one store instruction.
  171.     bool hasStores = false;
  172.  
  173.     /// Flag to indicate the region has at least one unknown access.
  174.     bool HasUnknownAccess = false;
  175.  
  176.     /// The set of non-affine subregions in the region we analyze.
  177.     RegionSet NonAffineSubRegionSet;
  178.  
  179.     /// The set of loops contained in non-affine regions.
  180.     BoxedLoopsSetTy BoxedLoopsSet;
  181.  
  182.     /// Loads that need to be invariant during execution.
  183.     InvariantLoadsSetTy RequiredILS;
  184.  
  185.     /// Map to memory access description for the corresponding LLVM
  186.     ///        instructions.
  187.     MapInsnToMemAcc InsnToMemAcc;
  188.  
  189.     /// Initialize a DetectionContext from scratch.
  190.     DetectionContext(Region &R, AAResults &AA, bool Verify)
  191.         : CurRegion(R), BAA(AA), AST(BAA), Verifying(Verify), Log(&R) {}
  192.   };
  193.  
  194.   /// Helper data structure to collect statistics about loop counts.
  195.   struct LoopStats {
  196.     int NumLoops;
  197.     int MaxDepth;
  198.   };
  199.  
  200.   int NextScopID = 0;
  201.   int getNextID() { return NextScopID++; }
  202.  
  203. private:
  204.   //===--------------------------------------------------------------------===//
  205.  
  206.   /// Analyses used
  207.   //@{
  208.   const DominatorTree &DT;
  209.   ScalarEvolution &SE;
  210.   LoopInfo &LI;
  211.   RegionInfo &RI;
  212.   AAResults &AA;
  213.   //@}
  214.  
  215.   /// Map to remember detection contexts for all regions.
  216.   using DetectionContextMapTy =
  217.       DenseMap<BBPair, std::unique_ptr<DetectionContext>>;
  218.   DetectionContextMapTy DetectionContextMap;
  219.  
  220.   /// Cache for the isErrorBlock function.
  221.   DenseMap<std::tuple<const BasicBlock *, const Region *>, bool>
  222.       ErrorBlockCache;
  223.  
  224.   /// Remove cached results for @p R.
  225.   void removeCachedResults(const Region &R);
  226.  
  227.   /// Remove cached results for the children of @p R recursively.
  228.   void removeCachedResultsRecursively(const Region &R);
  229.  
  230.   /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers.
  231.   ///
  232.   /// @param S0    A expression to check.
  233.   /// @param S1    Another expression to check or nullptr.
  234.   /// @param Scope The loop/scope the expressions are checked in.
  235.   ///
  236.   /// @returns True, if multiple possibly aliasing pointers are used in @p S0
  237.   ///          (and @p S1 if given).
  238.   bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const;
  239.  
  240.   /// Add the region @p AR as over approximated sub-region in @p Context.
  241.   ///
  242.   /// @param AR      The non-affine subregion.
  243.   /// @param Context The current detection context.
  244.   ///
  245.   /// @returns True if the subregion can be over approximated, false otherwise.
  246.   bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;
  247.  
  248.   /// Find for a given base pointer terms that hint towards dimension
  249.   ///        sizes of a multi-dimensional array.
  250.   ///
  251.   /// @param Context      The current detection context.
  252.   /// @param BasePointer  A base pointer indicating the virtual array we are
  253.   ///                     interested in.
  254.   SmallVector<const SCEV *, 4>
  255.   getDelinearizationTerms(DetectionContext &Context,
  256.                           const SCEVUnknown *BasePointer) const;
  257.  
  258.   /// Check if the dimension size of a delinearized array is valid.
  259.   ///
  260.   /// @param Context     The current detection context.
  261.   /// @param Sizes       The sizes of the different array dimensions.
  262.   /// @param BasePointer The base pointer we are interested in.
  263.   /// @param Scope       The location where @p BasePointer is being used.
  264.   /// @returns True if one or more array sizes could be derived - meaning: we
  265.   ///          see this array as multi-dimensional.
  266.   bool hasValidArraySizes(DetectionContext &Context,
  267.                           SmallVectorImpl<const SCEV *> &Sizes,
  268.                           const SCEVUnknown *BasePointer, Loop *Scope) const;
  269.  
  270.   /// Derive access functions for a given base pointer.
  271.   ///
  272.   /// @param Context     The current detection context.
  273.   /// @param Sizes       The sizes of the different array dimensions.
  274.   /// @param BasePointer The base pointer of all the array for which to compute
  275.   ///                    access functions.
  276.   /// @param Shape       The shape that describes the derived array sizes and
  277.   ///                    which should be filled with newly computed access
  278.   ///                    functions.
  279.   /// @returns True if a set of affine access functions could be derived.
  280.   bool computeAccessFunctions(DetectionContext &Context,
  281.                               const SCEVUnknown *BasePointer,
  282.                               std::shared_ptr<ArrayShape> Shape) const;
  283.  
  284.   /// Check if all accesses to a given BasePointer are affine.
  285.   ///
  286.   /// @param Context     The current detection context.
  287.   /// @param BasePointer the base pointer we are interested in.
  288.   /// @param Scope       The location where @p BasePointer is being used.
  289.   /// @param True if consistent (multi-dimensional) array accesses could be
  290.   ///        derived for this array.
  291.   bool hasBaseAffineAccesses(DetectionContext &Context,
  292.                              const SCEVUnknown *BasePointer, Loop *Scope) const;
  293.  
  294.   /// Delinearize all non affine memory accesses and return false when there
  295.   /// exists a non affine memory access that cannot be delinearized. Return true
  296.   /// when all array accesses are affine after delinearization.
  297.   bool hasAffineMemoryAccesses(DetectionContext &Context) const;
  298.  
  299.   /// Try to expand the region R. If R can be expanded return the expanded
  300.   /// region, NULL otherwise.
  301.   Region *expandRegion(Region &R);
  302.  
  303.   /// Find the Scops in this region tree.
  304.   ///
  305.   /// @param The region tree to scan for scops.
  306.   void findScops(Region &R);
  307.  
  308.   /// Check if all basic block in the region are valid.
  309.   ///
  310.   /// @param Context The context of scop detection.
  311.   bool allBlocksValid(DetectionContext &Context);
  312.  
  313.   /// Check if a region has sufficient compute instructions.
  314.   ///
  315.   /// This function checks if a region has a non-trivial number of instructions
  316.   /// in each loop. This can be used as an indicator whether a loop is worth
  317.   /// optimizing.
  318.   ///
  319.   /// @param Context  The context of scop detection.
  320.   /// @param NumLoops The number of loops in the region.
  321.   ///
  322.   /// @return True if region is has sufficient compute instructions,
  323.   ///         false otherwise.
  324.   bool hasSufficientCompute(DetectionContext &Context,
  325.                             int NumAffineLoops) const;
  326.  
  327.   /// Check if the unique affine loop might be amendable to distribution.
  328.   ///
  329.   /// This function checks if the number of non-trivial blocks in the unique
  330.   /// affine loop in Context.CurRegion is at least two, thus if the loop might
  331.   /// be amendable to distribution.
  332.   ///
  333.   /// @param Context  The context of scop detection.
  334.   ///
  335.   /// @return True only if the affine loop might be amendable to distributable.
  336.   bool hasPossiblyDistributableLoop(DetectionContext &Context) const;
  337.  
  338.   /// Check if a region is profitable to optimize.
  339.   ///
  340.   /// Regions that are unlikely to expose interesting optimization opportunities
  341.   /// are called 'unprofitable' and may be skipped during scop detection.
  342.   ///
  343.   /// @param Context The context of scop detection.
  344.   ///
  345.   /// @return True if region is profitable to optimize, false otherwise.
  346.   bool isProfitableRegion(DetectionContext &Context) const;
  347.  
  348.   /// Check if a region is a Scop.
  349.   ///
  350.   /// @param Context The context of scop detection.
  351.   ///
  352.   /// @return If we short-circuited early to not waste time on known-invalid
  353.   ///         SCoPs. Use Context.IsInvalid to determine whether the region is a
  354.   ///         valid SCoP.
  355.   bool isValidRegion(DetectionContext &Context);
  356.  
  357.   /// Check if an intrinsic call can be part of a Scop.
  358.   ///
  359.   /// @param II      The intrinsic call instruction to check.
  360.   /// @param Context The current detection context.
  361.   bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const;
  362.  
  363.   /// Check if a call instruction can be part of a Scop.
  364.   ///
  365.   /// @param CI      The call instruction to check.
  366.   /// @param Context The current detection context.
  367.   bool isValidCallInst(CallInst &CI, DetectionContext &Context) const;
  368.  
  369.   /// Check if the given loads could be invariant and can be hoisted.
  370.   ///
  371.   /// If true is returned the loads are added to the required invariant loads
  372.   /// contained in the @p Context.
  373.   ///
  374.   /// @param RequiredILS The loads to check.
  375.   /// @param Context     The current detection context.
  376.   ///
  377.   /// @return True if all loads can be assumed invariant.
  378.   bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS,
  379.                                        DetectionContext &Context) const;
  380.  
  381.   /// Check if a value is invariant in the region Reg.
  382.   ///
  383.   /// @param Val Value to check for invariance.
  384.   /// @param Reg The region to consider for the invariance of Val.
  385.   /// @param Ctx The current detection context.
  386.   ///
  387.   /// @return True if the value represented by Val is invariant in the region
  388.   ///         identified by Reg.
  389.   bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const;
  390.  
  391.   /// Check if the memory access caused by @p Inst is valid.
  392.   ///
  393.   /// @param Inst    The access instruction.
  394.   /// @param AF      The access function.
  395.   /// @param BP      The access base pointer.
  396.   /// @param Context The current detection context.
  397.   bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP,
  398.                      DetectionContext &Context) const;
  399.  
  400.   /// Check if a memory access can be part of a Scop.
  401.   ///
  402.   /// @param Inst The instruction accessing the memory.
  403.   /// @param Context The context of scop detection.
  404.   bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const;
  405.  
  406.   /// Check if an instruction can be part of a Scop.
  407.   ///
  408.   /// @param Inst The instruction to check.
  409.   /// @param Context The context of scop detection.
  410.   bool isValidInstruction(Instruction &Inst, DetectionContext &Context);
  411.  
  412.   /// Check if the switch @p SI with condition @p Condition is valid.
  413.   ///
  414.   /// @param BB           The block to check.
  415.   /// @param SI           The switch to check.
  416.   /// @param Condition    The switch condition.
  417.   /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
  418.   /// @param Context      The context of scop detection.
  419.   bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition,
  420.                      bool IsLoopBranch, DetectionContext &Context) const;
  421.  
  422.   /// Check if the branch @p BI with condition @p Condition is valid.
  423.   ///
  424.   /// @param BB           The block to check.
  425.   /// @param BI           The branch to check.
  426.   /// @param Condition    The branch condition.
  427.   /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
  428.   /// @param Context      The context of scop detection.
  429.   bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition,
  430.                      bool IsLoopBranch, DetectionContext &Context);
  431.  
  432.   /// Check if the SCEV @p S is affine in the current @p Context.
  433.   ///
  434.   /// This will also use a heuristic to decide if we want to require loads to be
  435.   /// invariant to make the expression affine or if we want to treat is as
  436.   /// non-affine.
  437.   ///
  438.   /// @param S           The expression to be checked.
  439.   /// @param Scope       The loop nest in which @p S is used.
  440.   /// @param Context     The context of scop detection.
  441.   bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const;
  442.  
  443.   /// Check if the control flow in a basic block is valid.
  444.   ///
  445.   /// This function checks if a certain basic block is terminated by a
  446.   /// Terminator instruction we can handle or, if this is not the case,
  447.   /// registers this basic block as the start of a non-affine region.
  448.   ///
  449.   /// This function optionally allows unreachable statements.
  450.   ///
  451.   /// @param BB               The BB to check the control flow.
  452.   /// @param IsLoopBranch     Flag to indicate the branch is a loop exit/latch.
  453.   ///  @param AllowUnreachable Allow unreachable statements.
  454.   /// @param Context          The context of scop detection.
  455.   bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable,
  456.                   DetectionContext &Context);
  457.  
  458.   /// Is a loop valid with respect to a given region.
  459.   ///
  460.   /// @param L The loop to check.
  461.   /// @param Context The context of scop detection.
  462.   bool isValidLoop(Loop *L, DetectionContext &Context);
  463.  
  464.   /// Count the number of loops and the maximal loop depth in @p L.
  465.   ///
  466.   /// @param L The loop to check.
  467.   /// @param SE The scalar evolution analysis.
  468.   /// @param MinProfitableTrips The minimum number of trip counts from which
  469.   ///                           a loop is assumed to be profitable and
  470.   ///                           consequently is counted.
  471.   /// returns A tuple of number of loops and their maximal depth.
  472.   static ScopDetection::LoopStats
  473.   countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
  474.                           unsigned MinProfitableTrips);
  475.  
  476.   /// Check if the function @p F is marked as invalid.
  477.   ///
  478.   /// @note An OpenMP subfunction will be marked as invalid.
  479.   static bool isValidFunction(Function &F);
  480.  
  481.   /// Can ISL compute the trip count of a loop.
  482.   ///
  483.   /// @param L The loop to check.
  484.   /// @param Context The context of scop detection.
  485.   ///
  486.   /// @return True if ISL can compute the trip count of the loop.
  487.   bool canUseISLTripCount(Loop *L, DetectionContext &Context);
  488.  
  489.   /// Print the locations of all detected scops.
  490.   void printLocations(Function &F);
  491.  
  492.   /// Check if a region is reducible or not.
  493.   ///
  494.   /// @param Region The region to check.
  495.   /// @param DbgLoc Parameter to save the location of instruction that
  496.   ///               causes irregular control flow if the region is irreducible.
  497.   ///
  498.   /// @return True if R is reducible, false otherwise.
  499.   bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const;
  500.  
  501.   /// Track diagnostics for invalid scops.
  502.   ///
  503.   /// @param Context The context of scop detection.
  504.   /// @param Assert Throw an assert in verify mode or not.
  505.   /// @param Args Argument list that gets passed to the constructor of RR.
  506.   template <class RR, typename... Args>
  507.   inline bool invalid(DetectionContext &Context, bool Assert,
  508.                       Args &&...Arguments) const;
  509.  
  510. public:
  511.   ScopDetection(const DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI,
  512.                 RegionInfo &RI, AAResults &AA, OptimizationRemarkEmitter &ORE);
  513.  
  514.   void detect(Function &F);
  515.  
  516.   /// Get the RegionInfo stored in this pass.
  517.   ///
  518.   /// This was added to give the DOT printer easy access to this information.
  519.   RegionInfo *getRI() const { return &RI; }
  520.  
  521.   /// Get the LoopInfo stored in this pass.
  522.   LoopInfo *getLI() const { return &LI; }
  523.  
  524.   /// Is the region is the maximum region of a Scop?
  525.   ///
  526.   /// @param R The Region to test if it is maximum.
  527.   /// @param Verify Rerun the scop detection to verify SCoP was not invalidated
  528.   ///               meanwhile. Do not use if the region's DetectionContect is
  529.   ///               referenced by a Scop that is still to be processed.
  530.   ///
  531.   /// @return Return true if R is the maximum Region in a Scop, false otherwise.
  532.   bool isMaxRegionInScop(const Region &R, bool Verify = true);
  533.  
  534.   /// Return the detection context for @p R, nullptr if @p R was invalid.
  535.   DetectionContext *getDetectionContext(const Region *R) const;
  536.  
  537.   /// Return the set of rejection causes for @p R.
  538.   const RejectLog *lookupRejectionLog(const Region *R) const;
  539.  
  540.   /// Get a message why a region is invalid
  541.   ///
  542.   /// @param R The region for which we get the error message
  543.   ///
  544.   /// @return The error or "" if no error appeared.
  545.   std::string regionIsInvalidBecause(const Region *R) const;
  546.  
  547.   /// @name Maximum Region In Scops Iterators
  548.   ///
  549.   /// These iterators iterator over all maximum region in Scops of this
  550.   /// function.
  551.   //@{
  552.   using iterator = RegionSet::iterator;
  553.   using const_iterator = RegionSet::const_iterator;
  554.  
  555.   iterator begin() { return ValidRegions.begin(); }
  556.   iterator end() { return ValidRegions.end(); }
  557.  
  558.   const_iterator begin() const { return ValidRegions.begin(); }
  559.   const_iterator end() const { return ValidRegions.end(); }
  560.   //@}
  561.  
  562.   /// Emit rejection remarks for all rejected regions.
  563.   ///
  564.   /// @param F The function to emit remarks for.
  565.   void emitMissedRemarks(const Function &F);
  566.  
  567.   /// Mark the function as invalid so we will not extract any scop from
  568.   ///        the function.
  569.   ///
  570.   /// @param F The function to mark as invalid.
  571.   static void markFunctionAsInvalid(Function *F);
  572.  
  573.   /// Verify if all valid Regions in this Function are still valid
  574.   /// after some transformations.
  575.   void verifyAnalysis();
  576.  
  577.   /// Verify if R is still a valid part of Scop after some transformations.
  578.   ///
  579.   /// @param R The Region to verify.
  580.   void verifyRegion(const Region &R);
  581.  
  582.   /// Count the number of loops and the maximal loop depth in @p R.
  583.   ///
  584.   /// @param R The region to check
  585.   /// @param SE The scalar evolution analysis.
  586.   /// @param MinProfitableTrips The minimum number of trip counts from which
  587.   ///                           a loop is assumed to be profitable and
  588.   ///                           consequently is counted.
  589.   /// returns A tuple of number of loops and their maximal depth.
  590.   static ScopDetection::LoopStats
  591.   countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI,
  592.                        unsigned MinProfitableTrips);
  593.  
  594.   /// Check if the block is a error block.
  595.   ///
  596.   /// A error block is currently any block that fulfills at least one of
  597.   /// the following conditions:
  598.   ///
  599.   ///  - It is terminated by an unreachable instruction
  600.   ///  - It contains a call to a non-pure function that is not immediately
  601.   ///    dominated by a loop header and that does not dominate the region exit.
  602.   ///    This is a heuristic to pick only error blocks that are conditionally
  603.   ///    executed and can be assumed to be not executed at all without the
  604.   ///    domains being available.
  605.   ///
  606.   /// @param BB The block to check.
  607.   /// @param R  The analyzed region.
  608.   ///
  609.   /// @return True if the block is a error block, false otherwise.
  610.   bool isErrorBlock(llvm::BasicBlock &BB, const llvm::Region &R);
  611.  
  612. private:
  613.   /// OptimizationRemarkEmitter object used to emit diagnostic remarks
  614.   OptimizationRemarkEmitter &ORE;
  615. };
  616.  
  617. struct ScopAnalysis : AnalysisInfoMixin<ScopAnalysis> {
  618.   static AnalysisKey Key;
  619.  
  620.   using Result = ScopDetection;
  621.  
  622.   ScopAnalysis();
  623.  
  624.   Result run(Function &F, FunctionAnalysisManager &FAM);
  625. };
  626.  
  627. struct ScopAnalysisPrinterPass final : PassInfoMixin<ScopAnalysisPrinterPass> {
  628.   ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
  629.  
  630.   PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
  631.  
  632.   raw_ostream &OS;
  633. };
  634.  
  635. class ScopDetectionWrapperPass final : public FunctionPass {
  636.   std::unique_ptr<ScopDetection> Result;
  637.  
  638. public:
  639.   ScopDetectionWrapperPass();
  640.  
  641.   /// @name FunctionPass interface
  642.   ///@{
  643.   static char ID;
  644.   void getAnalysisUsage(AnalysisUsage &AU) const override;
  645.   void releaseMemory() override;
  646.   bool runOnFunction(Function &F) override;
  647.   void print(raw_ostream &OS, const Module *M = nullptr) const override;
  648.   ///@}
  649.  
  650.   ScopDetection &getSD() const { return *Result; }
  651. };
  652.  
  653. llvm::Pass *createScopDetectionPrinterLegacyPass(llvm::raw_ostream &OS);
  654. } // namespace polly
  655.  
  656. namespace llvm {
  657. void initializeScopDetectionWrapperPassPass(llvm::PassRegistry &);
  658. void initializeScopDetectionPrinterLegacyPassPass(llvm::PassRegistry &);
  659. } // namespace llvm
  660.  
  661. #endif // POLLY_SCOPDETECTION_H
  662.