Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This family of functions perform various local transformations to the
  10. // program.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
  15. #define LLVM_TRANSFORMS_UTILS_LOCAL_H
  16.  
  17. #include "llvm/ADT/ArrayRef.h"
  18. #include "llvm/IR/Dominators.h"
  19. #include "llvm/Support/CommandLine.h"
  20. #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
  21. #include <cstdint>
  22.  
  23. namespace llvm {
  24.  
  25. class DataLayout;
  26. class Value;
  27. class WeakTrackingVH;
  28. class WeakVH;
  29. template <typename T> class SmallVectorImpl;
  30. class AAResults;
  31. class AllocaInst;
  32. class AssumptionCache;
  33. class BasicBlock;
  34. class BranchInst;
  35. class CallBase;
  36. class CallInst;
  37. class DbgVariableIntrinsic;
  38. class DIBuilder;
  39. class DomTreeUpdater;
  40. class Function;
  41. class Instruction;
  42. class InvokeInst;
  43. class LoadInst;
  44. class MDNode;
  45. class MemorySSAUpdater;
  46. class PHINode;
  47. class StoreInst;
  48. class TargetLibraryInfo;
  49. class TargetTransformInfo;
  50.  
  51. //===----------------------------------------------------------------------===//
  52. //  Local constant propagation.
  53. //
  54.  
  55. /// If a terminator instruction is predicated on a constant value, convert it
  56. /// into an unconditional branch to the constant destination.
  57. /// This is a nontrivial operation because the successors of this basic block
  58. /// must have their PHI nodes updated.
  59. /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
  60. /// conditions and indirectbr addresses this might make dead if
  61. /// DeleteDeadConditions is true.
  62. bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
  63.                             const TargetLibraryInfo *TLI = nullptr,
  64.                             DomTreeUpdater *DTU = nullptr);
  65.  
  66. //===----------------------------------------------------------------------===//
  67. //  Local dead code elimination.
  68. //
  69.  
  70. /// Return true if the result produced by the instruction is not used, and the
  71. /// instruction will return. Certain side-effecting instructions are also
  72. /// considered dead if there are no uses of the instruction.
  73. bool isInstructionTriviallyDead(Instruction *I,
  74.                                 const TargetLibraryInfo *TLI = nullptr);
  75.  
  76. /// Return true if the result produced by the instruction would have no side
  77. /// effects if it was not used. This is equivalent to checking whether
  78. /// isInstructionTriviallyDead would be true if the use count was 0.
  79. bool wouldInstructionBeTriviallyDead(Instruction *I,
  80.                                      const TargetLibraryInfo *TLI = nullptr);
  81.  
  82. /// Return true if the result produced by the instruction has no side effects on
  83. /// any paths other than where it is used. This is less conservative than
  84. /// wouldInstructionBeTriviallyDead which is based on the assumption
  85. /// that the use count will be 0. An example usage of this API is for
  86. /// identifying instructions that can be sunk down to use(s).
  87. bool wouldInstructionBeTriviallyDeadOnUnusedPaths(
  88.     Instruction *I, const TargetLibraryInfo *TLI = nullptr);
  89.  
  90. /// If the specified value is a trivially dead instruction, delete it.
  91. /// If that makes any of its operands trivially dead, delete them too,
  92. /// recursively. Return true if any instructions were deleted.
  93. bool RecursivelyDeleteTriviallyDeadInstructions(
  94.     Value *V, const TargetLibraryInfo *TLI = nullptr,
  95.     MemorySSAUpdater *MSSAU = nullptr,
  96.     std::function<void(Value *)> AboutToDeleteCallback =
  97.         std::function<void(Value *)>());
  98.  
  99. /// Delete all of the instructions in `DeadInsts`, and all other instructions
  100. /// that deleting these in turn causes to be trivially dead.
  101. ///
  102. /// The initial instructions in the provided vector must all have empty use
  103. /// lists and satisfy `isInstructionTriviallyDead`.
  104. ///
  105. /// `DeadInsts` will be used as scratch storage for this routine and will be
  106. /// empty afterward.
  107. void RecursivelyDeleteTriviallyDeadInstructions(
  108.     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
  109.     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
  110.     std::function<void(Value *)> AboutToDeleteCallback =
  111.         std::function<void(Value *)>());
  112.  
  113. /// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow
  114. /// instructions that are not trivially dead. These will be ignored.
  115. /// Returns true if any changes were made, i.e. any instructions trivially dead
  116. /// were found and deleted.
  117. bool RecursivelyDeleteTriviallyDeadInstructionsPermissive(
  118.     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
  119.     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
  120.     std::function<void(Value *)> AboutToDeleteCallback =
  121.         std::function<void(Value *)>());
  122.  
  123. /// If the specified value is an effectively dead PHI node, due to being a
  124. /// def-use chain of single-use nodes that either forms a cycle or is terminated
  125. /// by a trivially dead instruction, delete it. If that makes any of its
  126. /// operands trivially dead, delete them too, recursively. Return true if a
  127. /// change was made.
  128. bool RecursivelyDeleteDeadPHINode(PHINode *PN,
  129.                                   const TargetLibraryInfo *TLI = nullptr,
  130.                                   MemorySSAUpdater *MSSAU = nullptr);
  131.  
  132. /// Scan the specified basic block and try to simplify any instructions in it
  133. /// and recursively delete dead instructions.
  134. ///
  135. /// This returns true if it changed the code, note that it can delete
  136. /// instructions in other blocks as well in this block.
  137. bool SimplifyInstructionsInBlock(BasicBlock *BB,
  138.                                  const TargetLibraryInfo *TLI = nullptr);
  139.  
  140. /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
  141. /// undef. This is useful for signaling that a variable, e.g. has been
  142. /// found dead and hence it's unavailable at a given program point.
  143. /// Returns true if the dbg values have been changed.
  144. bool replaceDbgUsesWithUndef(Instruction *I);
  145.  
  146. //===----------------------------------------------------------------------===//
  147. //  Control Flow Graph Restructuring.
  148. //
  149.  
  150. /// BB is a block with one predecessor and its predecessor is known to have one
  151. /// successor (BB!). Eliminate the edge between them, moving the instructions in
  152. /// the predecessor into BB. This deletes the predecessor block.
  153. void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
  154.  
  155. /// BB is known to contain an unconditional branch, and contains no instructions
  156. /// other than PHI nodes, potential debug intrinsics and the branch. If
  157. /// possible, eliminate BB by rewriting all the predecessors to branch to the
  158. /// successor block and return true. If we can't transform, return false.
  159. bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
  160.                                              DomTreeUpdater *DTU = nullptr);
  161.  
  162. /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
  163. /// to be clever about PHI nodes which differ only in the order of the incoming
  164. /// values, but instcombine orders them so it usually won't matter.
  165. bool EliminateDuplicatePHINodes(BasicBlock *BB);
  166.  
  167. /// This function is used to do simplification of a CFG.  For example, it
  168. /// adjusts branches to branches to eliminate the extra hop, it eliminates
  169. /// unreachable basic blocks, and does other peephole optimization of the CFG.
  170. /// It returns true if a modification was made, possibly deleting the basic
  171. /// block that was pointed to. LoopHeaders is an optional input parameter
  172. /// providing the set of loop headers that SimplifyCFG should not eliminate.
  173. extern cl::opt<bool> RequireAndPreserveDomTree;
  174. bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
  175.                  DomTreeUpdater *DTU = nullptr,
  176.                  const SimplifyCFGOptions &Options = {},
  177.                  ArrayRef<WeakVH> LoopHeaders = {});
  178.  
  179. /// This function is used to flatten a CFG. For example, it uses parallel-and
  180. /// and parallel-or mode to collapse if-conditions and merge if-regions with
  181. /// identical statements.
  182. bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr);
  183.  
  184. /// If this basic block is ONLY a setcc and a branch, and if a predecessor
  185. /// branches to us and one of our successors, fold the setcc into the
  186. /// predecessor and use logical operations to pick the right destination.
  187. bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr,
  188.                             MemorySSAUpdater *MSSAU = nullptr,
  189.                             const TargetTransformInfo *TTI = nullptr,
  190.                             unsigned BonusInstThreshold = 1);
  191.  
  192. /// This function takes a virtual register computed by an Instruction and
  193. /// replaces it with a slot in the stack frame, allocated via alloca.
  194. /// This allows the CFG to be changed around without fear of invalidating the
  195. /// SSA information for the value. It returns the pointer to the alloca inserted
  196. /// to create a stack slot for X.
  197. AllocaInst *DemoteRegToStack(Instruction &X,
  198.                              bool VolatileLoads = false,
  199.                              Instruction *AllocaPoint = nullptr);
  200.  
  201. /// This function takes a virtual register computed by a phi node and replaces
  202. /// it with a slot in the stack frame, allocated via alloca. The phi node is
  203. /// deleted and it returns the pointer to the alloca inserted.
  204. AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
  205.  
  206. /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
  207. /// the owning object can be modified and has an alignment less than \p
  208. /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
  209. /// cannot be increased, the known alignment of the value is returned.
  210. ///
  211. /// It is not always possible to modify the alignment of the underlying object,
  212. /// so if alignment is important, a more reliable approach is to simply align
  213. /// all global variables and allocation instructions to their preferred
  214. /// alignment from the beginning.
  215. Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
  216.                                  const DataLayout &DL,
  217.                                  const Instruction *CxtI = nullptr,
  218.                                  AssumptionCache *AC = nullptr,
  219.                                  const DominatorTree *DT = nullptr);
  220.  
  221. /// Try to infer an alignment for the specified pointer.
  222. inline Align getKnownAlignment(Value *V, const DataLayout &DL,
  223.                                const Instruction *CxtI = nullptr,
  224.                                AssumptionCache *AC = nullptr,
  225.                                const DominatorTree *DT = nullptr) {
  226.   return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT);
  227. }
  228.  
  229. /// Create a call that matches the invoke \p II in terms of arguments,
  230. /// attributes, debug information, etc. The call is not placed in a block and it
  231. /// will not have a name. The invoke instruction is not removed, nor are the
  232. /// uses replaced by the new call.
  233. CallInst *createCallMatchingInvoke(InvokeInst *II);
  234.  
  235. /// This function converts the specified invoke into a normal call.
  236. CallInst *changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);
  237.  
  238. ///===---------------------------------------------------------------------===//
  239. ///  Dbg Intrinsic utilities
  240. ///
  241.  
  242. /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
  243. /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
  244. void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
  245.                                      StoreInst *SI, DIBuilder &Builder);
  246.  
  247. /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
  248. /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
  249. void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
  250.                                      LoadInst *LI, DIBuilder &Builder);
  251.  
  252. /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
  253. /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
  254. void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
  255.                                      PHINode *LI, DIBuilder &Builder);
  256.  
  257. /// Lowers llvm.dbg.declare intrinsics into appropriate set of
  258. /// llvm.dbg.value intrinsics.
  259. bool LowerDbgDeclare(Function &F);
  260.  
  261. /// Propagate dbg.value intrinsics through the newly inserted PHIs.
  262. void insertDebugValuesForPHIs(BasicBlock *BB,
  263.                               SmallVectorImpl<PHINode *> &InsertedPHIs);
  264.  
  265. /// Replaces llvm.dbg.declare instruction when the address it
  266. /// describes is replaced with a new value. If Deref is true, an
  267. /// additional DW_OP_deref is prepended to the expression. If Offset
  268. /// is non-zero, a constant displacement is added to the expression
  269. /// (between the optional Deref operations). Offset can be negative.
  270. bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder,
  271.                        uint8_t DIExprFlags, int Offset);
  272.  
  273. /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
  274. /// is replaced with a new value. If Offset is non-zero, a constant displacement
  275. /// is added to the expression (after the mandatory Deref). Offset can be
  276. /// negative. New llvm.dbg.value instructions are inserted at the locations of
  277. /// the instructions they replace.
  278. void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
  279.                               DIBuilder &Builder, int Offset = 0);
  280.  
  281. /// Assuming the instruction \p I is going to be deleted, attempt to salvage
  282. /// debug users of \p I by writing the effect of \p I in a DIExpression. If it
  283. /// cannot be salvaged changes its debug uses to undef.
  284. void salvageDebugInfo(Instruction &I);
  285.  
  286.  
  287. /// Implementation of salvageDebugInfo, applying only to instructions in
  288. /// \p Insns, rather than all debug users from findDbgUsers( \p I).
  289. /// Mark undef if salvaging cannot be completed.
  290. void salvageDebugInfoForDbgValues(Instruction &I,
  291.                                   ArrayRef<DbgVariableIntrinsic *> Insns);
  292.  
  293. /// Given an instruction \p I and DIExpression \p DIExpr operating on
  294. /// it, append the effects of \p I to the DIExpression operand list
  295. /// \p Ops, or return \p nullptr if it cannot be salvaged.
  296. /// \p CurrentLocOps is the number of SSA values referenced by the
  297. /// incoming \p Ops.  \return the first non-constant operand
  298. /// implicitly referred to by Ops. If \p I references more than one
  299. /// non-constant operand, any additional operands are added to
  300. /// \p AdditionalValues.
  301. ///
  302. /// \example
  303. ////
  304. ///   I = add %a, i32 1
  305. ///
  306. ///   Return = %a
  307. ///   Ops = llvm::dwarf::DW_OP_lit1 llvm::dwarf::DW_OP_add
  308. ///
  309. ///   I = add %a, %b
  310. ///
  311. ///   Return = %a
  312. ///   Ops = llvm::dwarf::DW_OP_LLVM_arg0 llvm::dwarf::DW_OP_add
  313. ///   AdditionalValues = %b
  314. Value *salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
  315.                             SmallVectorImpl<uint64_t> &Ops,
  316.                             SmallVectorImpl<Value *> &AdditionalValues);
  317.  
  318. /// Point debug users of \p From to \p To or salvage them. Use this function
  319. /// only when replacing all uses of \p From with \p To, with a guarantee that
  320. /// \p From is going to be deleted.
  321. ///
  322. /// Follow these rules to prevent use-before-def of \p To:
  323. ///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
  324. ///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
  325. ///     \p To will be inserted after.
  326. ///   . If \p To is not an Instruction (e.g a Constant), the choice of
  327. ///     \p DomPoint is arbitrary. Pick \p From for simplicity.
  328. ///
  329. /// If a debug user cannot be preserved without reordering variable updates or
  330. /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
  331. /// or deleted. Returns true if any debug users were updated.
  332. bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
  333.                            DominatorTree &DT);
  334.  
  335. /// Remove all instructions from a basic block other than its terminator
  336. /// and any present EH pad instructions. Returns a pair where the first element
  337. /// is the number of instructions (excluding debug info intrinsics) that have
  338. /// been removed, and the second element is the number of debug info intrinsics
  339. /// that have been removed.
  340. std::pair<unsigned, unsigned>
  341. removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
  342.  
  343. /// Insert an unreachable instruction before the specified
  344. /// instruction, making it and the rest of the code in the block dead.
  345. unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false,
  346.                              DomTreeUpdater *DTU = nullptr,
  347.                              MemorySSAUpdater *MSSAU = nullptr);
  348.  
  349. /// Convert the CallInst to InvokeInst with the specified unwind edge basic
  350. /// block.  This also splits the basic block where CI is located, because
  351. /// InvokeInst is a terminator instruction.  Returns the newly split basic
  352. /// block.
  353. BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
  354.                                              BasicBlock *UnwindEdge,
  355.                                              DomTreeUpdater *DTU = nullptr);
  356.  
  357. /// Replace 'BB's terminator with one that does not have an unwind successor
  358. /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
  359. /// successor. Returns the instruction that replaced the original terminator,
  360. /// which might be a call in case the original terminator was an invoke.
  361. ///
  362. /// \param BB  Block whose terminator will be replaced.  Its terminator must
  363. ///            have an unwind successor.
  364. Instruction *removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
  365.  
  366. /// Remove all blocks that can not be reached from the function's entry.
  367. ///
  368. /// Returns true if any basic block was removed.
  369. bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
  370.                              MemorySSAUpdater *MSSAU = nullptr);
  371.  
  372. /// Combine the metadata of two instructions so that K can replace J. Some
  373. /// metadata kinds can only be kept if K does not move, meaning it dominated
  374. /// J in the original IR.
  375. ///
  376. /// Metadata not listed as known via KnownIDs is removed
  377. void combineMetadata(Instruction *K, const Instruction *J,
  378.                      ArrayRef<unsigned> KnownIDs, bool DoesKMove);
  379.  
  380. /// Combine the metadata of two instructions so that K can replace J. This
  381. /// specifically handles the case of CSE-like transformations. Some
  382. /// metadata can only be kept if K dominates J. For this to be correct,
  383. /// K cannot be hoisted.
  384. ///
  385. /// Unknown metadata is removed.
  386. void combineMetadataForCSE(Instruction *K, const Instruction *J,
  387.                            bool DoesKMove);
  388.  
  389. /// Copy the metadata from the source instruction to the destination (the
  390. /// replacement for the source instruction).
  391. void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);
  392.  
  393. /// Patch the replacement so that it is not more restrictive than the value
  394. /// being replaced. It assumes that the replacement does not get moved from
  395. /// its original position.
  396. void patchReplacementInstruction(Instruction *I, Value *Repl);
  397.  
  398. // Replace each use of 'From' with 'To', if that use does not belong to basic
  399. // block where 'From' is defined. Returns the number of replacements made.
  400. unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
  401.  
  402. /// Replace each use of 'From' with 'To' if that use is dominated by
  403. /// the given edge.  Returns the number of replacements made.
  404. unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
  405.                                   const BasicBlockEdge &Edge);
  406. /// Replace each use of 'From' with 'To' if that use is dominated by
  407. /// the end of the given BasicBlock. Returns the number of replacements made.
  408. unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
  409.                                   const BasicBlock *BB);
  410.  
  411. /// Return true if this call calls a gc leaf function.
  412. ///
  413. /// A leaf function is a function that does not safepoint the thread during its
  414. /// execution.  During a call or invoke to such a function, the callers stack
  415. /// does not have to be made parseable.
  416. ///
  417. /// Most passes can and should ignore this information, and it is only used
  418. /// during lowering by the GC infrastructure.
  419. bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);
  420.  
  421. /// Copy a nonnull metadata node to a new load instruction.
  422. ///
  423. /// This handles mapping it to range metadata if the new load is an integer
  424. /// load instead of a pointer load.
  425. void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
  426.  
  427. /// Copy a range metadata node to a new load instruction.
  428. ///
  429. /// This handles mapping it to nonnull metadata if the new load is a pointer
  430. /// load instead of an integer load and the range doesn't cover null.
  431. void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
  432.                        LoadInst &NewLI);
  433.  
  434. /// Remove the debug intrinsic instructions for the given instruction.
  435. void dropDebugUsers(Instruction &I);
  436.  
  437. /// Hoist all of the instructions in the \p IfBlock to the dominant block
  438. /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
  439. ///
  440. /// The moved instructions receive the insertion point debug location values
  441. /// (DILocations) and their debug intrinsic instructions are removed.
  442. void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
  443.                               BasicBlock *BB);
  444.  
  445. //===----------------------------------------------------------------------===//
  446. //  Intrinsic pattern matching
  447. //
  448.  
  449. /// Try to match a bswap or bitreverse idiom.
  450. ///
  451. /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
  452. /// instructions are returned in \c InsertedInsts. They will all have been added
  453. /// to a basic block.
  454. ///
  455. /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
  456. /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
  457. /// to BW / 4 nodes to be searched, so is significantly faster.
  458. ///
  459. /// This function returns true on a successful match or false otherwise.
  460. bool recognizeBSwapOrBitReverseIdiom(
  461.     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
  462.     SmallVectorImpl<Instruction *> &InsertedInsts);
  463.  
  464. //===----------------------------------------------------------------------===//
  465. //  Sanitizer utilities
  466. //
  467.  
  468. /// Given a CallInst, check if it calls a string function known to CodeGen,
  469. /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
  470. /// to intercept string functions and want to avoid converting them to target
  471. /// specific instructions.
  472. void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
  473.                                             const TargetLibraryInfo *TLI);
  474.  
  475. //===----------------------------------------------------------------------===//
  476. //  Transform predicates
  477. //
  478.  
  479. /// Given an instruction, is it legal to set operand OpIdx to a non-constant
  480. /// value?
  481. bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
  482.  
  483. //===----------------------------------------------------------------------===//
  484. //  Value helper functions
  485. //
  486.  
  487. /// Invert the given true/false value, possibly reusing an existing copy.
  488. Value *invertCondition(Value *Condition);
  489.  
  490.  
  491. //===----------------------------------------------------------------------===//
  492. //  Assorted
  493. //
  494.  
  495. /// If we can infer one attribute from another on the declaration of a
  496. /// function, explicitly materialize the maximal set in the IR.
  497. bool inferAttributesFromOthers(Function &F);
  498.  
  499. } // end namespace llvm
  500.  
  501. #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H
  502.