//===- InstCombiner.h - InstCombine implementation --------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
///
 
/// This file provides the interface for the instcombine pass implementation.
 
/// The interface is used for generic transformations in this folder and
 
/// target specific combinations in the targets.
 
/// The visitor implementation is in \c InstCombinerImpl in
 
/// \c InstCombineInternal.h.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H
 
#define LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H
 
 
 
#include "llvm/Analysis/InstructionSimplify.h"
 
#include "llvm/Analysis/TargetFolder.h"
 
#include "llvm/Analysis/ValueTracking.h"
 
#include "llvm/IR/IRBuilder.h"
 
#include "llvm/IR/PatternMatch.h"
 
#include "llvm/Support/Debug.h"
 
#include "llvm/Support/KnownBits.h"
 
#include <cassert>
 
 
 
#define DEBUG_TYPE "instcombine"
 
#include "llvm/Transforms/Utils/InstructionWorklist.h"
 
 
 
namespace llvm {
 
 
 
class AAResults;
 
class AssumptionCache;
 
class ProfileSummaryInfo;
 
class TargetLibraryInfo;
 
class TargetTransformInfo;
 
 
 
/// The core instruction combiner logic.
 
///
 
/// This class provides both the logic to recursively visit instructions and
 
/// combine them.
 
class LLVM_LIBRARY_VISIBILITY InstCombiner {
 
  /// Only used to call target specific intrinsic combining.
 
  /// It must **NOT** be used for any other purpose, as InstCombine is a
 
  /// target-independent canonicalization transform.
 
  TargetTransformInfo &TTI;
 
 
 
public:
 
  /// Maximum size of array considered when transforming.
 
  uint64_t MaxArraySizeForCombine = 0;
 
 
 
  /// An IRBuilder that automatically inserts new instructions into the
 
  /// worklist.
 
  using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
 
  BuilderTy &Builder;
 
 
 
protected:
 
  /// A worklist of the instructions that need to be simplified.
 
  InstructionWorklist &Worklist;
 
 
 
  // Mode in which we are running the combiner.
 
  const bool MinimizeSize;
 
 
 
  AAResults *AA;
 
 
 
  // Required analyses.
 
  AssumptionCache &AC;
 
  TargetLibraryInfo &TLI;
 
  DominatorTree &DT;
 
  const DataLayout &DL;
 
  const SimplifyQuery SQ;
 
  OptimizationRemarkEmitter &ORE;
 
  BlockFrequencyInfo *BFI;
 
  ProfileSummaryInfo *PSI;
 
 
 
  // Optional analyses. When non-null, these can both be used to do better
 
  // combining and will be updated to reflect any changes.
 
  LoopInfo *LI;
 
 
 
  bool MadeIRChange = false;
 
 
 
public:
 
  InstCombiner(InstructionWorklist &Worklist, BuilderTy &Builder,
 
               bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
 
               TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
 
               DominatorTree &DT, OptimizationRemarkEmitter &ORE,
 
               BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
 
               const DataLayout &DL, LoopInfo *LI)
 
      : TTI(TTI), Builder(Builder), Worklist(Worklist),
 
        MinimizeSize(MinimizeSize), AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL),
 
        SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}
 
 
 
  virtual ~InstCombiner() = default;
 
 
 
  /// Return the source operand of a potentially bitcasted value while
 
  /// optionally checking if it has one use. If there is no bitcast or the one
 
  /// use check is not met, return the input value itself.
 
  static Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
 
    if (auto *BitCast = dyn_cast<BitCastInst>(V))
 
      if (!OneUseOnly || BitCast->hasOneUse())
 
        return BitCast->getOperand(0);
 
 
 
    // V is not a bitcast or V has more than one use and OneUseOnly is true.
 
    return V;
 
  }
 
 
 
  /// Assign a complexity or rank value to LLVM Values. This is used to reduce
 
  /// the amount of pattern matching needed for compares and commutative
 
  /// instructions. For example, if we have:
 
  ///   icmp ugt X, Constant
 
  /// or
 
  ///   xor (add X, Constant), cast Z
 
  ///
 
  /// We do not have to consider the commuted variants of these patterns because
 
  /// canonicalization based on complexity guarantees the above ordering.
 
  ///
 
  /// This routine maps IR values to various complexity ranks:
 
  ///   0 -> undef
 
  ///   1 -> Constants
 
  ///   2 -> Other non-instructions
 
  ///   3 -> Arguments
 
  ///   4 -> Cast and (f)neg/not instructions
 
  ///   5 -> Other instructions
 
  static unsigned getComplexity(Value *V) {
 
    if (isa<Instruction>(V)) {
 
      if (isa<CastInst>(V) || match(V, m_Neg(PatternMatch::m_Value())) ||
 
          match(V, m_Not(PatternMatch::m_Value())) ||
 
          match(V, m_FNeg(PatternMatch::m_Value())))
 
        return 4;
 
      return 5;
 
    }
 
    if (isa<Argument>(V))
 
      return 3;
 
    return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
 
  }
 
 
 
  /// Predicate canonicalization reduces the number of patterns that need to be
 
  /// matched by other transforms. For example, we may swap the operands of a
 
  /// conditional branch or select to create a compare with a canonical
 
  /// (inverted) predicate which is then more likely to be matched with other
 
  /// values.
 
  static bool isCanonicalPredicate(CmpInst::Predicate Pred) {
 
    switch (Pred) {
 
    case CmpInst::ICMP_NE:
 
    case CmpInst::ICMP_ULE:
 
    case CmpInst::ICMP_SLE:
 
    case CmpInst::ICMP_UGE:
 
    case CmpInst::ICMP_SGE:
 
    // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
 
    case CmpInst::FCMP_ONE:
 
    case CmpInst::FCMP_OLE:
 
    case CmpInst::FCMP_OGE:
 
      return false;
 
    default:
 
      return true;
 
    }
 
  }
 
 
 
  /// Given an exploded icmp instruction, return true if the comparison only
 
  /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
 
  /// the result of the comparison is true when the input value is signed.
 
  static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
 
                             bool &TrueIfSigned) {
 
    switch (Pred) {
 
    case ICmpInst::ICMP_SLT: // True if LHS s< 0
 
      TrueIfSigned = true;
 
      return RHS.isZero();
 
    case ICmpInst::ICMP_SLE: // True if LHS s<= -1
 
      TrueIfSigned = true;
 
      return RHS.isAllOnes();
 
    case ICmpInst::ICMP_SGT: // True if LHS s> -1
 
      TrueIfSigned = false;
 
      return RHS.isAllOnes();
 
    case ICmpInst::ICMP_SGE: // True if LHS s>= 0
 
      TrueIfSigned = false;
 
      return RHS.isZero();
 
    case ICmpInst::ICMP_UGT:
 
      // True if LHS u> RHS and RHS == sign-bit-mask - 1
 
      TrueIfSigned = true;
 
      return RHS.isMaxSignedValue();
 
    case ICmpInst::ICMP_UGE:
 
      // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
 
      TrueIfSigned = true;
 
      return RHS.isMinSignedValue();
 
    case ICmpInst::ICMP_ULT:
 
      // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
 
      TrueIfSigned = false;
 
      return RHS.isMinSignedValue();
 
    case ICmpInst::ICMP_ULE:
 
      // True if LHS u<= RHS and RHS == sign-bit-mask - 1
 
      TrueIfSigned = false;
 
      return RHS.isMaxSignedValue();
 
    default:
 
      return false;
 
    }
 
  }
 
 
 
  /// Add one to a Constant
 
  static Constant *AddOne(Constant *C) {
 
    return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
 
  }
 
 
 
  /// Subtract one from a Constant
 
  static Constant *SubOne(Constant *C) {
 
    return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
 
  }
 
 
 
  std::optional<std::pair<
 
      CmpInst::Predicate,
 
      Constant *>> static getFlippedStrictnessPredicateAndConstant(CmpInst::
 
                                                                       Predicate
 
                                                                           Pred,
 
                                                                   Constant *C);
 
 
 
  static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI) {
 
    // a ? b : false and a ? true : b are the canonical form of logical and/or.
 
    // This includes !a ? b : false and !a ? true : b. Absorbing the not into
 
    // the select by swapping operands would break recognition of this pattern
 
    // in other analyses, so don't do that.
 
    return match(&SI, PatternMatch::m_LogicalAnd(PatternMatch::m_Value(),
 
                                                 PatternMatch::m_Value())) ||
 
           match(&SI, PatternMatch::m_LogicalOr(PatternMatch::m_Value(),
 
                                                PatternMatch::m_Value()));
 
  }
 
 
 
  /// Return true if the specified value is free to invert (apply ~ to).
 
  /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
 
  /// is true, work under the assumption that the caller intends to remove all
 
  /// uses of V and only keep uses of ~V.
 
  ///
 
  /// See also: canFreelyInvertAllUsersOf()
 
  static bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
 
    // ~(~(X)) -> X.
 
    if (match(V, m_Not(PatternMatch::m_Value())))
 
      return true;
 
 
 
    // Constants can be considered to be not'ed values.
 
    if (match(V, PatternMatch::m_AnyIntegralConstant()))
 
      return true;
 
 
 
    // Compares can be inverted if all of their uses are being modified to use
 
    // the ~V.
 
    if (isa<CmpInst>(V))
 
      return WillInvertAllUses;
 
 
 
    // If `V` is of the form `A + Constant` then `-1 - V` can be folded into
 
    // `(-1 - Constant) - A` if we are willing to invert all of the uses.
 
    if (match(V, m_Add(PatternMatch::m_Value(), PatternMatch::m_ImmConstant())))
 
      return WillInvertAllUses;
 
 
 
    // If `V` is of the form `Constant - A` then `-1 - V` can be folded into
 
    // `A + (-1 - Constant)` if we are willing to invert all of the uses.
 
    if (match(V, m_Sub(PatternMatch::m_ImmConstant(), PatternMatch::m_Value())))
 
      return WillInvertAllUses;
 
 
 
    // Selects with invertible operands are freely invertible
 
    if (match(V,
 
              m_Select(PatternMatch::m_Value(), m_Not(PatternMatch::m_Value()),
 
                       m_Not(PatternMatch::m_Value()))))
 
      return WillInvertAllUses;
 
 
 
    // Min/max may be in the form of intrinsics, so handle those identically
 
    // to select patterns.
 
    if (match(V, m_MaxOrMin(m_Not(PatternMatch::m_Value()),
 
                            m_Not(PatternMatch::m_Value()))))
 
      return WillInvertAllUses;
 
 
 
    return false;
 
  }
 
 
 
  /// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
 
  /// InstCombine's freelyInvertAllUsersOf() must be kept in sync with this fn.
 
  /// NOTE: for Instructions only!
 
  ///
 
  /// See also: isFreeToInvert()
 
  static bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser) {
 
    // Look at every user of V.
 
    for (Use &U : V->uses()) {
 
      if (U.getUser() == IgnoredUser)
 
        continue; // Don't consider this user.
 
 
 
      auto *I = cast<Instruction>(U.getUser());
 
      switch (I->getOpcode()) {
 
      case Instruction::Select:
 
        if (U.getOperandNo() != 0) // Only if the value is used as select cond.
 
          return false;
 
        if (shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(I)))
 
          return false;
 
        break;
 
      case Instruction::Br:
 
        assert(U.getOperandNo() == 0 && "Must be branching on that value.");
 
        break; // Free to invert by swapping true/false values/destinations.
 
      case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring
 
                             // it.
 
        if (!match(I, m_Not(PatternMatch::m_Value())))
 
          return false; // Not a 'not'.
 
        break;
 
      default:
 
        return false; // Don't know, likely not freely invertible.
 
      }
 
      // So far all users were free to invert...
 
    }
 
    return true; // Can freely invert all users!
 
  }
 
 
 
  /// Some binary operators require special handling to avoid poison and
 
  /// undefined behavior. If a constant vector has undef elements, replace those
 
  /// undefs with identity constants if possible because those are always safe
 
  /// to execute. If no identity constant exists, replace undef with some other
 
  /// safe constant.
 
  static Constant *
 
  getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In,
 
                                bool IsRHSConstant) {
 
    auto *InVTy = cast<FixedVectorType>(In->getType());
 
 
 
    Type *EltTy = InVTy->getElementType();
 
    auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
 
    if (!SafeC) {
 
      // TODO: Should this be available as a constant utility function? It is
 
      // similar to getBinOpAbsorber().
 
      if (IsRHSConstant) {
 
        switch (Opcode) {
 
        case Instruction::SRem: // X % 1 = 0
 
        case Instruction::URem: // X %u 1 = 0
 
          SafeC = ConstantInt::get(EltTy, 1);
 
          break;
 
        case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
 
          SafeC = ConstantFP::get(EltTy, 1.0);
 
          break;
 
        default:
 
          llvm_unreachable(
 
              "Only rem opcodes have no identity constant for RHS");
 
        }
 
      } else {
 
        switch (Opcode) {
 
        case Instruction::Shl:  // 0 << X = 0
 
        case Instruction::LShr: // 0 >>u X = 0
 
        case Instruction::AShr: // 0 >> X = 0
 
        case Instruction::SDiv: // 0 / X = 0
 
        case Instruction::UDiv: // 0 /u X = 0
 
        case Instruction::SRem: // 0 % X = 0
 
        case Instruction::URem: // 0 %u X = 0
 
        case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
 
        case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
 
        case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
 
        case Instruction::FRem: // 0.0 % X = 0
 
          SafeC = Constant::getNullValue(EltTy);
 
          break;
 
        default:
 
          llvm_unreachable("Expected to find identity constant for opcode");
 
        }
 
      }
 
    }
 
    assert(SafeC && "Must have safe constant for binop");
 
    unsigned NumElts = InVTy->getNumElements();
 
    SmallVector<Constant *, 16> Out(NumElts);
 
    for (unsigned i = 0; i != NumElts; ++i) {
 
      Constant *C = In->getAggregateElement(i);
 
      Out[i] = isa<UndefValue>(C) ? SafeC : C;
 
    }
 
    return ConstantVector::get(Out);
 
  }
 
 
 
  void addToWorklist(Instruction *I) { Worklist.push(I); }
 
 
 
  AssumptionCache &getAssumptionCache() const { return AC; }
 
  TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
 
  DominatorTree &getDominatorTree() const { return DT; }
 
  const DataLayout &getDataLayout() const { return DL; }
 
  const SimplifyQuery &getSimplifyQuery() const { return SQ; }
 
  OptimizationRemarkEmitter &getOptimizationRemarkEmitter() const {
 
    return ORE;
 
  }
 
  BlockFrequencyInfo *getBlockFrequencyInfo() const { return BFI; }
 
  ProfileSummaryInfo *getProfileSummaryInfo() const { return PSI; }
 
  LoopInfo *getLoopInfo() const { return LI; }
 
 
 
  // Call target specific combiners
 
  std::optional<Instruction *> targetInstCombineIntrinsic(IntrinsicInst &II);
 
  std::optional<Value *>
 
  targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask,
 
                                         KnownBits &Known,
 
                                         bool &KnownBitsComputed);
 
  std::optional<Value *> targetSimplifyDemandedVectorEltsIntrinsic(
 
      IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
 
      APInt &UndefElts2, APInt &UndefElts3,
 
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
 
          SimplifyAndSetOp);
 
 
 
  /// Inserts an instruction \p New before instruction \p Old
 
  ///
 
  /// Also adds the new instruction to the worklist and returns \p New so that
 
  /// it is suitable for use as the return from the visitation patterns.
 
  Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
 
    assert(New && !New->getParent() &&
 
           "New instruction already inserted into a basic block!");
 
    BasicBlock *BB = Old.getParent();
 
    New->insertInto(BB, Old.getIterator()); // Insert inst
 
    Worklist.add(New);
 
    return New;
 
  }
 
 
 
  /// Same as InsertNewInstBefore, but also sets the debug loc.
 
  Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
 
    New->setDebugLoc(Old.getDebugLoc());
 
    return InsertNewInstBefore(New, Old);
 
  }
 
 
 
  /// A combiner-aware RAUW-like routine.
 
  ///
 
  /// This method is to be used when an instruction is found to be dead,
 
  /// replaceable with another preexisting expression. Here we add all uses of
 
  /// I to the worklist, replace all uses of I with the new value, then return
 
  /// I, so that the inst combiner will know that I was modified.
 
  Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
 
    // If there are no uses to replace, then we return nullptr to indicate that
 
    // no changes were made to the program.
 
    if (I.use_empty()) return nullptr;
 
 
 
    Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
 
 
 
    // If we are replacing the instruction with itself, this must be in a
 
    // segment of unreachable code, so just clobber the instruction.
 
    if (&I == V)
 
      V = PoisonValue::get(I.getType());
 
 
 
    LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
 
                      << "    with " << *V << '\n');
 
 
 
    // If V is a new unnamed instruction, take the name from the old one.
 
    if (V->use_empty() && isa<Instruction>(V) && !V->hasName() && I.hasName())
 
      V->takeName(&I);
 
 
 
    I.replaceAllUsesWith(V);
 
    return &I;
 
  }
 
 
 
  /// Replace operand of instruction and add old operand to the worklist.
 
  Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
 
    Worklist.addValue(I.getOperand(OpNum));
 
    I.setOperand(OpNum, V);
 
    return &I;
 
  }
 
 
 
  /// Replace use and add the previously used value to the worklist.
 
  void replaceUse(Use &U, Value *NewValue) {
 
    Worklist.addValue(U);
 
    U = NewValue;
 
  }
 
 
 
  /// Combiner aware instruction erasure.
 
  ///
 
  /// When dealing with an instruction that has side effects or produces a void
 
  /// value, we can't rely on DCE to delete the instruction. Instead, visit
 
  /// methods should return the value returned by this function.
 
  virtual Instruction *eraseInstFromFunction(Instruction &I) = 0;
 
 
 
  void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
 
                        const Instruction *CxtI) const {
 
    llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
 
  }
 
 
 
  KnownBits computeKnownBits(const Value *V, unsigned Depth,
 
                             const Instruction *CxtI) const {
 
    return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
 
  }
 
 
 
  bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
 
                              unsigned Depth = 0,
 
                              const Instruction *CxtI = nullptr) {
 
    return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
 
  }
 
 
 
  bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
 
                         const Instruction *CxtI = nullptr) const {
 
    return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
 
  }
 
 
 
  unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
 
                              const Instruction *CxtI = nullptr) const {
 
    return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
 
  }
 
 
 
  unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth = 0,
 
                                     const Instruction *CxtI = nullptr) const {
 
    return llvm::ComputeMaxSignificantBits(Op, DL, Depth, &AC, CxtI, &DT);
 
  }
 
 
 
  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
 
                                               const Value *RHS,
 
                                               const Instruction *CxtI) const {
 
    return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
 
  }
 
 
 
  OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
 
                                             const Instruction *CxtI) const {
 
    return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
 
  }
 
 
 
  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
 
                                               const Value *RHS,
 
                                               const Instruction *CxtI) const {
 
    return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
 
  }
 
 
 
  OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
 
                                             const Instruction *CxtI) const {
 
    return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
 
  }
 
 
 
  OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
 
                                               const Value *RHS,
 
                                               const Instruction *CxtI) const {
 
    return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
 
  }
 
 
 
  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
 
                                             const Instruction *CxtI) const {
 
    return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
 
  }
 
 
 
  virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo,
 
                                    const APInt &DemandedMask, KnownBits &Known,
 
                                    unsigned Depth = 0) = 0;
 
  virtual Value *
 
  SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
 
                             unsigned Depth = 0,
 
                             bool AllowMultipleUsers = false) = 0;
 
};
 
 
 
} // namespace llvm
 
 
 
#undef DEBUG_TYPE
 
 
 
#endif