//===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines some loop transformation utilities.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
 
#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
 
 
 
#include "llvm/Analysis/IVDescriptors.h"
 
#include "llvm/Analysis/LoopAccessAnalysis.h"
 
#include "llvm/Transforms/Utils/ValueMapper.h"
 
 
 
namespace llvm {
 
 
 
template <typename T> class DomTreeNodeBase;
 
using DomTreeNode = DomTreeNodeBase<BasicBlock>;
 
class AssumptionCache;
 
class StringRef;
 
class AnalysisUsage;
 
class TargetTransformInfo;
 
class AAResults;
 
class BasicBlock;
 
class ICFLoopSafetyInfo;
 
class IRBuilderBase;
 
class Loop;
 
class LoopInfo;
 
class MemoryAccess;
 
class MemorySSA;
 
class MemorySSAUpdater;
 
class OptimizationRemarkEmitter;
 
class PredIteratorCache;
 
class ScalarEvolution;
 
class SCEV;
 
class SCEVExpander;
 
class TargetLibraryInfo;
 
class LPPassManager;
 
class Instruction;
 
struct RuntimeCheckingPtrGroup;
 
typedef std::pair<const RuntimeCheckingPtrGroup *,
 
                  const RuntimeCheckingPtrGroup *>
 
    RuntimePointerCheck;
 
 
 
template <typename T, unsigned N> class SmallSetVector;
 
template <typename T, unsigned N> class SmallPriorityWorklist;
 
 
 
BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
 
                                   MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
 
 
 
/// Ensure that all exit blocks of the loop are dedicated exits.
 
///
 
/// For any loop exit block with non-loop predecessors, we split the loop
 
/// predecessors to use a dedicated loop exit block. We update the dominator
 
/// tree and loop info if provided, and will preserve LCSSA if requested.
 
bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
 
                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
 
 
 
/// Ensures LCSSA form for every instruction from the Worklist in the scope of
 
/// innermost containing loop.
 
///
 
/// For the given instruction which have uses outside of the loop, an LCSSA PHI
 
/// node is inserted and the uses outside the loop are rewritten to use this
 
/// node.
 
///
 
/// LoopInfo and DominatorTree are required and, since the routine makes no
 
/// changes to CFG, preserved.
 
///
 
/// Returns true if any modifications are made.
 
///
 
/// This function may introduce unused PHI nodes. If \p PHIsToRemove is not
 
/// nullptr, those are added to it (before removing, the caller has to check if
 
/// they still do not have any uses). Otherwise the PHIs are directly removed.
 
bool formLCSSAForInstructions(
 
    SmallVectorImpl<Instruction *> &Worklist, const DominatorTree &DT,
 
    const LoopInfo &LI, ScalarEvolution *SE, IRBuilderBase &Builder,
 
    SmallVectorImpl<PHINode *> *PHIsToRemove = nullptr);
 
 
 
/// Put loop into LCSSA form.
 
///
 
/// Looks at all instructions in the loop which have uses outside of the
 
/// current loop. For each, an LCSSA PHI node is inserted and the uses outside
 
/// the loop are rewritten to use this node. Sub-loops must be in LCSSA form
 
/// already.
 
///
 
/// LoopInfo and DominatorTree are required and preserved.
 
///
 
/// If ScalarEvolution is passed in, it will be preserved.
 
///
 
/// Returns true if any modifications are made to the loop.
 
bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
 
               ScalarEvolution *SE);
 
 
 
/// Put a loop nest into LCSSA form.
 
///
 
/// This recursively forms LCSSA for a loop nest.
 
///
 
/// LoopInfo and DominatorTree are required and preserved.
 
///
 
/// If ScalarEvolution is passed in, it will be preserved.
 
///
 
/// Returns true if any modifications are made to the loop.
 
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
 
                          ScalarEvolution *SE);
 
 
 
/// Flags controlling how much is checked when sinking or hoisting
 
/// instructions.  The number of memory access in the loop (and whether there
 
/// are too many) is determined in the constructors when using MemorySSA.
 
class SinkAndHoistLICMFlags {
 
public:
 
  // Explicitly set limits.
 
  SinkAndHoistLICMFlags(unsigned LicmMssaOptCap,
 
                        unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
 
                        Loop *L = nullptr, MemorySSA *MSSA = nullptr);
 
  // Use default limits.
 
  SinkAndHoistLICMFlags(bool IsSink, Loop *L = nullptr,
 
                        MemorySSA *MSSA = nullptr);
 
 
 
  void setIsSink(bool B) { IsSink = B; }
 
  bool getIsSink() { return IsSink; }
 
  bool tooManyMemoryAccesses() { return NoOfMemAccTooLarge; }
 
  bool tooManyClobberingCalls() { return LicmMssaOptCounter >= LicmMssaOptCap; }
 
  void incrementClobberingCalls() { ++LicmMssaOptCounter; }
 
 
 
protected:
 
  bool NoOfMemAccTooLarge = false;
 
  unsigned LicmMssaOptCounter = 0;
 
  unsigned LicmMssaOptCap;
 
  unsigned LicmMssaNoAccForPromotionCap;
 
  bool IsSink;
 
};
 
 
 
/// Walk the specified region of the CFG (defined by all blocks
 
/// dominated by the specified block, and that are in the current loop) in
 
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
 
/// uses before definitions, allowing us to sink a loop body in one pass without
 
/// iteration. Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
 
/// TargetLibraryInfo, Loop, AliasSet information for all
 
/// instructions of the loop and loop safety information as
 
/// arguments. Diagnostics is emitted via \p ORE. It returns changed status.
 
/// \p CurLoop is a loop to do sinking on. \p OutermostLoop is used only when
 
/// this function is called by \p sinkRegionForLoopNest.
 
bool sinkRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
 
                TargetLibraryInfo *, TargetTransformInfo *, Loop *CurLoop,
 
                MemorySSAUpdater &, ICFLoopSafetyInfo *,
 
                SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *,
 
                Loop *OutermostLoop = nullptr);
 
 
 
/// Call sinkRegion on loops contained within the specified loop
 
/// in order from innermost to outermost.
 
bool sinkRegionForLoopNest(DomTreeNode *, AAResults *, LoopInfo *,
 
                           DominatorTree *, TargetLibraryInfo *,
 
                           TargetTransformInfo *, Loop *, MemorySSAUpdater &,
 
                           ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &,
 
                           OptimizationRemarkEmitter *);
 
 
 
/// Walk the specified region of the CFG (defined by all blocks
 
/// dominated by the specified block, and that are in the current loop) in depth
 
/// first order w.r.t the DominatorTree.  This allows us to visit definitions
 
/// before uses, allowing us to hoist a loop body in one pass without iteration.
 
/// Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
 
/// TargetLibraryInfo, Loop, AliasSet information for all
 
/// instructions of the loop and loop safety information as arguments.
 
/// Diagnostics is emitted via \p ORE. It returns changed status.
 
/// \p AllowSpeculation is whether values should be hoisted even if they are not
 
/// guaranteed to execute in the loop, but are safe to speculatively execute.
 
bool hoistRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
 
                 AssumptionCache *, TargetLibraryInfo *, Loop *,
 
                 MemorySSAUpdater &, ScalarEvolution *, ICFLoopSafetyInfo *,
 
                 SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, bool,
 
                 bool AllowSpeculation);
 
 
 
/// This function deletes dead loops. The caller of this function needs to
 
/// guarantee that the loop is infact dead.
 
/// The function requires a bunch or prerequisites to be present:
 
///   - The loop needs to be in LCSSA form
 
///   - The loop needs to have a Preheader
 
///   - A unique dedicated exit block must exist
 
///
 
/// This also updates the relevant analysis information in \p DT, \p SE, \p LI
 
/// and \p MSSA if pointers to those are provided.
 
/// It also updates the loop PM if an updater struct is provided.
 
 
 
void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
 
                    LoopInfo *LI, MemorySSA *MSSA = nullptr);
 
 
 
/// Remove the backedge of the specified loop.  Handles loop nests and general
 
/// loop structures subject to the precondition that the loop has no parent
 
/// loop and has a single latch block.  Preserves all listed analyses.
 
void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
 
                       LoopInfo &LI, MemorySSA *MSSA);
 
 
 
/// Try to promote memory values to scalars by sinking stores out of
 
/// the loop and moving loads to before the loop.  We do this by looping over
 
/// the stores in the loop, looking for stores to Must pointers which are
 
/// loop invariant. It takes a set of must-alias values, Loop exit blocks
 
/// vector, loop exit blocks insertion point vector, PredIteratorCache,
 
/// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions
 
/// of the loop and loop safety information as arguments.
 
/// Diagnostics is emitted via \p ORE. It returns changed status.
 
/// \p AllowSpeculation is whether values should be hoisted even if they are not
 
/// guaranteed to execute in the loop, but are safe to speculatively execute.
 
bool promoteLoopAccessesToScalars(
 
    const SmallSetVector<Value *, 8> &, SmallVectorImpl<BasicBlock *> &,
 
    SmallVectorImpl<Instruction *> &, SmallVectorImpl<MemoryAccess *> &,
 
    PredIteratorCache &, LoopInfo *, DominatorTree *, AssumptionCache *AC,
 
    const TargetLibraryInfo *, TargetTransformInfo *, Loop *,
 
    MemorySSAUpdater &, ICFLoopSafetyInfo *, OptimizationRemarkEmitter *,
 
    bool AllowSpeculation, bool HasReadsOutsideSet);
 
 
 
/// Does a BFS from a given node to all of its children inside a given loop.
 
/// The returned vector of nodes includes the starting point.
 
SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N,
 
                                                     const Loop *CurLoop);
 
 
 
/// Returns the instructions that use values defined in the loop.
 
SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
 
 
 
/// Find a combination of metadata ("llvm.loop.vectorize.width" and
 
/// "llvm.loop.vectorize.scalable.enable") for a loop and use it to construct a
 
/// ElementCount. If the metadata "llvm.loop.vectorize.width" cannot be found
 
/// then std::nullopt is returned.
 
std::optional<ElementCount>
 
getOptionalElementCountLoopAttribute(const Loop *TheLoop);
 
 
 
/// Create a new loop identifier for a loop created from a loop transformation.
 
///
 
/// @param OrigLoopID The loop ID of the loop before the transformation.
 
/// @param FollowupAttrs List of attribute names that contain attributes to be
 
///                      added to the new loop ID.
 
/// @param InheritOptionsAttrsPrefix Selects which attributes should be inherited
 
///                                  from the original loop. The following values
 
///                                  are considered:
 
///        nullptr   : Inherit all attributes from @p OrigLoopID.
 
///        ""        : Do not inherit any attribute from @p OrigLoopID; only use
 
///                    those specified by a followup attribute.
 
///        "<prefix>": Inherit all attributes except those which start with
 
///                    <prefix>; commonly used to remove metadata for the
 
///                    applied transformation.
 
/// @param AlwaysNew If true, do not try to reuse OrigLoopID and never return
 
///                  std::nullopt.
 
///
 
/// @return The loop ID for the after-transformation loop. The following values
 
///         can be returned:
 
///         std::nullopt : No followup attribute was found; it is up to the
 
///                        transformation to choose attributes that make sense.
 
///         @p OrigLoopID: The original identifier can be reused.
 
///         nullptr      : The new loop has no attributes.
 
///         MDNode*      : A new unique loop identifier.
 
std::optional<MDNode *>
 
makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef<StringRef> FollowupAttrs,
 
                   const char *InheritOptionsAttrsPrefix = "",
 
                   bool AlwaysNew = false);
 
 
 
/// Look for the loop attribute that disables all transformation heuristic.
 
bool hasDisableAllTransformsHint(const Loop *L);
 
 
 
/// Look for the loop attribute that disables the LICM transformation heuristics.
 
bool hasDisableLICMTransformsHint(const Loop *L);
 
 
 
/// The mode sets how eager a transformation should be applied.
 
enum TransformationMode {
 
  /// The pass can use heuristics to determine whether a transformation should
 
  /// be applied.
 
  TM_Unspecified,
 
 
 
  /// The transformation should be applied without considering a cost model.
 
  TM_Enable,
 
 
 
  /// The transformation should not be applied.
 
  TM_Disable,
 
 
 
  /// Force is a flag and should not be used alone.
 
  TM_Force = 0x04,
 
 
 
  /// The transformation was directed by the user, e.g. by a #pragma in
 
  /// the source code. If the transformation could not be applied, a
 
  /// warning should be emitted.
 
  TM_ForcedByUser = TM_Enable | TM_Force,
 
 
 
  /// The transformation must not be applied. For instance, `#pragma clang loop
 
  /// unroll(disable)` explicitly forbids any unrolling to take place. Unlike
 
  /// general loop metadata, it must not be dropped. Most passes should not
 
  /// behave differently under TM_Disable and TM_SuppressedByUser.
 
  TM_SuppressedByUser = TM_Disable | TM_Force
 
};
 
 
 
/// @{
 
/// Get the mode for LLVM's supported loop transformations.
 
TransformationMode hasUnrollTransformation(const Loop *L);
 
TransformationMode hasUnrollAndJamTransformation(const Loop *L);
 
TransformationMode hasVectorizeTransformation(const Loop *L);
 
TransformationMode hasDistributeTransformation(const Loop *L);
 
TransformationMode hasLICMVersioningTransformation(const Loop *L);
 
/// @}
 
 
 
/// Set input string into loop metadata by keeping other values intact.
 
/// If the string is already in loop metadata update value if it is
 
/// different.
 
void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
 
                             unsigned V = 0);
 
 
 
/// Returns a loop's estimated trip count based on branch weight metadata.
 
/// In addition if \p EstimatedLoopInvocationWeight is not null it is
 
/// initialized with weight of loop's latch leading to the exit.
 
/// Returns 0 when the count is estimated to be 0, or std::nullopt when a
 
/// meaningful estimate can not be made.
 
std::optional<unsigned>
 
getLoopEstimatedTripCount(Loop *L,
 
                          unsigned *EstimatedLoopInvocationWeight = nullptr);
 
 
 
/// Set a loop's branch weight metadata to reflect that loop has \p
 
/// EstimatedTripCount iterations and \p EstimatedLoopInvocationWeight exits
 
/// through latch. Returns true if metadata is successfully updated, false
 
/// otherwise. Note that loop must have a latch block which controls loop exit
 
/// in order to succeed.
 
bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
 
                               unsigned EstimatedLoopInvocationWeight);
 
 
 
/// Check inner loop (L) backedge count is known to be invariant on all
 
/// iterations of its outer loop. If the loop has no parent, this is trivially
 
/// true.
 
bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE);
 
 
 
/// Helper to consistently add the set of standard passes to a loop pass's \c
 
/// AnalysisUsage.
 
///
 
/// All loop passes should call this as part of implementing their \c
 
/// getAnalysisUsage.
 
void getLoopAnalysisUsage(AnalysisUsage &AU);
 
 
 
/// Returns true if is legal to hoist or sink this instruction disregarding the
 
/// possible introduction of faults.  Reasoning about potential faulting
 
/// instructions is the responsibility of the caller since it is challenging to
 
/// do efficiently from within this routine.
 
/// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the
 
/// target executes at most once per execution of the loop body.  This is used
 
/// to assess the legality of duplicating atomic loads.  Generally, this is
 
/// true when moving out of loop and not true when moving into loops.
 
/// If \p ORE is set use it to emit optimization remarks.
 
bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
 
                        Loop *CurLoop, MemorySSAUpdater &MSSAU,
 
                        bool TargetExecutesOncePerLoop,
 
                        SinkAndHoistLICMFlags &LICMFlags,
 
                        OptimizationRemarkEmitter *ORE = nullptr);
 
 
 
/// Returns the comparison predicate used when expanding a min/max reduction.
 
CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK);
 
 
 
/// See RecurrenceDescriptor::isSelectCmpPattern for a description of the
 
/// pattern we are trying to match. In this pattern we are only ever selecting
 
/// between two values: 1) an initial PHI start value, and 2) a loop invariant
 
/// value. This function uses \p LoopExitInst to determine 2), which we then use
 
/// to select between \p Left and \p Right. Any lane value in \p Left that
 
/// matches 2) will be merged into \p Right.
 
Value *createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal, RecurKind RK,
 
                         Value *Left, Value *Right);
 
 
 
/// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
 
/// The Builder's fast-math-flags must be set to propagate the expected values.
 
Value *createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
 
                      Value *Right);
 
 
 
/// Generates an ordered vector reduction using extracts to reduce the value.
 
Value *getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
 
                           unsigned Op, RecurKind MinMaxKind = RecurKind::None);
 
 
 
/// Generates a vector reduction using shufflevectors to reduce the value.
 
/// Fast-math-flags are propagated using the IRBuilder's setting.
 
Value *getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
 
                           RecurKind MinMaxKind = RecurKind::None);
 
 
 
/// Create a target reduction of the given vector. The reduction operation
 
/// is described by the \p Opcode parameter. min/max reductions require
 
/// additional information supplied in \p RdxKind.
 
/// The target is queried to determine if intrinsics or shuffle sequences are
 
/// required to implement the reduction.
 
/// Fast-math-flags are propagated using the IRBuilder's setting.
 
Value *createSimpleTargetReduction(IRBuilderBase &B,
 
                                   const TargetTransformInfo *TTI, Value *Src,
 
                                   RecurKind RdxKind);
 
 
 
/// Create a target reduction of the given vector \p Src for a reduction of the
 
/// kind RecurKind::SelectICmp or RecurKind::SelectFCmp. The reduction operation
 
/// is described by \p Desc.
 
Value *createSelectCmpTargetReduction(IRBuilderBase &B,
 
                                      const TargetTransformInfo *TTI,
 
                                      Value *Src,
 
                                      const RecurrenceDescriptor &Desc,
 
                                      PHINode *OrigPhi);
 
 
 
/// Create a generic target reduction using a recurrence descriptor \p Desc
 
/// The target is queried to determine if intrinsics or shuffle sequences are
 
/// required to implement the reduction.
 
/// Fast-math-flags are propagated using the RecurrenceDescriptor.
 
Value *createTargetReduction(IRBuilderBase &B, const TargetTransformInfo *TTI,
 
                             const RecurrenceDescriptor &Desc, Value *Src,
 
                             PHINode *OrigPhi = nullptr);
 
 
 
/// Create an ordered reduction intrinsic using the given recurrence
 
/// descriptor \p Desc.
 
Value *createOrderedReduction(IRBuilderBase &B,
 
                              const RecurrenceDescriptor &Desc, Value *Src,
 
                              Value *Start);
 
 
 
/// Get the intersection (logical and) of all of the potential IR flags
 
/// of each scalar operation (VL) that will be converted into a vector (I).
 
/// If OpValue is non-null, we only consider operations similar to OpValue
 
/// when intersecting.
 
/// Flag set: NSW, NUW (if IncludeWrapFlags is true), exact, and all of
 
/// fast-math.
 
void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr,
 
                      bool IncludeWrapFlags = true);
 
 
 
/// Returns true if we can prove that \p S is defined and always negative in
 
/// loop \p L.
 
bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE);
 
 
 
/// Returns true if we can prove that \p S is defined and always non-negative in
 
/// loop \p L.
 
bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
 
                              ScalarEvolution &SE);
 
 
 
/// Returns true if \p S is defined and never is equal to signed/unsigned max.
 
bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
 
                       bool Signed);
 
 
 
/// Returns true if \p S is defined and never is equal to signed/unsigned min.
 
bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
 
                       bool Signed);
 
 
 
enum ReplaceExitVal {
 
  NeverRepl,
 
  OnlyCheapRepl,
 
  NoHardUse,
 
  UnusedIndVarInLoop,
 
  AlwaysRepl
 
};
 
 
 
/// If the final value of any expressions that are recurrent in the loop can
 
/// be computed, substitute the exit values from the loop into any instructions
 
/// outside of the loop that use the final values of the current expressions.
 
/// Return the number of loop exit values that have been replaced, and the
 
/// corresponding phi node will be added to DeadInsts.
 
int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
 
                          ScalarEvolution *SE, const TargetTransformInfo *TTI,
 
                          SCEVExpander &Rewriter, DominatorTree *DT,
 
                          ReplaceExitVal ReplaceExitValue,
 
                          SmallVector<WeakTrackingVH, 16> &DeadInsts);
 
 
 
/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
 
/// \p OrigLoop and the following distribution of \p OrigLoop iteration among \p
 
/// UnrolledLoop and \p RemainderLoop. \p UnrolledLoop receives weights that
 
/// reflect TC/UF iterations, and \p RemainderLoop receives weights that reflect
 
/// the remaining TC%UF iterations.
 
///
 
/// Note that \p OrigLoop may be equal to either \p UnrolledLoop or \p
 
/// RemainderLoop in which case weights for \p OrigLoop are updated accordingly.
 
/// Note also behavior is undefined if \p UnrolledLoop and \p RemainderLoop are
 
/// equal. \p UF must be greater than zero.
 
/// If \p OrigLoop has no profile info associated nothing happens.
 
///
 
/// This utility may be useful for such optimizations as unroller and
 
/// vectorizer as it's typical transformation for them.
 
void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
 
                                  Loop *RemainderLoop, uint64_t UF);
 
 
 
/// Utility that implements appending of loops onto a worklist given a range.
 
/// We want to process loops in postorder, but the worklist is a LIFO data
 
/// structure, so we append to it in *reverse* postorder.
 
/// For trees, a preorder traversal is a viable reverse postorder, so we
 
/// actually append using a preorder walk algorithm.
 
template <typename RangeT>
 
void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist<Loop *, 4> &);
 
/// Utility that implements appending of loops onto a worklist given a range.
 
/// It has the same behavior as appendLoopsToWorklist, but assumes the range of
 
/// loops has already been reversed, so it processes loops in the given order.
 
template <typename RangeT>
 
void appendReversedLoopsToWorklist(RangeT &&,
 
                                   SmallPriorityWorklist<Loop *, 4> &);
 
 
 
/// Utility that implements appending of loops onto a worklist given LoopInfo.
 
/// Calls the templated utility taking a Range of loops, handing it the Loops
 
/// in LoopInfo, iterated in reverse. This is because the loops are stored in
 
/// RPO w.r.t. the control flow graph in LoopInfo. For the purpose of unrolling,
 
/// loop deletion, and LICM, we largely want to work forward across the CFG so
 
/// that we visit defs before uses and can propagate simplifications from one
 
/// loop nest into the next. Calls appendReversedLoopsToWorklist with the
 
/// already reversed loops in LI.
 
/// FIXME: Consider changing the order in LoopInfo.
 
void appendLoopsToWorklist(LoopInfo &, SmallPriorityWorklist<Loop *, 4> &);
 
 
 
/// Recursively clone the specified loop and all of its children,
 
/// mapping the blocks with the specified map.
 
Loop *cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
 
                LoopInfo *LI, LPPassManager *LPM);
 
 
 
/// Add code that checks at runtime if the accessed arrays in \p PointerChecks
 
/// overlap. Returns the final comparator value or NULL if no check is needed.
 
Value *
 
addRuntimeChecks(Instruction *Loc, Loop *TheLoop,
 
                 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
 
                 SCEVExpander &Expander);
 
 
 
Value *addDiffRuntimeChecks(
 
    Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
 
    function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC);
 
 
 
/// Struct to hold information about a partially invariant condition.
 
struct IVConditionInfo {
 
  /// Instructions that need to be duplicated and checked for the unswitching
 
  /// condition.
 
  SmallVector<Instruction *> InstToDuplicate;
 
 
 
  /// Constant to indicate for which value the condition is invariant.
 
  Constant *KnownValue = nullptr;
 
 
 
  /// True if the partially invariant path is no-op (=does not have any
 
  /// side-effects and no loop value is used outside the loop).
 
  bool PathIsNoop = true;
 
 
 
  /// If the partially invariant path reaches a single exit block, ExitForPath
 
  /// is set to that block. Otherwise it is nullptr.
 
  BasicBlock *ExitForPath = nullptr;
 
};
 
 
 
/// Check if the loop header has a conditional branch that is not
 
/// loop-invariant, because it involves load instructions. If all paths from
 
/// either the true or false successor to the header or loop exists do not
 
/// modify the memory feeding the condition, perform 'partial unswitching'. That
 
/// is, duplicate the instructions feeding the condition in the pre-header. Then
 
/// unswitch on the duplicated condition. The condition is now known in the
 
/// unswitched version for the 'invariant' path through the original loop.
 
///
 
/// If the branch condition of the header is partially invariant, return a pair
 
/// containing the instructions to duplicate and a boolean Constant to update
 
/// the condition in the loops created for the true or false successors.
 
std::optional<IVConditionInfo> hasPartialIVCondition(const Loop &L,
 
                                                     unsigned MSSAThreshold,
 
                                                     const MemorySSA &MSSA,
 
                                                     AAResults &AA);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H