//===- SSAUpdaterImpl.h - SSA Updater Implementation ------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file provides a template that implements the core algorithm for the
 
// SSAUpdater and MachineSSAUpdater.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
 
#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/Debug.h"
 
#include "llvm/Support/raw_ostream.h"
 
 
 
#define DEBUG_TYPE "ssaupdater"
 
 
 
namespace llvm {
 
 
 
template<typename T> class SSAUpdaterTraits;
 
 
 
template<typename UpdaterT>
 
class SSAUpdaterImpl {
 
private:
 
  UpdaterT *Updater;
 
 
 
  using Traits = SSAUpdaterTraits<UpdaterT>;
 
  using BlkT = typename Traits::BlkT;
 
  using ValT = typename Traits::ValT;
 
  using PhiT = typename Traits::PhiT;
 
 
 
  /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
 
  /// The predecessors of each block are cached here since pred_iterator is
 
  /// slow and we need to iterate over the blocks at least a few times.
 
  class BBInfo {
 
  public:
 
    // Back-pointer to the corresponding block.
 
    BlkT *BB;
 
 
 
    // Value to use in this block.
 
    ValT AvailableVal;
 
 
 
    // Block that defines the available value.
 
    BBInfo *DefBB;
 
 
 
    // Postorder number.
 
    int BlkNum = 0;
 
 
 
    // Immediate dominator.
 
    BBInfo *IDom = nullptr;
 
 
 
    // Number of predecessor blocks.
 
    unsigned NumPreds = 0;
 
 
 
    // Array[NumPreds] of predecessor blocks.
 
    BBInfo **Preds = nullptr;
 
 
 
    // Marker for existing PHIs that match.
 
    PhiT *PHITag = nullptr;
 
 
 
    BBInfo(BlkT *ThisBB, ValT V)
 
      : BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr) {}
 
  };
 
 
 
  using AvailableValsTy = DenseMap<BlkT *, ValT>;
 
 
 
  AvailableValsTy *AvailableVals;
 
 
 
  SmallVectorImpl<PhiT *> *InsertedPHIs;
 
 
 
  using BlockListTy = SmallVectorImpl<BBInfo *>;
 
  using BBMapTy = DenseMap<BlkT *, BBInfo *>;
 
 
 
  BBMapTy BBMap;
 
  BumpPtrAllocator Allocator;
 
 
 
public:
 
  explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
 
                          SmallVectorImpl<PhiT *> *Ins) :
 
    Updater(U), AvailableVals(A), InsertedPHIs(Ins) {}
 
 
 
  /// GetValue - Check to see if AvailableVals has an entry for the specified
 
  /// BB and if so, return it.  If not, construct SSA form by first
 
  /// calculating the required placement of PHIs and then inserting new PHIs
 
  /// where needed.
 
  ValT GetValue(BlkT *BB) {
 
    SmallVector<BBInfo *, 100> BlockList;
 
    BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
 
 
 
    // Special case: bail out if BB is unreachable.
 
    if (BlockList.size() == 0) {
 
      ValT V = Traits::GetUndefVal(BB, Updater);
 
      (*AvailableVals)[BB] = V;
 
      return V;
 
    }
 
 
 
    FindDominators(&BlockList, PseudoEntry);
 
    FindPHIPlacement(&BlockList);
 
    FindAvailableVals(&BlockList);
 
 
 
    return BBMap[BB]->DefBB->AvailableVal;
 
  }
 
 
 
  /// BuildBlockList - Starting from the specified basic block, traverse back
 
  /// through its predecessors until reaching blocks with known values.
 
  /// Create BBInfo structures for the blocks and append them to the block
 
  /// list.
 
  BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
 
    SmallVector<BBInfo *, 10> RootList;
 
    SmallVector<BBInfo *, 64> WorkList;
 
 
 
    BBInfo *Info = new (Allocator) BBInfo(BB, 0);
 
    BBMap[BB] = Info;
 
    WorkList.push_back(Info);
 
 
 
    // Search backward from BB, creating BBInfos along the way and stopping
 
    // when reaching blocks that define the value.  Record those defining
 
    // blocks on the RootList.
 
    SmallVector<BlkT *, 10> Preds;
 
    while (!WorkList.empty()) {
 
      Info = WorkList.pop_back_val();
 
      Preds.clear();
 
      Traits::FindPredecessorBlocks(Info->BB, &Preds);
 
      Info->NumPreds = Preds.size();
 
      if (Info->NumPreds == 0)
 
        Info->Preds = nullptr;
 
      else
 
        Info->Preds = static_cast<BBInfo **>(Allocator.Allocate(
 
            Info->NumPreds * sizeof(BBInfo *), alignof(BBInfo *)));
 
 
 
      for (unsigned p = 0; p != Info->NumPreds; ++p) {
 
        BlkT *Pred = Preds[p];
 
        // Check if BBMap already has a BBInfo for the predecessor block.
 
        typename BBMapTy::value_type &BBMapBucket =
 
          BBMap.FindAndConstruct(Pred);
 
        if (BBMapBucket.second) {
 
          Info->Preds[p] = BBMapBucket.second;
 
          continue;
 
        }
 
 
 
        // Create a new BBInfo for the predecessor.
 
        ValT PredVal = AvailableVals->lookup(Pred);
 
        BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
 
        BBMapBucket.second = PredInfo;
 
        Info->Preds[p] = PredInfo;
 
 
 
        if (PredInfo->AvailableVal) {
 
          RootList.push_back(PredInfo);
 
          continue;
 
        }
 
        WorkList.push_back(PredInfo);
 
      }
 
    }
 
 
 
    // Now that we know what blocks are backwards-reachable from the starting
 
    // block, do a forward depth-first traversal to assign postorder numbers
 
    // to those blocks.
 
    BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
 
    unsigned BlkNum = 1;
 
 
 
    // Initialize the worklist with the roots from the backward traversal.
 
    while (!RootList.empty()) {
 
      Info = RootList.pop_back_val();
 
      Info->IDom = PseudoEntry;
 
      Info->BlkNum = -1;
 
      WorkList.push_back(Info);
 
    }
 
 
 
    while (!WorkList.empty()) {
 
      Info = WorkList.back();
 
 
 
      if (Info->BlkNum == -2) {
 
        // All the successors have been handled; assign the postorder number.
 
        Info->BlkNum = BlkNum++;
 
        // If not a root, put it on the BlockList.
 
        if (!Info->AvailableVal)
 
          BlockList->push_back(Info);
 
        WorkList.pop_back();
 
        continue;
 
      }
 
 
 
      // Leave this entry on the worklist, but set its BlkNum to mark that its
 
      // successors have been put on the worklist.  When it returns to the top
 
      // the list, after handling its successors, it will be assigned a
 
      // number.
 
      Info->BlkNum = -2;
 
 
 
      // Add unvisited successors to the work list.
 
      for (typename Traits::BlkSucc_iterator SI =
 
             Traits::BlkSucc_begin(Info->BB),
 
             E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
 
        BBInfo *SuccInfo = BBMap[*SI];
 
        if (!SuccInfo || SuccInfo->BlkNum)
 
          continue;
 
        SuccInfo->BlkNum = -1;
 
        WorkList.push_back(SuccInfo);
 
      }
 
    }
 
    PseudoEntry->BlkNum = BlkNum;
 
    return PseudoEntry;
 
  }
 
 
 
  /// IntersectDominators - This is the dataflow lattice "meet" operation for
 
  /// finding dominators.  Given two basic blocks, it walks up the dominator
 
  /// tree until it finds a common dominator of both.  It uses the postorder
 
  /// number of the blocks to determine how to do that.
 
  BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
 
    while (Blk1 != Blk2) {
 
      while (Blk1->BlkNum < Blk2->BlkNum) {
 
        Blk1 = Blk1->IDom;
 
        if (!Blk1)
 
          return Blk2;
 
      }
 
      while (Blk2->BlkNum < Blk1->BlkNum) {
 
        Blk2 = Blk2->IDom;
 
        if (!Blk2)
 
          return Blk1;
 
      }
 
    }
 
    return Blk1;
 
  }
 
 
 
  /// FindDominators - Calculate the dominator tree for the subset of the CFG
 
  /// corresponding to the basic blocks on the BlockList.  This uses the
 
  /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
 
  /// and Kennedy, published in Software--Practice and Experience, 2001,
 
  /// 4:1-10.  Because the CFG subset does not include any edges leading into
 
  /// blocks that define the value, the results are not the usual dominator
 
  /// tree.  The CFG subset has a single pseudo-entry node with edges to a set
 
  /// of root nodes for blocks that define the value.  The dominators for this
 
  /// subset CFG are not the standard dominators but they are adequate for
 
  /// placing PHIs within the subset CFG.
 
  void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
 
    bool Changed;
 
    do {
 
      Changed = false;
 
      // Iterate over the list in reverse order, i.e., forward on CFG edges.
 
      for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
 
             E = BlockList->rend(); I != E; ++I) {
 
        BBInfo *Info = *I;
 
        BBInfo *NewIDom = nullptr;
 
 
 
        // Iterate through the block's predecessors.
 
        for (unsigned p = 0; p != Info->NumPreds; ++p) {
 
          BBInfo *Pred = Info->Preds[p];
 
 
 
          // Treat an unreachable predecessor as a definition with 'undef'.
 
          if (Pred->BlkNum == 0) {
 
            Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
 
            (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
 
            Pred->DefBB = Pred;
 
            Pred->BlkNum = PseudoEntry->BlkNum;
 
            PseudoEntry->BlkNum++;
 
          }
 
 
 
          if (!NewIDom)
 
            NewIDom = Pred;
 
          else
 
            NewIDom = IntersectDominators(NewIDom, Pred);
 
        }
 
 
 
        // Check if the IDom value has changed.
 
        if (NewIDom && NewIDom != Info->IDom) {
 
          Info->IDom = NewIDom;
 
          Changed = true;
 
        }
 
      }
 
    } while (Changed);
 
  }
 
 
 
  /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
 
  /// any blocks containing definitions of the value.  If one is found, then
 
  /// the successor of Pred is in the dominance frontier for the definition,
 
  /// and this function returns true.
 
  bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
 
    for (; Pred != IDom; Pred = Pred->IDom) {
 
      if (Pred->DefBB == Pred)
 
        return true;
 
    }
 
    return false;
 
  }
 
 
 
  /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
 
  /// of the known definitions.  Iteratively add PHIs in the dom frontiers
 
  /// until nothing changes.  Along the way, keep track of the nearest
 
  /// dominating definitions for non-PHI blocks.
 
  void FindPHIPlacement(BlockListTy *BlockList) {
 
    bool Changed;
 
    do {
 
      Changed = false;
 
      // Iterate over the list in reverse order, i.e., forward on CFG edges.
 
      for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
 
             E = BlockList->rend(); I != E; ++I) {
 
        BBInfo *Info = *I;
 
 
 
        // If this block already needs a PHI, there is nothing to do here.
 
        if (Info->DefBB == Info)
 
          continue;
 
 
 
        // Default to use the same def as the immediate dominator.
 
        BBInfo *NewDefBB = Info->IDom->DefBB;
 
        for (unsigned p = 0; p != Info->NumPreds; ++p) {
 
          if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
 
            // Need a PHI here.
 
            NewDefBB = Info;
 
            break;
 
          }
 
        }
 
 
 
        // Check if anything changed.
 
        if (NewDefBB != Info->DefBB) {
 
          Info->DefBB = NewDefBB;
 
          Changed = true;
 
        }
 
      }
 
    } while (Changed);
 
  }
 
 
 
  /// Check all predecessors and if all of them have the same AvailableVal use
 
  /// it as value for block represented by Info. Return true if singluar value
 
  /// is found.
 
  bool FindSingularVal(BBInfo *Info) {
 
    if (!Info->NumPreds)
 
      return false;
 
    ValT Singular = Info->Preds[0]->DefBB->AvailableVal;
 
    if (!Singular)
 
      return false;
 
    for (unsigned Idx = 1; Idx < Info->NumPreds; ++Idx) {
 
      ValT PredVal = Info->Preds[Idx]->DefBB->AvailableVal;
 
      if (!PredVal || Singular != PredVal)
 
        return false;
 
    }
 
    // Record Singular value.
 
    (*AvailableVals)[Info->BB] = Singular;
 
    assert(BBMap[Info->BB] == Info && "Info missed in BBMap?");
 
    Info->AvailableVal = Singular;
 
    Info->DefBB = Info->Preds[0]->DefBB;
 
    return true;
 
  }
 
 
 
  /// FindAvailableVal - If this block requires a PHI, first check if an
 
  /// existing PHI matches the PHI placement and reaching definitions computed
 
  /// earlier, and if not, create a new PHI.  Visit all the block's
 
  /// predecessors to calculate the available value for each one and fill in
 
  /// the incoming values for a new PHI.
 
  void FindAvailableVals(BlockListTy *BlockList) {
 
    // Go through the worklist in forward order (i.e., backward through the CFG)
 
    // and check if existing PHIs can be used.  If not, create empty PHIs where
 
    // they are needed.
 
    for (typename BlockListTy::iterator I = BlockList->begin(),
 
           E = BlockList->end(); I != E; ++I) {
 
      BBInfo *Info = *I;
 
      // Check if there needs to be a PHI in BB.
 
      if (Info->DefBB != Info)
 
        continue;
 
 
 
      // Look for singular value.
 
      if (FindSingularVal(Info))
 
        continue;
 
 
 
      // Look for an existing PHI.
 
      FindExistingPHI(Info->BB, BlockList);
 
      if (Info->AvailableVal)
 
        continue;
 
 
 
      ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
 
      Info->AvailableVal = PHI;
 
      (*AvailableVals)[Info->BB] = PHI;
 
    }
 
 
 
    // Now go back through the worklist in reverse order to fill in the
 
    // arguments for any new PHIs added in the forward traversal.
 
    for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
 
           E = BlockList->rend(); I != E; ++I) {
 
      BBInfo *Info = *I;
 
 
 
      if (Info->DefBB != Info) {
 
        // Record the available value to speed up subsequent uses of this
 
        // SSAUpdater for the same value.
 
        (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
 
        continue;
 
      }
 
 
 
      // Check if this block contains a newly added PHI.
 
      PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
 
      if (!PHI)
 
        continue;
 
 
 
      // Iterate through the block's predecessors.
 
      for (unsigned p = 0; p != Info->NumPreds; ++p) {
 
        BBInfo *PredInfo = Info->Preds[p];
 
        BlkT *Pred = PredInfo->BB;
 
        // Skip to the nearest preceding definition.
 
        if (PredInfo->DefBB != PredInfo)
 
          PredInfo = PredInfo->DefBB;
 
        Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
 
      }
 
 
 
      LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *PHI << "\n");
 
 
 
      // If the client wants to know about all new instructions, tell it.
 
      if (InsertedPHIs) InsertedPHIs->push_back(PHI);
 
    }
 
  }
 
 
 
  /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
 
  /// them match what is needed.
 
  void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
 
    for (auto &SomePHI : BB->phis()) {
 
      if (CheckIfPHIMatches(&SomePHI)) {
 
        RecordMatchingPHIs(BlockList);
 
        break;
 
      }
 
      // Match failed: clear all the PHITag values.
 
      for (typename BlockListTy::iterator I = BlockList->begin(),
 
             E = BlockList->end(); I != E; ++I)
 
        (*I)->PHITag = nullptr;
 
    }
 
  }
 
 
 
  /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
 
  /// in the BBMap.
 
  bool CheckIfPHIMatches(PhiT *PHI) {
 
    SmallVector<PhiT *, 20> WorkList;
 
    WorkList.push_back(PHI);
 
 
 
    // Mark that the block containing this PHI has been visited.
 
    BBMap[PHI->getParent()]->PHITag = PHI;
 
 
 
    while (!WorkList.empty()) {
 
      PHI = WorkList.pop_back_val();
 
 
 
      // Iterate through the PHI's incoming values.
 
      for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
 
             E = Traits::PHI_end(PHI); I != E; ++I) {
 
        ValT IncomingVal = I.getIncomingValue();
 
        BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
 
        // Skip to the nearest preceding definition.
 
        if (PredInfo->DefBB != PredInfo)
 
          PredInfo = PredInfo->DefBB;
 
 
 
        // Check if it matches the expected value.
 
        if (PredInfo->AvailableVal) {
 
          if (IncomingVal == PredInfo->AvailableVal)
 
            continue;
 
          return false;
 
        }
 
 
 
        // Check if the value is a PHI in the correct block.
 
        PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
 
        if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
 
          return false;
 
 
 
        // If this block has already been visited, check if this PHI matches.
 
        if (PredInfo->PHITag) {
 
          if (IncomingPHIVal == PredInfo->PHITag)
 
            continue;
 
          return false;
 
        }
 
        PredInfo->PHITag = IncomingPHIVal;
 
 
 
        WorkList.push_back(IncomingPHIVal);
 
      }
 
    }
 
    return true;
 
  }
 
 
 
  /// RecordMatchingPHIs - For each PHI node that matches, record it in both
 
  /// the BBMap and the AvailableVals mapping.
 
  void RecordMatchingPHIs(BlockListTy *BlockList) {
 
    for (typename BlockListTy::iterator I = BlockList->begin(),
 
           E = BlockList->end(); I != E; ++I)
 
      if (PhiT *PHI = (*I)->PHITag) {
 
        BlkT *BB = PHI->getParent();
 
        ValT PHIVal = Traits::GetPHIValue(PHI);
 
        (*AvailableVals)[BB] = PHIVal;
 
        BBMap[BB]->AvailableVal = PHIVal;
 
      }
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#undef DEBUG_TYPE // "ssaupdater"
 
 
 
#endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H