//===- Transforms/Instrumentation.h - Instrumentation passes ----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines constructor functions for instrumentation passes.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TRANSFORMS_INSTRUMENTATION_H
 
#define LLVM_TRANSFORMS_INSTRUMENTATION_H
 
 
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/IR/BasicBlock.h"
 
#include "llvm/IR/DebugInfoMetadata.h"
 
#include "llvm/IR/Function.h"
 
#include "llvm/IR/IRBuilder.h"
 
#include "llvm/IR/Instruction.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <limits>
 
#include <string>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class Triple;
 
class OptimizationRemarkEmitter;
 
class Comdat;
 
class CallBase;
 
 
 
/// Instrumentation passes often insert conditional checks into entry blocks.
 
/// Call this function before splitting the entry block to move instructions
 
/// that must remain in the entry block up before the split point. Static
 
/// allocas and llvm.localescape calls, for example, must remain in the entry
 
/// block.
 
BasicBlock::iterator PrepareToSplitEntryBlock(BasicBlock &BB,
 
                                              BasicBlock::iterator IP);
 
 
 
// Create a constant for Str so that we can pass it to the run-time lib.
 
GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
 
                                             bool AllowMerging,
 
                                             const char *NamePrefix = "");
 
 
 
// Returns F.getComdat() if it exists.
 
// Otherwise creates a new comdat, sets F's comdat, and returns it.
 
// Returns nullptr on failure.
 
Comdat *getOrCreateFunctionComdat(Function &F, Triple &T);
 
 
 
// Insert GCOV profiling instrumentation
 
struct GCOVOptions {
 
  static GCOVOptions getDefault();
 
 
 
  // Specify whether to emit .gcno files.
 
  bool EmitNotes;
 
 
 
  // Specify whether to modify the program to emit .gcda files when run.
 
  bool EmitData;
 
 
 
  // A four-byte version string. The meaning of a version string is described in
 
  // gcc's gcov-io.h
 
  char Version[4];
 
 
 
  // Add the 'noredzone' attribute to added runtime library calls.
 
  bool NoRedZone;
 
 
 
  // Use atomic profile counter increments.
 
  bool Atomic = false;
 
 
 
  // Regexes separated by a semi-colon to filter the files to instrument.
 
  std::string Filter;
 
 
 
  // Regexes separated by a semi-colon to filter the files to not instrument.
 
  std::string Exclude;
 
};
 
 
 
// The pgo-specific indirect call promotion function declared below is used by
 
// the pgo-driven indirect call promotion and sample profile passes. It's a
 
// wrapper around llvm::promoteCall, et al. that additionally computes !prof
 
// metadata. We place it in a pgo namespace so it's not confused with the
 
// generic utilities.
 
namespace pgo {
 
 
 
// Helper function that transforms CB (either an indirect-call instruction, or
 
// an invoke instruction , to a conditional call to F. This is like:
 
//     if (Inst.CalledValue == F)
 
//        F(...);
 
//     else
 
//        Inst(...);
 
//     end
 
// TotalCount is the profile count value that the instruction executes.
 
// Count is the profile count value that F is the target function.
 
// These two values are used to update the branch weight.
 
// If \p AttachProfToDirectCall is true, a prof metadata is attached to the
 
// new direct call to contain \p Count.
 
// Returns the promoted direct call instruction.
 
CallBase &promoteIndirectCall(CallBase &CB, Function *F, uint64_t Count,
 
                              uint64_t TotalCount, bool AttachProfToDirectCall,
 
                              OptimizationRemarkEmitter *ORE);
 
} // namespace pgo
 
 
 
/// Options for the frontend instrumentation based profiling pass.
 
struct InstrProfOptions {
 
  // Add the 'noredzone' attribute to added runtime library calls.
 
  bool NoRedZone = false;
 
 
 
  // Do counter register promotion
 
  bool DoCounterPromotion = false;
 
 
 
  // Use atomic profile counter increments.
 
  bool Atomic = false;
 
 
 
  // Use BFI to guide register promotion
 
  bool UseBFIInPromotion = false;
 
 
 
  // Name of the profile file to use as output
 
  std::string InstrProfileOutput;
 
 
 
  InstrProfOptions() = default;
 
};
 
 
 
// Options for sanitizer coverage instrumentation.
 
struct SanitizerCoverageOptions {
 
  enum Type {
 
    SCK_None = 0,
 
    SCK_Function,
 
    SCK_BB,
 
    SCK_Edge
 
  } CoverageType = SCK_None;
 
  bool IndirectCalls = false;
 
  bool TraceBB = false;
 
  bool TraceCmp = false;
 
  bool TraceDiv = false;
 
  bool TraceGep = false;
 
  bool Use8bitCounters = false;
 
  bool TracePC = false;
 
  bool TracePCGuard = false;
 
  bool Inline8bitCounters = false;
 
  bool InlineBoolFlag = false;
 
  bool PCTable = false;
 
  bool NoPrune = false;
 
  bool StackDepth = false;
 
  bool TraceLoads = false;
 
  bool TraceStores = false;
 
  bool CollectControlFlow = false;
 
 
 
  SanitizerCoverageOptions() = default;
 
};
 
 
 
/// Calculate what to divide by to scale counts.
 
///
 
/// Given the maximum count, calculate a divisor that will scale all the
 
/// weights to strictly less than std::numeric_limits<uint32_t>::max().
 
static inline uint64_t calculateCountScale(uint64_t MaxCount) {
 
  return MaxCount < std::numeric_limits<uint32_t>::max()
 
             ? 1
 
             : MaxCount / std::numeric_limits<uint32_t>::max() + 1;
 
}
 
 
 
/// Scale an individual branch count.
 
///
 
/// Scale a 64-bit weight down to 32-bits using \c Scale.
 
///
 
static inline uint32_t scaleBranchCount(uint64_t Count, uint64_t Scale) {
 
  uint64_t Scaled = Count / Scale;
 
  assert(Scaled <= std::numeric_limits<uint32_t>::max() && "overflow 32-bits");
 
  return Scaled;
 
}
 
 
 
// Use to ensure the inserted instrumentation has a DebugLocation; if none is
 
// attached to the source instruction, try to use a DILocation with offset 0
 
// scoped to surrounding function (if it has a DebugLocation).
 
//
 
// Some non-call instructions may be missing debug info, but when inserting
 
// instrumentation calls, some builds (e.g. LTO) want calls to have debug info
 
// if the enclosing function does.
 
struct InstrumentationIRBuilder : IRBuilder<> {
 
  static void ensureDebugInfo(IRBuilder<> &IRB, const Function &F) {
 
    if (IRB.getCurrentDebugLocation())
 
      return;
 
    if (DISubprogram *SP = F.getSubprogram())
 
      IRB.SetCurrentDebugLocation(DILocation::get(SP->getContext(), 0, 0, SP));
 
  }
 
 
 
  explicit InstrumentationIRBuilder(Instruction *IP) : IRBuilder<>(IP) {
 
    ensureDebugInfo(*this, *IP->getFunction());
 
  }
 
};
 
} // end namespace llvm
 
 
 
#endif // LLVM_TRANSFORMS_INSTRUMENTATION_H