//=- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -*- C++ -*-=//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file contains the IslNodeBuilder, a class to translate an isl AST into
 
// a LLVM-IR AST.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef POLLY_ISLNODEBUILDER_H
 
#define POLLY_ISLNODEBUILDER_H
 
 
 
#include "polly/CodeGen/BlockGenerators.h"
 
#include "polly/CodeGen/IslExprBuilder.h"
 
#include "polly/ScopDetectionDiagnostic.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/SmallSet.h"
 
#include "llvm/IR/InstrTypes.h"
 
#include "isl/ctx.h"
 
#include "isl/isl-noexceptions.h"
 
 
 
namespace polly {
 
using llvm::LoopInfo;
 
using llvm::SmallSet;
 
 
 
struct InvariantEquivClassTy;
 
 
 
struct SubtreeReferences {
 
  LoopInfo &LI;
 
  ScalarEvolution &SE;
 
  Scop &S;
 
  ValueMapT &GlobalMap;
 
  SetVector<Value *> &Values;
 
  SetVector<const SCEV *> &SCEVs;
 
  BlockGenerator &BlockGen;
 
  // In case an (optional) parameter space location is provided, parameter space
 
  // information is collected as well.
 
  isl::space *ParamSpace;
 
};
 
 
 
/// Extract the out-of-scop values and SCEVs referenced from a ScopStmt.
 
///
 
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
 
/// statement and the base pointers of the memory accesses. For scalar
 
/// statements we force the generation of alloca memory locations and list
 
/// these locations in the set of out-of-scop values as well.
 
///
 
/// We also collect an isl::space that includes all parameter dimensions
 
/// used in the statement's memory accesses, in case the ParamSpace pointer
 
/// is non-null.
 
///
 
/// @param Stmt             The statement for which to extract the information.
 
/// @param UserPtr          A void pointer that can be casted to a
 
///                         SubtreeReferences structure.
 
/// @param CreateScalarRefs Should the result include allocas of scalar
 
///                         references?
 
void addReferencesFromStmt(ScopStmt *Stmt, void *UserPtr,
 
                           bool CreateScalarRefs = true);
 
 
 
class IslNodeBuilder {
 
public:
 
  IslNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
 
                 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
 
                 DominatorTree &DT, Scop &S, BasicBlock *StartBlock)
 
      : S(S), Builder(Builder), Annotator(Annotator),
 
        ExprBuilder(S, Builder, IDToValue, ValueMap, DL, SE, DT, LI,
 
                    StartBlock),
 
        BlockGen(Builder, LI, SE, DT, ScalarMap, EscapeMap, ValueMap,
 
                 &ExprBuilder, StartBlock),
 
        RegionGen(BlockGen), DL(DL), LI(LI), SE(SE), DT(DT),
 
        StartBlock(StartBlock) {}
 
 
 
  virtual ~IslNodeBuilder() = default;
 
 
 
  void addParameters(__isl_take isl_set *Context);
 
 
 
  /// Generate code that evaluates @p Condition at run-time.
 
  ///
 
  /// This function is typically called to generate the LLVM-IR for the
 
  /// run-time condition of the scop, that verifies that all the optimistic
 
  /// assumptions we have taken during scop modeling and transformation
 
  /// hold at run-time.
 
  ///
 
  /// @param Condition The condition to evaluate
 
  ///
 
  /// @result An llvm::Value that is true if the condition holds and false
 
  ///         otherwise.
 
  Value *createRTC(isl_ast_expr *Condition);
 
 
 
  void create(__isl_take isl_ast_node *Node);
 
 
 
  /// Allocate memory for all new arrays created by Polly.
 
  void allocateNewArrays(BBPair StartExitBlocks);
 
 
 
  /// Preload all memory loads that are invariant.
 
  bool preloadInvariantLoads();
 
 
 
  /// Finalize code generation.
 
  ///
 
  /// @see BlockGenerator::finalizeSCoP(Scop &S)
 
  virtual void finalize() { BlockGen.finalizeSCoP(S); }
 
 
 
  IslExprBuilder &getExprBuilder() { return ExprBuilder; }
 
 
 
  /// Get the associated block generator.
 
  ///
 
  /// @return A reference to the associated block generator.
 
  BlockGenerator &getBlockGenerator() { return BlockGen; }
 
 
 
  /// Return the parallel subfunctions that have been created.
 
  const ArrayRef<Function *> getParallelSubfunctions() const {
 
    return ParallelSubfunctions;
 
  }
 
 
 
protected:
 
  Scop &S;
 
  PollyIRBuilder &Builder;
 
  ScopAnnotator &Annotator;
 
 
 
  IslExprBuilder ExprBuilder;
 
 
 
  /// Maps used by the block and region generator to demote scalars.
 
  ///
 
  ///@{
 
 
 
  /// See BlockGenerator::ScalarMap.
 
  BlockGenerator::AllocaMapTy ScalarMap;
 
 
 
  /// See BlockGenerator::EscapeMap.
 
  BlockGenerator::EscapeUsersAllocaMapTy EscapeMap;
 
 
 
  ///@}
 
 
 
  /// The generator used to copy a basic block.
 
  BlockGenerator BlockGen;
 
 
 
  /// The generator used to copy a non-affine region.
 
  RegionGenerator RegionGen;
 
 
 
  const DataLayout &DL;
 
  LoopInfo &LI;
 
  ScalarEvolution &SE;
 
  DominatorTree &DT;
 
  BasicBlock *StartBlock;
 
 
 
  /// The current iteration of out-of-scop loops
 
  ///
 
  /// This map provides for a given loop a llvm::Value that contains the current
 
  /// loop iteration.
 
  MapVector<const Loop *, const SCEV *> OutsideLoopIterations;
 
 
 
  // This maps an isl_id* to the Value* it has in the generated program. For now
 
  // on, the only isl_ids that are stored here are the newly calculated loop
 
  // ivs.
 
  IslExprBuilder::IDToValueTy IDToValue;
 
 
 
  /// A collection of all parallel subfunctions that have been created.
 
  SmallVector<Function *, 8> ParallelSubfunctions;
 
 
 
  /// Generate code for a given SCEV*
 
  ///
 
  /// This function generates code for a given SCEV expression. It generated
 
  /// code is emitted at the end of the basic block our Builder currently
 
  /// points to and the resulting value is returned.
 
  ///
 
  /// @param Expr The expression to code generate.
 
  Value *generateSCEV(const SCEV *Expr);
 
 
 
  /// A set of Value -> Value remappings to apply when generating new code.
 
  ///
 
  /// When generating new code for a ScopStmt this map is used to map certain
 
  /// llvm::Values to new llvm::Values.
 
  ValueMapT ValueMap;
 
 
 
  /// Materialize code for @p Id if it was not done before.
 
  ///
 
  /// @returns False, iff a problem occurred and the value was not materialized.
 
  bool materializeValue(__isl_take isl_id *Id);
 
 
 
  /// Materialize parameters of @p Set.
 
  ///
 
  /// @returns False, iff a problem occurred and the value was not materialized.
 
  bool materializeParameters(__isl_take isl_set *Set);
 
 
 
  /// Materialize all parameters in the current scop.
 
  ///
 
  /// @returns False, iff a problem occurred and the value was not materialized.
 
  bool materializeParameters();
 
 
 
  // Extract the upper bound of this loop
 
  //
 
  // The isl code generation can generate arbitrary expressions to check if the
 
  // upper bound of a loop is reached, but it provides an option to enforce
 
  // 'atomic' upper bounds. An 'atomic upper bound is always of the form
 
  // iv <= expr, where expr is an (arbitrary) expression not containing iv.
 
  //
 
  // This function extracts 'atomic' upper bounds. Polly, in general, requires
 
  // atomic upper bounds for the following reasons:
 
  //
 
  // 1. An atomic upper bound is loop invariant
 
  //
 
  //    It must not be calculated at each loop iteration and can often even be
 
  //    hoisted out further by the loop invariant code motion.
 
  //
 
  // 2. OpenMP needs a loop invariant upper bound to calculate the number
 
  //    of loop iterations.
 
  //
 
  // 3. With the existing code, upper bounds have been easier to implement.
 
  isl::ast_expr getUpperBound(isl::ast_node_for For,
 
                              CmpInst::Predicate &Predicate);
 
 
 
  /// Return non-negative number of iterations in case of the following form
 
  /// of a loop and -1 otherwise.
 
  ///
 
  /// for (i = 0; i <= NumIter; i++) {
 
  ///   loop body;
 
  /// }
 
  ///
 
  /// NumIter is a non-negative integer value. Condition can have
 
  /// isl_ast_op_lt type.
 
  int getNumberOfIterations(isl::ast_node_for For);
 
 
 
  /// Compute the values and loops referenced in this subtree.
 
  ///
 
  /// This function looks at all ScopStmts scheduled below the provided For node
 
  /// and finds the llvm::Value[s] and llvm::Loops[s] which are referenced but
 
  /// not locally defined.
 
  ///
 
  /// Values that can be synthesized or that are available as globals are
 
  /// considered locally defined.
 
  ///
 
  /// Loops that contain the scop or that are part of the scop are considered
 
  /// locally defined. Loops that are before the scop, but do not contain the
 
  /// scop itself are considered not locally defined.
 
  ///
 
  /// @param For    The node defining the subtree.
 
  /// @param Values A vector that will be filled with the Values referenced in
 
  ///               this subtree.
 
  /// @param Loops  A vector that will be filled with the Loops referenced in
 
  ///               this subtree.
 
  void getReferencesInSubtree(const isl::ast_node &For,
 
                              SetVector<Value *> &Values,
 
                              SetVector<const Loop *> &Loops);
 
 
 
  /// Change the llvm::Value(s) used for code generation.
 
  ///
 
  /// When generating code certain values (e.g., references to induction
 
  /// variables or array base pointers) in the original code may be replaced by
 
  /// new values. This function allows to (partially) update the set of values
 
  /// used. A typical use case for this function is the case when we continue
 
  /// code generation in a subfunction/kernel function and need to explicitly
 
  /// pass down certain values.
 
  ///
 
  /// @param NewValues A map that maps certain llvm::Values to new llvm::Values.
 
  void updateValues(ValueMapT &NewValues);
 
 
 
  /// Return the most up-to-date version of the llvm::Value for code generation.
 
  /// @param Original The Value to check for an up to date version.
 
  /// @returns A remapped `Value` from ValueMap, or `Original` if no mapping
 
  ///          exists.
 
  /// @see IslNodeBuilder::updateValues
 
  /// @see IslNodeBuilder::ValueMap
 
  Value *getLatestValue(Value *Original) const;
 
 
 
  /// Generate code for a marker now.
 
  ///
 
  /// For mark nodes with an unknown name, we just forward the code generation
 
  /// to its child. This is currently the only behavior implemented, as there is
 
  /// currently not special handling for marker nodes implemented.
 
  ///
 
  /// @param Mark The node we generate code for.
 
  virtual void createMark(__isl_take isl_ast_node *Marker);
 
 
 
  virtual void createFor(__isl_take isl_ast_node *For);
 
 
 
  /// Set to remember materialized invariant loads.
 
  ///
 
  /// An invariant load is identified by its pointer (the SCEV) and its type.
 
  SmallSet<std::pair<const SCEV *, Type *>, 16> PreloadedPtrs;
 
 
 
  /// Preload the memory access at @p AccessRange with @p Build.
 
  ///
 
  /// @returns The preloaded value casted to type @p Ty
 
  Value *preloadUnconditionally(__isl_take isl_set *AccessRange,
 
                                isl_ast_build *Build, Instruction *AccInst);
 
 
 
  /// Preload the memory load access @p MA.
 
  ///
 
  /// If @p MA is not always executed it will be conditionally loaded and
 
  /// merged with undef from the same type. Hence, if @p MA is executed only
 
  /// under condition C then the preload code will look like this:
 
  ///
 
  /// MA_preload = undef;
 
  /// if (C)
 
  ///   MA_preload = load MA;
 
  /// use MA_preload
 
  Value *preloadInvariantLoad(const MemoryAccess &MA,
 
                              __isl_take isl_set *Domain);
 
 
 
  /// Preload the invariant access equivalence class @p IAClass
 
  ///
 
  /// This function will preload the representing load from @p IAClass and
 
  /// map all members of @p IAClass to that preloaded value, potentially casted
 
  /// to the required type.
 
  ///
 
  /// @returns False, iff a problem occurred and the load was not preloaded.
 
  bool preloadInvariantEquivClass(InvariantEquivClassTy &IAClass);
 
 
 
  void createForVector(__isl_take isl_ast_node *For, int VectorWidth);
 
  void createForSequential(isl::ast_node_for For, bool MarkParallel);
 
 
 
  /// Create LLVM-IR that executes a for node thread parallel.
 
  ///
 
  /// @param For The FOR isl_ast_node for which code is generated.
 
  void createForParallel(__isl_take isl_ast_node *For);
 
 
 
  /// Create new access functions for modified memory accesses.
 
  ///
 
  /// In case the access function of one of the memory references in the Stmt
 
  /// has been modified, we generate a new isl_ast_expr that reflects the
 
  /// newly modified access function and return a map that maps from the
 
  /// individual memory references in the statement (identified by their id)
 
  /// to these newly generated ast expressions.
 
  ///
 
  /// @param Stmt  The statement for which to (possibly) generate new access
 
  ///              functions.
 
  /// @param Node  The ast node corresponding to the statement for us to extract
 
  ///              the local schedule from.
 
  /// @return A new hash table that contains remappings from memory ids to new
 
  ///         access expressions.
 
  __isl_give isl_id_to_ast_expr *
 
  createNewAccesses(ScopStmt *Stmt, __isl_keep isl_ast_node *Node);
 
 
 
  /// Generate LLVM-IR that computes the values of the original induction
 
  /// variables in function of the newly generated loop induction variables.
 
  ///
 
  /// Example:
 
  ///
 
  ///   // Original
 
  ///   for i
 
  ///     for j
 
  ///       S(i)
 
  ///
 
  ///   Schedule: [i,j] -> [i+j, j]
 
  ///
 
  ///   // New
 
  ///   for c0
 
  ///     for c1
 
  ///       S(c0 - c1, c1)
 
  ///
 
  /// Assuming the original code consists of two loops which are
 
  /// transformed according to a schedule [i,j] -> [c0=i+j,c1=j]. The resulting
 
  /// ast models the original statement as a call expression where each argument
 
  /// is an expression that computes the old induction variables from the new
 
  /// ones, ordered such that the first argument computes the value of induction
 
  /// variable that was outermost in the original code.
 
  ///
 
  /// @param Expr The call expression that represents the statement.
 
  /// @param Stmt The statement that is called.
 
  /// @param LTS  The loop to SCEV map in which the mapping from the original
 
  ///             loop to a SCEV representing the new loop iv is added. This
 
  ///             mapping does not require an explicit induction variable.
 
  ///             Instead, we think in terms of an implicit induction variable
 
  ///             that counts the number of times a loop is executed. For each
 
  ///             original loop this count, expressed in function of the new
 
  ///             induction variables, is added to the LTS map.
 
  void createSubstitutions(__isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
 
                           LoopToScevMapT <S);
 
  void createSubstitutionsVector(__isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
 
                                 std::vector<LoopToScevMapT> &VLTS,
 
                                 std::vector<Value *> &IVS,
 
                                 __isl_take isl_id *IteratorID);
 
  virtual void createIf(__isl_take isl_ast_node *If);
 
  void createUserVector(__isl_take isl_ast_node *User,
 
                        std::vector<Value *> &IVS,
 
                        __isl_take isl_id *IteratorID,
 
                        __isl_take isl_union_map *Schedule);
 
  virtual void createUser(__isl_take isl_ast_node *User);
 
  virtual void createBlock(__isl_take isl_ast_node *Block);
 
 
 
  /// Get the schedule for a given AST node.
 
  ///
 
  /// This information is used to reason about parallelism of loops or the
 
  /// locality of memory accesses under a given schedule.
 
  ///
 
  /// @param Node The node we want to obtain the schedule for.
 
  /// @return Return an isl_union_map that maps from the statements executed
 
  ///         below this ast node to the scheduling vectors used to enumerate
 
  ///         them.
 
  ///
 
  virtual isl::union_map getScheduleForAstNode(const isl::ast_node &Node);
 
 
 
private:
 
  /// Create code for a copy statement.
 
  ///
 
  /// A copy statement is expected to have one read memory access and one write
 
  /// memory access (in this very order). Data is loaded from the location
 
  /// described by the read memory access and written to the location described
 
  /// by the write memory access. @p NewAccesses contains for each access
 
  /// the isl ast expression that describes the location accessed.
 
  ///
 
  /// @param Stmt The copy statement that contains the accesses.
 
  /// @param NewAccesses The hash table that contains remappings from memory
 
  ///                    ids to new access expressions.
 
  void generateCopyStmt(ScopStmt *Stmt,
 
                        __isl_keep isl_id_to_ast_expr *NewAccesses);
 
 
 
  /// Materialize a canonical loop induction variable for `L`, which is a loop
 
  /// that is *not* present in the Scop.
 
  ///
 
  /// Note that this is materialized at the point where the `Builder` is
 
  /// currently pointing.
 
  /// We also populate the `OutsideLoopIterations` map with `L`s SCEV to keep
 
  /// track of the induction variable.
 
  /// See [Code generation of induction variables of loops outside Scops]
 
  Value *materializeNonScopLoopInductionVariable(const Loop *L);
 
};
 
 
 
} // namespace polly
 
 
 
#endif // POLLY_ISLNODEBUILDER_H