//===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines various functions that are used to clone chunks of LLVM
 
// code for various purposes.  This varies from copying whole modules into new
 
// modules, to cloning functions with different arguments, to inlining
 
// functions, to copying basic blocks to support loop unrolling or superblock
 
// formation, etc.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
 
#define LLVM_TRANSFORMS_UTILS_CLONING_H
 
 
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/Twine.h"
 
#include "llvm/Analysis/AssumptionCache.h"
 
#include "llvm/Analysis/InlineCost.h"
 
#include "llvm/IR/ValueHandle.h"
 
#include "llvm/Transforms/Utils/ValueMapper.h"
 
#include <functional>
 
#include <memory>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class AAResults;
 
class AllocaInst;
 
class BasicBlock;
 
class BlockFrequencyInfo;
 
class CallGraph;
 
class DebugInfoFinder;
 
class DominatorTree;
 
class Function;
 
class Instruction;
 
class Loop;
 
class LoopInfo;
 
class Module;
 
class ProfileSummaryInfo;
 
class ReturnInst;
 
class DomTreeUpdater;
 
 
 
/// Return an exact copy of the specified module
 
std::unique_ptr<Module> CloneModule(const Module &M);
 
std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
 
 
 
/// Return a copy of the specified module. The ShouldCloneDefinition function
 
/// controls whether a specific GlobalValue's definition is cloned. If the
 
/// function returns false, the module copy will contain an external reference
 
/// in place of the global definition.
 
std::unique_ptr<Module>
 
CloneModule(const Module &M, ValueToValueMapTy &VMap,
 
            function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
 
 
 
/// This struct can be used to capture information about code
 
/// being cloned, while it is being cloned.
 
struct ClonedCodeInfo {
 
  /// This is set to true if the cloned code contains a normal call instruction.
 
  bool ContainsCalls = false;
 
 
 
  /// This is set to true if there is memprof related metadata (memprof or
 
  /// callsite metadata) in the cloned code.
 
  bool ContainsMemProfMetadata = false;
 
 
 
  /// This is set to true if the cloned code contains a 'dynamic' alloca.
 
  /// Dynamic allocas are allocas that are either not in the entry block or they
 
  /// are in the entry block but are not a constant size.
 
  bool ContainsDynamicAllocas = false;
 
 
 
  /// All cloned call sites that have operand bundles attached are appended to
 
  /// this vector.  This vector may contain nulls or undefs if some of the
 
  /// originally inserted callsites were DCE'ed after they were cloned.
 
  std::vector<WeakTrackingVH> OperandBundleCallSites;
 
 
 
  /// Like VMap, but maps only unsimplified instructions. Values in the map
 
  /// may be dangling, it is only intended to be used via isSimplified(), to
 
  /// check whether the main VMap mapping involves simplification or not.
 
  DenseMap<const Value *, const Value *> OrigVMap;
 
 
 
  ClonedCodeInfo() = default;
 
 
 
  bool isSimplified(const Value *From, const Value *To) const {
 
    return OrigVMap.lookup(From) != To;
 
  }
 
};
 
 
 
/// Return a copy of the specified basic block, but without
 
/// embedding the block into a particular function.  The block returned is an
 
/// exact copy of the specified basic block, without any remapping having been
 
/// performed.  Because of this, this is only suitable for applications where
 
/// the basic block will be inserted into the same function that it was cloned
 
/// from (loop unrolling would use this, for example).
 
///
 
/// Also, note that this function makes a direct copy of the basic block, and
 
/// can thus produce illegal LLVM code.  In particular, it will copy any PHI
 
/// nodes from the original block, even though there are no predecessors for the
 
/// newly cloned block (thus, phi nodes will have to be updated).  Also, this
 
/// block will branch to the old successors of the original block: these
 
/// successors will have to have any PHI nodes updated to account for the new
 
/// incoming edges.
 
///
 
/// The correlation between instructions in the source and result basic blocks
 
/// is recorded in the VMap map.
 
///
 
/// If you have a particular suffix you'd like to use to add to any cloned
 
/// names, specify it as the optional third parameter.
 
///
 
/// If you would like the basic block to be auto-inserted into the end of a
 
/// function, you can specify it as the optional fourth parameter.
 
///
 
/// If you would like to collect additional information about the cloned
 
/// function, you can specify a ClonedCodeInfo object with the optional fifth
 
/// parameter.
 
BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
 
                            const Twine &NameSuffix = "", Function *F = nullptr,
 
                            ClonedCodeInfo *CodeInfo = nullptr,
 
                            DebugInfoFinder *DIFinder = nullptr);
 
 
 
/// Return a copy of the specified function and add it to that
 
/// function's module.  Also, any references specified in the VMap are changed
 
/// to refer to their mapped value instead of the original one.  If any of the
 
/// arguments to the function are in the VMap, the arguments are deleted from
 
/// the resultant function.  The VMap is updated to include mappings from all of
 
/// the instructions and basicblocks in the function from their old to new
 
/// values.  The final argument captures information about the cloned code if
 
/// non-null.
 
///
 
/// \pre VMap contains no non-identity GlobalValue mappings.
 
///
 
Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
 
                        ClonedCodeInfo *CodeInfo = nullptr);
 
 
 
enum class CloneFunctionChangeType {
 
  LocalChangesOnly,
 
  GlobalChanges,
 
  DifferentModule,
 
  ClonedModule,
 
};
 
 
 
/// Clone OldFunc into NewFunc, transforming the old arguments into references
 
/// to VMap values.  Note that if NewFunc already has basic blocks, the ones
 
/// cloned into it will be added to the end of the function.  This function
 
/// fills in a list of return instructions, and can optionally remap types
 
/// and/or append the specified suffix to all values cloned.
 
///
 
/// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is
 
/// required to contain no non-identity GlobalValue mappings. Otherwise,
 
/// referenced metadata will be cloned.
 
///
 
/// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule
 
/// indicating cloning into the same module (even if it's LocalChangesOnly), if
 
/// debug info metadata transitively references a \a DISubprogram, it will be
 
/// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing
 
/// cloning of types and compile units.
 
///
 
/// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new
 
/// module's \c !llvm.dbg.cu will get updated with any newly created compile
 
/// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the
 
/// caller.)
 
///
 
/// FIXME: Consider simplifying this function by splitting out \a
 
/// CloneFunctionMetadataInto() and expecting / updating callers to call it
 
/// first when / how it's needed.
 
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
 
                       ValueToValueMapTy &VMap, CloneFunctionChangeType Changes,
 
                       SmallVectorImpl<ReturnInst *> &Returns,
 
                       const char *NameSuffix = "",
 
                       ClonedCodeInfo *CodeInfo = nullptr,
 
                       ValueMapTypeRemapper *TypeMapper = nullptr,
 
                       ValueMaterializer *Materializer = nullptr);
 
 
 
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
 
                               const Instruction *StartingInst,
 
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
 
                               SmallVectorImpl<ReturnInst *> &Returns,
 
                               const char *NameSuffix = "",
 
                               ClonedCodeInfo *CodeInfo = nullptr);
 
 
 
/// This works exactly like CloneFunctionInto,
 
/// except that it does some simple constant prop and DCE on the fly.  The
 
/// effect of this is to copy significantly less code in cases where (for
 
/// example) a function call with constant arguments is inlined, and those
 
/// constant arguments cause a significant amount of code in the callee to be
 
/// dead.  Since this doesn't produce an exactly copy of the input, it can't be
 
/// used for things like CloneFunction or CloneModule.
 
///
 
/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
 
/// mappings.
 
///
 
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
 
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
 
                               SmallVectorImpl<ReturnInst*> &Returns,
 
                               const char *NameSuffix = "",
 
                               ClonedCodeInfo *CodeInfo = nullptr);
 
 
 
/// This class captures the data input to the InlineFunction call, and records
 
/// the auxiliary results produced by it.
 
class InlineFunctionInfo {
 
public:
 
  explicit InlineFunctionInfo(
 
      CallGraph *cg = nullptr,
 
      function_ref<AssumptionCache &(Function &)> GetAssumptionCache = nullptr,
 
      ProfileSummaryInfo *PSI = nullptr,
 
      BlockFrequencyInfo *CallerBFI = nullptr,
 
      BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true)
 
      : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
 
        CallerBFI(CallerBFI), CalleeBFI(CalleeBFI),
 
        UpdateProfile(UpdateProfile) {}
 
 
 
  /// If non-null, InlineFunction will update the callgraph to reflect the
 
  /// changes it makes.
 
  CallGraph *CG;
 
  function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
 
  ProfileSummaryInfo *PSI;
 
  BlockFrequencyInfo *CallerBFI, *CalleeBFI;
 
 
 
  /// InlineFunction fills this in with all static allocas that get copied into
 
  /// the caller.
 
  SmallVector<AllocaInst *, 4> StaticAllocas;
 
 
 
  /// InlineFunction fills this in with callsites that were inlined from the
 
  /// callee. This is only filled in if CG is non-null.
 
  SmallVector<WeakTrackingVH, 8> InlinedCalls;
 
 
 
  /// All of the new call sites inlined into the caller.
 
  ///
 
  /// 'InlineFunction' fills this in by scanning the inlined instructions, and
 
  /// only if CG is null. If CG is non-null, instead the value handle
 
  /// `InlinedCalls` above is used.
 
  SmallVector<CallBase *, 8> InlinedCallSites;
 
 
 
  /// Update profile for callee as well as cloned version. We need to do this
 
  /// for regular inlining, but not for inlining from sample profile loader.
 
  bool UpdateProfile;
 
 
 
  void reset() {
 
    StaticAllocas.clear();
 
    InlinedCalls.clear();
 
    InlinedCallSites.clear();
 
  }
 
};
 
 
 
/// This function inlines the called function into the basic
 
/// block of the caller.  This returns false if it is not possible to inline
 
/// this call.  The program is still in a well defined state if this occurs
 
/// though.
 
///
 
/// Note that this only does one level of inlining.  For example, if the
 
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
 
/// exists in the instruction stream.  Similarly this will inline a recursive
 
/// function by one level.
 
///
 
/// Note that while this routine is allowed to cleanup and optimize the
 
/// *inlined* code to minimize the actual inserted code, it must not delete
 
/// code in the caller as users of this routine may have pointers to
 
/// instructions in the caller that need to remain stable.
 
///
 
/// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
 
/// and all varargs at the callsite will be passed to any calls to
 
/// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
 
/// are only used by ForwardVarArgsTo.
 
///
 
/// The callee's function attributes are merged into the callers' if
 
/// MergeAttributes is set to true.
 
InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
 
                            bool MergeAttributes = false,
 
                            AAResults *CalleeAAR = nullptr,
 
                            bool InsertLifetime = true,
 
                            Function *ForwardVarArgsTo = nullptr);
 
 
 
/// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
 
/// Blocks.
 
///
 
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
 
/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
 
/// Note: Only innermost loops are supported.
 
Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
 
                             Loop *OrigLoop, ValueToValueMapTy &VMap,
 
                             const Twine &NameSuffix, LoopInfo *LI,
 
                             DominatorTree *DT,
 
                             SmallVectorImpl<BasicBlock *> &Blocks);
 
 
 
/// Remaps instructions in \p Blocks using the mapping in \p VMap.
 
void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
 
                               ValueToValueMapTy &VMap);
 
 
 
/// Split edge between BB and PredBB and duplicate all non-Phi instructions
 
/// from BB between its beginning and the StopAt instruction into the split
 
/// block. Phi nodes are not duplicated, but their uses are handled correctly:
 
/// we replace them with the uses of corresponding Phi inputs. ValueMapping
 
/// is used to map the original instructions from BB to their newly-created
 
/// copies. Returns the split block.
 
BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
 
                                                BasicBlock *PredBB,
 
                                                Instruction *StopAt,
 
                                                ValueToValueMapTy &ValueMapping,
 
                                                DomTreeUpdater &DTU);
 
 
 
/// Updates profile information by adjusting the entry count by adding
 
/// EntryDelta then scaling callsite information by the new count divided by the
 
/// old count. VMap is used during inlinng to also update the new clone
 
void updateProfileCallee(
 
    Function *Callee, int64_t EntryDelta,
 
    const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
 
 
 
/// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
 
/// basic blocks and extract their scope. These are candidates for duplication
 
/// when cloning.
 
void identifyNoAliasScopesToClone(
 
    ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
 
 
 
/// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
 
/// instruction range and extract their scope. These are candidates for
 
/// duplication when cloning.
 
void identifyNoAliasScopesToClone(
 
    BasicBlock::iterator Start, BasicBlock::iterator End,
 
    SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
 
 
 
/// Duplicate the specified list of noalias decl scopes.
 
/// The 'Ext' string is added as an extension to the name.
 
/// Afterwards, the ClonedScopes contains the mapping of the original scope
 
/// MDNode onto the cloned scope.
 
/// Be aware that the cloned scopes are still part of the original scope domain.
 
void cloneNoAliasScopes(
 
    ArrayRef<MDNode *> NoAliasDeclScopes,
 
    DenseMap<MDNode *, MDNode *> &ClonedScopes,
 
    StringRef Ext, LLVMContext &Context);
 
 
 
/// Adapt the metadata for the specified instruction according to the
 
/// provided mapping. This is normally used after cloning an instruction, when
 
/// some noalias scopes needed to be cloned.
 
void adaptNoAliasScopes(
 
    llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes,
 
    LLVMContext &Context);
 
 
 
/// Clone the specified noalias decl scopes. Then adapt all instructions in the
 
/// NewBlocks basicblocks to the cloned versions.
 
/// 'Ext' will be added to the duplicate scope names.
 
void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
 
                                ArrayRef<BasicBlock *> NewBlocks,
 
                                LLVMContext &Context, StringRef Ext);
 
 
 
/// Clone the specified noalias decl scopes. Then adapt all instructions in the
 
/// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be
 
/// added to the duplicate scope names.
 
void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
 
                                Instruction *IStart, Instruction *IEnd,
 
                                LLVMContext &Context, StringRef Ext);
 
} // end namespace llvm
 
 
 
#endif // LLVM_TRANSFORMS_UTILS_CLONING_H