//===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This family of functions perform various local transformations to the
 
// program.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
 
#define LLVM_TRANSFORMS_UTILS_LOCAL_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/IR/Dominators.h"
 
#include "llvm/Support/CommandLine.h"
 
#include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
 
#include <cstdint>
 
 
 
namespace llvm {
 
 
 
class DataLayout;
 
class Value;
 
class WeakTrackingVH;
 
class WeakVH;
 
template <typename T> class SmallVectorImpl;
 
class AAResults;
 
class AllocaInst;
 
class AssumptionCache;
 
class BasicBlock;
 
class BranchInst;
 
class CallBase;
 
class CallInst;
 
class DbgVariableIntrinsic;
 
class DIBuilder;
 
class DomTreeUpdater;
 
class Function;
 
class Instruction;
 
class InvokeInst;
 
class LoadInst;
 
class MDNode;
 
class MemorySSAUpdater;
 
class PHINode;
 
class StoreInst;
 
class TargetLibraryInfo;
 
class TargetTransformInfo;
 
 
 
//===----------------------------------------------------------------------===//
 
//  Local constant propagation.
 
//
 
 
 
/// If a terminator instruction is predicated on a constant value, convert it
 
/// into an unconditional branch to the constant destination.
 
/// This is a nontrivial operation because the successors of this basic block
 
/// must have their PHI nodes updated.
 
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
 
/// conditions and indirectbr addresses this might make dead if
 
/// DeleteDeadConditions is true.
 
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
 
                            const TargetLibraryInfo *TLI = nullptr,
 
                            DomTreeUpdater *DTU = nullptr);
 
 
 
//===----------------------------------------------------------------------===//
 
//  Local dead code elimination.
 
//
 
 
 
/// Return true if the result produced by the instruction is not used, and the
 
/// instruction will return. Certain side-effecting instructions are also
 
/// considered dead if there are no uses of the instruction.
 
bool isInstructionTriviallyDead(Instruction *I,
 
                                const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// Return true if the result produced by the instruction would have no side
 
/// effects if it was not used. This is equivalent to checking whether
 
/// isInstructionTriviallyDead would be true if the use count was 0.
 
bool wouldInstructionBeTriviallyDead(Instruction *I,
 
                                     const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// Return true if the result produced by the instruction has no side effects on
 
/// any paths other than where it is used. This is less conservative than
 
/// wouldInstructionBeTriviallyDead which is based on the assumption
 
/// that the use count will be 0. An example usage of this API is for
 
/// identifying instructions that can be sunk down to use(s).
 
bool wouldInstructionBeTriviallyDeadOnUnusedPaths(
 
    Instruction *I, const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// If the specified value is a trivially dead instruction, delete it.
 
/// If that makes any of its operands trivially dead, delete them too,
 
/// recursively. Return true if any instructions were deleted.
 
bool RecursivelyDeleteTriviallyDeadInstructions(
 
    Value *V, const TargetLibraryInfo *TLI = nullptr,
 
    MemorySSAUpdater *MSSAU = nullptr,
 
    std::function<void(Value *)> AboutToDeleteCallback =
 
        std::function<void(Value *)>());
 
 
 
/// Delete all of the instructions in `DeadInsts`, and all other instructions
 
/// that deleting these in turn causes to be trivially dead.
 
///
 
/// The initial instructions in the provided vector must all have empty use
 
/// lists and satisfy `isInstructionTriviallyDead`.
 
///
 
/// `DeadInsts` will be used as scratch storage for this routine and will be
 
/// empty afterward.
 
void RecursivelyDeleteTriviallyDeadInstructions(
 
    SmallVectorImpl<WeakTrackingVH> &DeadInsts,
 
    const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
 
    std::function<void(Value *)> AboutToDeleteCallback =
 
        std::function<void(Value *)>());
 
 
 
/// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow
 
/// instructions that are not trivially dead. These will be ignored.
 
/// Returns true if any changes were made, i.e. any instructions trivially dead
 
/// were found and deleted.
 
bool RecursivelyDeleteTriviallyDeadInstructionsPermissive(
 
    SmallVectorImpl<WeakTrackingVH> &DeadInsts,
 
    const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
 
    std::function<void(Value *)> AboutToDeleteCallback =
 
        std::function<void(Value *)>());
 
 
 
/// If the specified value is an effectively dead PHI node, due to being a
 
/// def-use chain of single-use nodes that either forms a cycle or is terminated
 
/// by a trivially dead instruction, delete it. If that makes any of its
 
/// operands trivially dead, delete them too, recursively. Return true if a
 
/// change was made.
 
bool RecursivelyDeleteDeadPHINode(PHINode *PN,
 
                                  const TargetLibraryInfo *TLI = nullptr,
 
                                  MemorySSAUpdater *MSSAU = nullptr);
 
 
 
/// Scan the specified basic block and try to simplify any instructions in it
 
/// and recursively delete dead instructions.
 
///
 
/// This returns true if it changed the code, note that it can delete
 
/// instructions in other blocks as well in this block.
 
bool SimplifyInstructionsInBlock(BasicBlock *BB,
 
                                 const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
 
/// undef. This is useful for signaling that a variable, e.g. has been
 
/// found dead and hence it's unavailable at a given program point.
 
/// Returns true if the dbg values have been changed.
 
bool replaceDbgUsesWithUndef(Instruction *I);
 
 
 
//===----------------------------------------------------------------------===//
 
//  Control Flow Graph Restructuring.
 
//
 
 
 
/// BB is a block with one predecessor and its predecessor is known to have one
 
/// successor (BB!). Eliminate the edge between them, moving the instructions in
 
/// the predecessor into BB. This deletes the predecessor block.
 
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
 
 
 
/// BB is known to contain an unconditional branch, and contains no instructions
 
/// other than PHI nodes, potential debug intrinsics and the branch. If
 
/// possible, eliminate BB by rewriting all the predecessors to branch to the
 
/// successor block and return true. If we can't transform, return false.
 
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
 
                                             DomTreeUpdater *DTU = nullptr);
 
 
 
/// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
 
/// to be clever about PHI nodes which differ only in the order of the incoming
 
/// values, but instcombine orders them so it usually won't matter.
 
bool EliminateDuplicatePHINodes(BasicBlock *BB);
 
 
 
/// This function is used to do simplification of a CFG.  For example, it
 
/// adjusts branches to branches to eliminate the extra hop, it eliminates
 
/// unreachable basic blocks, and does other peephole optimization of the CFG.
 
/// It returns true if a modification was made, possibly deleting the basic
 
/// block that was pointed to. LoopHeaders is an optional input parameter
 
/// providing the set of loop headers that SimplifyCFG should not eliminate.
 
extern cl::opt<bool> RequireAndPreserveDomTree;
 
bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
 
                 DomTreeUpdater *DTU = nullptr,
 
                 const SimplifyCFGOptions &Options = {},
 
                 ArrayRef<WeakVH> LoopHeaders = {});
 
 
 
/// This function is used to flatten a CFG. For example, it uses parallel-and
 
/// and parallel-or mode to collapse if-conditions and merge if-regions with
 
/// identical statements.
 
bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr);
 
 
 
/// If this basic block is ONLY a setcc and a branch, and if a predecessor
 
/// branches to us and one of our successors, fold the setcc into the
 
/// predecessor and use logical operations to pick the right destination.
 
bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr,
 
                            MemorySSAUpdater *MSSAU = nullptr,
 
                            const TargetTransformInfo *TTI = nullptr,
 
                            unsigned BonusInstThreshold = 1);
 
 
 
/// This function takes a virtual register computed by an Instruction and
 
/// replaces it with a slot in the stack frame, allocated via alloca.
 
/// This allows the CFG to be changed around without fear of invalidating the
 
/// SSA information for the value. It returns the pointer to the alloca inserted
 
/// to create a stack slot for X.
 
AllocaInst *DemoteRegToStack(Instruction &X,
 
                             bool VolatileLoads = false,
 
                             Instruction *AllocaPoint = nullptr);
 
 
 
/// This function takes a virtual register computed by a phi node and replaces
 
/// it with a slot in the stack frame, allocated via alloca. The phi node is
 
/// deleted and it returns the pointer to the alloca inserted.
 
AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
 
 
 
/// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
 
/// the owning object can be modified and has an alignment less than \p
 
/// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
 
/// cannot be increased, the known alignment of the value is returned.
 
///
 
/// It is not always possible to modify the alignment of the underlying object,
 
/// so if alignment is important, a more reliable approach is to simply align
 
/// all global variables and allocation instructions to their preferred
 
/// alignment from the beginning.
 
Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
 
                                 const DataLayout &DL,
 
                                 const Instruction *CxtI = nullptr,
 
                                 AssumptionCache *AC = nullptr,
 
                                 const DominatorTree *DT = nullptr);
 
 
 
/// Try to infer an alignment for the specified pointer.
 
inline Align getKnownAlignment(Value *V, const DataLayout &DL,
 
                               const Instruction *CxtI = nullptr,
 
                               AssumptionCache *AC = nullptr,
 
                               const DominatorTree *DT = nullptr) {
 
  return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT);
 
}
 
 
 
/// Create a call that matches the invoke \p II in terms of arguments,
 
/// attributes, debug information, etc. The call is not placed in a block and it
 
/// will not have a name. The invoke instruction is not removed, nor are the
 
/// uses replaced by the new call.
 
CallInst *createCallMatchingInvoke(InvokeInst *II);
 
 
 
/// This function converts the specified invoke into a normal call.
 
CallInst *changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);
 
 
 
///===---------------------------------------------------------------------===//
 
///  Dbg Intrinsic utilities
 
///
 
 
 
/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
 
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
 
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
 
                                     StoreInst *SI, DIBuilder &Builder);
 
 
 
/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
 
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
 
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
 
                                     LoadInst *LI, DIBuilder &Builder);
 
 
 
/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
 
/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
 
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
 
                                     PHINode *LI, DIBuilder &Builder);
 
 
 
/// Lowers llvm.dbg.declare intrinsics into appropriate set of
 
/// llvm.dbg.value intrinsics.
 
bool LowerDbgDeclare(Function &F);
 
 
 
/// Propagate dbg.value intrinsics through the newly inserted PHIs.
 
void insertDebugValuesForPHIs(BasicBlock *BB,
 
                              SmallVectorImpl<PHINode *> &InsertedPHIs);
 
 
 
/// Replaces llvm.dbg.declare instruction when the address it
 
/// describes is replaced with a new value. If Deref is true, an
 
/// additional DW_OP_deref is prepended to the expression. If Offset
 
/// is non-zero, a constant displacement is added to the expression
 
/// (between the optional Deref operations). Offset can be negative.
 
bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder,
 
                       uint8_t DIExprFlags, int Offset);
 
 
 
/// Replaces multiple llvm.dbg.value instructions when the alloca it describes
 
/// is replaced with a new value. If Offset is non-zero, a constant displacement
 
/// is added to the expression (after the mandatory Deref). Offset can be
 
/// negative. New llvm.dbg.value instructions are inserted at the locations of
 
/// the instructions they replace.
 
void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
 
                              DIBuilder &Builder, int Offset = 0);
 
 
 
/// Assuming the instruction \p I is going to be deleted, attempt to salvage
 
/// debug users of \p I by writing the effect of \p I in a DIExpression. If it
 
/// cannot be salvaged changes its debug uses to undef.
 
void salvageDebugInfo(Instruction &I);
 
 
 
 
 
/// Implementation of salvageDebugInfo, applying only to instructions in
 
/// \p Insns, rather than all debug users from findDbgUsers( \p I).
 
/// Mark undef if salvaging cannot be completed.
 
void salvageDebugInfoForDbgValues(Instruction &I,
 
                                  ArrayRef<DbgVariableIntrinsic *> Insns);
 
 
 
/// Given an instruction \p I and DIExpression \p DIExpr operating on
 
/// it, append the effects of \p I to the DIExpression operand list
 
/// \p Ops, or return \p nullptr if it cannot be salvaged.
 
/// \p CurrentLocOps is the number of SSA values referenced by the
 
/// incoming \p Ops.  \return the first non-constant operand
 
/// implicitly referred to by Ops. If \p I references more than one
 
/// non-constant operand, any additional operands are added to
 
/// \p AdditionalValues.
 
///
 
/// \example
 
////
 
///   I = add %a, i32 1
 
///
 
///   Return = %a
 
///   Ops = llvm::dwarf::DW_OP_lit1 llvm::dwarf::DW_OP_add
 
///
 
///   I = add %a, %b
 
///
 
///   Return = %a
 
///   Ops = llvm::dwarf::DW_OP_LLVM_arg0 llvm::dwarf::DW_OP_add
 
///   AdditionalValues = %b
 
Value *salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
 
                            SmallVectorImpl<uint64_t> &Ops,
 
                            SmallVectorImpl<Value *> &AdditionalValues);
 
 
 
/// Point debug users of \p From to \p To or salvage them. Use this function
 
/// only when replacing all uses of \p From with \p To, with a guarantee that
 
/// \p From is going to be deleted.
 
///
 
/// Follow these rules to prevent use-before-def of \p To:
 
///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
 
///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
 
///     \p To will be inserted after.
 
///   . If \p To is not an Instruction (e.g a Constant), the choice of
 
///     \p DomPoint is arbitrary. Pick \p From for simplicity.
 
///
 
/// If a debug user cannot be preserved without reordering variable updates or
 
/// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
 
/// or deleted. Returns true if any debug users were updated.
 
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
 
                           DominatorTree &DT);
 
 
 
/// Remove all instructions from a basic block other than its terminator
 
/// and any present EH pad instructions. Returns a pair where the first element
 
/// is the number of instructions (excluding debug info intrinsics) that have
 
/// been removed, and the second element is the number of debug info intrinsics
 
/// that have been removed.
 
std::pair<unsigned, unsigned>
 
removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
 
 
 
/// Insert an unreachable instruction before the specified
 
/// instruction, making it and the rest of the code in the block dead.
 
unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false,
 
                             DomTreeUpdater *DTU = nullptr,
 
                             MemorySSAUpdater *MSSAU = nullptr);
 
 
 
/// Convert the CallInst to InvokeInst with the specified unwind edge basic
 
/// block.  This also splits the basic block where CI is located, because
 
/// InvokeInst is a terminator instruction.  Returns the newly split basic
 
/// block.
 
BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
 
                                             BasicBlock *UnwindEdge,
 
                                             DomTreeUpdater *DTU = nullptr);
 
 
 
/// Replace 'BB's terminator with one that does not have an unwind successor
 
/// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
 
/// successor. Returns the instruction that replaced the original terminator,
 
/// which might be a call in case the original terminator was an invoke.
 
///
 
/// \param BB  Block whose terminator will be replaced.  Its terminator must
 
///            have an unwind successor.
 
Instruction *removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
 
 
 
/// Remove all blocks that can not be reached from the function's entry.
 
///
 
/// Returns true if any basic block was removed.
 
bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
 
                             MemorySSAUpdater *MSSAU = nullptr);
 
 
 
/// Combine the metadata of two instructions so that K can replace J. Some
 
/// metadata kinds can only be kept if K does not move, meaning it dominated
 
/// J in the original IR.
 
///
 
/// Metadata not listed as known via KnownIDs is removed
 
void combineMetadata(Instruction *K, const Instruction *J,
 
                     ArrayRef<unsigned> KnownIDs, bool DoesKMove);
 
 
 
/// Combine the metadata of two instructions so that K can replace J. This
 
/// specifically handles the case of CSE-like transformations. Some
 
/// metadata can only be kept if K dominates J. For this to be correct,
 
/// K cannot be hoisted.
 
///
 
/// Unknown metadata is removed.
 
void combineMetadataForCSE(Instruction *K, const Instruction *J,
 
                           bool DoesKMove);
 
 
 
/// Copy the metadata from the source instruction to the destination (the
 
/// replacement for the source instruction).
 
void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);
 
 
 
/// Patch the replacement so that it is not more restrictive than the value
 
/// being replaced. It assumes that the replacement does not get moved from
 
/// its original position.
 
void patchReplacementInstruction(Instruction *I, Value *Repl);
 
 
 
// Replace each use of 'From' with 'To', if that use does not belong to basic
 
// block where 'From' is defined. Returns the number of replacements made.
 
unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
 
 
 
/// Replace each use of 'From' with 'To' if that use is dominated by
 
/// the given edge.  Returns the number of replacements made.
 
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
 
                                  const BasicBlockEdge &Edge);
 
/// Replace each use of 'From' with 'To' if that use is dominated by
 
/// the end of the given BasicBlock. Returns the number of replacements made.
 
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
 
                                  const BasicBlock *BB);
 
 
 
/// Return true if this call calls a gc leaf function.
 
///
 
/// A leaf function is a function that does not safepoint the thread during its
 
/// execution.  During a call or invoke to such a function, the callers stack
 
/// does not have to be made parseable.
 
///
 
/// Most passes can and should ignore this information, and it is only used
 
/// during lowering by the GC infrastructure.
 
bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);
 
 
 
/// Copy a nonnull metadata node to a new load instruction.
 
///
 
/// This handles mapping it to range metadata if the new load is an integer
 
/// load instead of a pointer load.
 
void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
 
 
 
/// Copy a range metadata node to a new load instruction.
 
///
 
/// This handles mapping it to nonnull metadata if the new load is a pointer
 
/// load instead of an integer load and the range doesn't cover null.
 
void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
 
                       LoadInst &NewLI);
 
 
 
/// Remove the debug intrinsic instructions for the given instruction.
 
void dropDebugUsers(Instruction &I);
 
 
 
/// Hoist all of the instructions in the \p IfBlock to the dominant block
 
/// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
 
///
 
/// The moved instructions receive the insertion point debug location values
 
/// (DILocations) and their debug intrinsic instructions are removed.
 
void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
 
                              BasicBlock *BB);
 
 
 
//===----------------------------------------------------------------------===//
 
//  Intrinsic pattern matching
 
//
 
 
 
/// Try to match a bswap or bitreverse idiom.
 
///
 
/// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
 
/// instructions are returned in \c InsertedInsts. They will all have been added
 
/// to a basic block.
 
///
 
/// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
 
/// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
 
/// to BW / 4 nodes to be searched, so is significantly faster.
 
///
 
/// This function returns true on a successful match or false otherwise.
 
bool recognizeBSwapOrBitReverseIdiom(
 
    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
 
    SmallVectorImpl<Instruction *> &InsertedInsts);
 
 
 
//===----------------------------------------------------------------------===//
 
//  Sanitizer utilities
 
//
 
 
 
/// Given a CallInst, check if it calls a string function known to CodeGen,
 
/// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
 
/// to intercept string functions and want to avoid converting them to target
 
/// specific instructions.
 
void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
 
                                            const TargetLibraryInfo *TLI);
 
 
 
//===----------------------------------------------------------------------===//
 
//  Transform predicates
 
//
 
 
 
/// Given an instruction, is it legal to set operand OpIdx to a non-constant
 
/// value?
 
bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
 
 
 
//===----------------------------------------------------------------------===//
 
//  Value helper functions
 
//
 
 
 
/// Invert the given true/false value, possibly reusing an existing copy.
 
Value *invertCondition(Value *Condition);
 
 
 
 
 
//===----------------------------------------------------------------------===//
 
//  Assorted
 
//
 
 
 
/// If we can infer one attribute from another on the declaration of a
 
/// function, explicitly materialize the maximal set in the IR.
 
bool inferAttributesFromOthers(Function &F);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_TRANSFORMS_UTILS_LOCAL_H