Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- NaryReassociate.h - Reassociate n-ary expressions --------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This pass reassociates n-ary add expressions and eliminates the redundancy
  10. // exposed by the reassociation.
  11. //
  12. // A motivating example:
  13. //
  14. //   void foo(int a, int b) {
  15. //     bar(a + b);
  16. //     bar((a + 2) + b);
  17. //   }
  18. //
  19. // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
  20. // the above code to
  21. //
  22. //   int t = a + b;
  23. //   bar(t);
  24. //   bar(t + 2);
  25. //
  26. // However, the Reassociate pass is unable to do that because it processes each
  27. // instruction individually and believes (a + 2) + b is the best form according
  28. // to its rank system.
  29. //
  30. // To address this limitation, NaryReassociate reassociates an expression in a
  31. // form that reuses existing instructions. As a result, NaryReassociate can
  32. // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
  33. // (a + b) is computed before.
  34. //
  35. // NaryReassociate works as follows. For every instruction in the form of (a +
  36. // b) + c, it checks whether a + c or b + c is already computed by a dominating
  37. // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
  38. // c) + a and removes the redundancy accordingly. To efficiently look up whether
  39. // an expression is computed before, we store each instruction seen and its SCEV
  40. // into an SCEV-to-instruction map.
  41. //
  42. // Although the algorithm pattern-matches only ternary additions, it
  43. // automatically handles many >3-ary expressions by walking through the function
  44. // in the depth-first order. For example, given
  45. //
  46. //   (a + c) + d
  47. //   ((a + b) + c) + d
  48. //
  49. // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
  50. // ((a + c) + b) + d into ((a + c) + d) + b.
  51. //
  52. // Finally, the above dominator-based algorithm may need to be run multiple
  53. // iterations before emitting optimal code. One source of this need is that we
  54. // only split an operand when it is used only once. The above algorithm can
  55. // eliminate an instruction and decrease the usage count of its operands. As a
  56. // result, an instruction that previously had multiple uses may become a
  57. // single-use instruction and thus eligible for split consideration. For
  58. // example,
  59. //
  60. //   ac = a + c
  61. //   ab = a + b
  62. //   abc = ab + c
  63. //   ab2 = ab + b
  64. //   ab2c = ab2 + c
  65. //
  66. // In the first iteration, we cannot reassociate abc to ac+b because ab is used
  67. // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
  68. // result, ab2 becomes dead and ab will be used only once in the second
  69. // iteration.
  70. //
  71. // Limitations and TODO items:
  72. //
  73. // 1) We only considers n-ary adds and muls for now. This should be extended
  74. // and generalized.
  75. //
  76. //===----------------------------------------------------------------------===//
  77.  
  78. #ifndef LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
  79. #define LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
  80.  
  81. #include "llvm/ADT/DenseMap.h"
  82. #include "llvm/ADT/SmallVector.h"
  83. #include "llvm/IR/PassManager.h"
  84. #include "llvm/IR/ValueHandle.h"
  85.  
  86. namespace llvm {
  87.  
  88. class AssumptionCache;
  89. class BinaryOperator;
  90. class DataLayout;
  91. class DominatorTree;
  92. class Function;
  93. class GetElementPtrInst;
  94. class Instruction;
  95. class ScalarEvolution;
  96. class SCEV;
  97. class TargetLibraryInfo;
  98. class TargetTransformInfo;
  99. class Type;
  100. class Value;
  101.  
  102. class NaryReassociatePass : public PassInfoMixin<NaryReassociatePass> {
  103. public:
  104.   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
  105.  
  106.   // Glue for old PM.
  107.   bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_,
  108.                ScalarEvolution *SE_, TargetLibraryInfo *TLI_,
  109.                TargetTransformInfo *TTI_);
  110.  
  111. private:
  112.   // Runs only one iteration of the dominator-based algorithm. See the header
  113.   // comments for why we need multiple iterations.
  114.   bool doOneIteration(Function &F);
  115.  
  116.   // Reassociates I for better CSE.
  117.   Instruction *tryReassociate(Instruction *I, const SCEV *&OrigSCEV);
  118.  
  119.   // Reassociate GEP for better CSE.
  120.   Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
  121.  
  122.   // Try splitting GEP at the I-th index and see whether either part can be
  123.   // CSE'ed. This is a helper function for tryReassociateGEP.
  124.   //
  125.   // \p IndexedType The element type indexed by GEP's I-th index. This is
  126.   //                equivalent to
  127.   //                  GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
  128.   //                                      ..., i-th index).
  129.   GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
  130.                                               unsigned I, Type *IndexedType);
  131.  
  132.   // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
  133.   // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
  134.   GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
  135.                                               unsigned I, Value *LHS,
  136.                                               Value *RHS, Type *IndexedType);
  137.  
  138.   // Reassociate binary operators for better CSE.
  139.   Instruction *tryReassociateBinaryOp(BinaryOperator *I);
  140.  
  141.   // A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly
  142.   // passed.
  143.   Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS,
  144.                                       BinaryOperator *I);
  145.   // Rewrites I to (LHS op RHS) if LHS is computed already.
  146.   Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS,
  147.                                        BinaryOperator *I);
  148.  
  149.   // Tries to match Op1 and Op2 by using V.
  150.   bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2);
  151.  
  152.   // Gets SCEV for (LHS op RHS).
  153.   const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
  154.                             const SCEV *RHS);
  155.  
  156.   // Returns the closest dominator of \c Dominatee that computes
  157.   // \c CandidateExpr. Returns null if not found.
  158.   Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
  159.                                             Instruction *Dominatee);
  160.  
  161.   // Try to match \p I as signed/unsigned Min/Max and reassociate it. \p
  162.   // OrigSCEV is set if \I matches Min/Max regardless whether resassociation is
  163.   // done or not. If reassociation was successful newly generated instruction is
  164.   // returned, otherwise nullptr.
  165.   template <typename PredT>
  166.   Instruction *matchAndReassociateMinOrMax(Instruction *I,
  167.                                            const SCEV *&OrigSCEV);
  168.  
  169.   // Reassociate Min/Max.
  170.   template <typename MaxMinT>
  171.   Value *tryReassociateMinOrMax(Instruction *I, MaxMinT MaxMinMatch, Value *LHS,
  172.                                 Value *RHS);
  173.  
  174.   // GetElementPtrInst implicitly sign-extends an index if the index is shorter
  175.   // than the pointer size. This function returns whether Index is shorter than
  176.   // GEP's pointer size, i.e., whether Index needs to be sign-extended in order
  177.   // to be an index of GEP.
  178.   bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
  179.  
  180.   AssumptionCache *AC;
  181.   const DataLayout *DL;
  182.   DominatorTree *DT;
  183.   ScalarEvolution *SE;
  184.   TargetLibraryInfo *TLI;
  185.   TargetTransformInfo *TTI;
  186.  
  187.   // A lookup table quickly telling which instructions compute the given SCEV.
  188.   // Note that there can be multiple instructions at different locations
  189.   // computing to the same SCEV, so we map a SCEV to an instruction list.  For
  190.   // example,
  191.   //
  192.   //   if (p1)
  193.   //     foo(a + b);
  194.   //   if (p2)
  195.   //     bar(a + b);
  196.   DenseMap<const SCEV *, SmallVector<WeakTrackingVH, 2>> SeenExprs;
  197. };
  198.  
  199. } // end namespace llvm
  200.  
  201. #endif // LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
  202.