//===- WholeProgramDevirt.h - Whole-program devirt pass ---------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines parts of the whole-program devirtualization pass
 
// implementation that may be usefully unit tested.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H
 
#define LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H
 
 
 
#include "llvm/IR/GlobalValue.h"
 
#include "llvm/IR/PassManager.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <map>
 
#include <set>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
class Module;
 
 
 
template <typename T> class ArrayRef;
 
template <typename T> class MutableArrayRef;
 
class Function;
 
class GlobalVariable;
 
class ModuleSummaryIndex;
 
struct ValueInfo;
 
 
 
namespace wholeprogramdevirt {
 
 
 
// A bit vector that keeps track of which bits are used. We use this to
 
// pack constant values compactly before and after each virtual table.
 
struct AccumBitVector {
 
  std::vector<uint8_t> Bytes;
 
 
 
  // Bits in BytesUsed[I] are 1 if matching bit in Bytes[I] is used, 0 if not.
 
  std::vector<uint8_t> BytesUsed;
 
 
 
  std::pair<uint8_t *, uint8_t *> getPtrToData(uint64_t Pos, uint8_t Size) {
 
    if (Bytes.size() < Pos + Size) {
 
      Bytes.resize(Pos + Size);
 
      BytesUsed.resize(Pos + Size);
 
    }
 
    return std::make_pair(Bytes.data() + Pos, BytesUsed.data() + Pos);
 
  }
 
 
 
  // Set little-endian value Val with size Size at bit position Pos,
 
  // and mark bytes as used.
 
  void setLE(uint64_t Pos, uint64_t Val, uint8_t Size) {
 
    assert(Pos % 8 == 0);
 
    auto DataUsed = getPtrToData(Pos / 8, Size);
 
    for (unsigned I = 0; I != Size; ++I) {
 
      DataUsed.first[I] = Val >> (I * 8);
 
      assert(!DataUsed.second[I]);
 
      DataUsed.second[I] = 0xff;
 
    }
 
  }
 
 
 
  // Set big-endian value Val with size Size at bit position Pos,
 
  // and mark bytes as used.
 
  void setBE(uint64_t Pos, uint64_t Val, uint8_t Size) {
 
    assert(Pos % 8 == 0);
 
    auto DataUsed = getPtrToData(Pos / 8, Size);
 
    for (unsigned I = 0; I != Size; ++I) {
 
      DataUsed.first[Size - I - 1] = Val >> (I * 8);
 
      assert(!DataUsed.second[Size - I - 1]);
 
      DataUsed.second[Size - I - 1] = 0xff;
 
    }
 
  }
 
 
 
  // Set bit at bit position Pos to b and mark bit as used.
 
  void setBit(uint64_t Pos, bool b) {
 
    auto DataUsed = getPtrToData(Pos / 8, 1);
 
    if (b)
 
      *DataUsed.first |= 1 << (Pos % 8);
 
    assert(!(*DataUsed.second & (1 << Pos % 8)));
 
    *DataUsed.second |= 1 << (Pos % 8);
 
  }
 
};
 
 
 
// The bits that will be stored before and after a particular vtable.
 
struct VTableBits {
 
  // The vtable global.
 
  GlobalVariable *GV;
 
 
 
  // Cache of the vtable's size in bytes.
 
  uint64_t ObjectSize = 0;
 
 
 
  // The bit vector that will be laid out before the vtable. Note that these
 
  // bytes are stored in reverse order until the globals are rebuilt. This means
 
  // that any values in the array must be stored using the opposite endianness
 
  // from the target.
 
  AccumBitVector Before;
 
 
 
  // The bit vector that will be laid out after the vtable.
 
  AccumBitVector After;
 
};
 
 
 
// Information about a member of a particular type identifier.
 
struct TypeMemberInfo {
 
  // The VTableBits for the vtable.
 
  VTableBits *Bits;
 
 
 
  // The offset in bytes from the start of the vtable (i.e. the address point).
 
  uint64_t Offset;
 
 
 
  bool operator<(const TypeMemberInfo &other) const {
 
    return Bits < other.Bits || (Bits == other.Bits && Offset < other.Offset);
 
  }
 
};
 
 
 
// A virtual call target, i.e. an entry in a particular vtable.
 
struct VirtualCallTarget {
 
  VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM);
 
 
 
  // For testing only.
 
  VirtualCallTarget(const TypeMemberInfo *TM, bool IsBigEndian)
 
      : Fn(nullptr), TM(TM), IsBigEndian(IsBigEndian), WasDevirt(false) {}
 
 
 
  // The function stored in the vtable.
 
  Function *Fn;
 
 
 
  // A pointer to the type identifier member through which the pointer to Fn is
 
  // accessed.
 
  const TypeMemberInfo *TM;
 
 
 
  // When doing virtual constant propagation, this stores the return value for
 
  // the function when passed the currently considered argument list.
 
  uint64_t RetVal;
 
 
 
  // Whether the target is big endian.
 
  bool IsBigEndian;
 
 
 
  // Whether at least one call site to the target was devirtualized.
 
  bool WasDevirt;
 
 
 
  // The minimum byte offset before the address point. This covers the bytes in
 
  // the vtable object before the address point (e.g. RTTI, access-to-top,
 
  // vtables for other base classes) and is equal to the offset from the start
 
  // of the vtable object to the address point.
 
  uint64_t minBeforeBytes() const { return TM->Offset; }
 
 
 
  // The minimum byte offset after the address point. This covers the bytes in
 
  // the vtable object after the address point (e.g. the vtable for the current
 
  // class and any later base classes) and is equal to the size of the vtable
 
  // object minus the offset from the start of the vtable object to the address
 
  // point.
 
  uint64_t minAfterBytes() const { return TM->Bits->ObjectSize - TM->Offset; }
 
 
 
  // The number of bytes allocated (for the vtable plus the byte array) before
 
  // the address point.
 
  uint64_t allocatedBeforeBytes() const {
 
    return minBeforeBytes() + TM->Bits->Before.Bytes.size();
 
  }
 
 
 
  // The number of bytes allocated (for the vtable plus the byte array) after
 
  // the address point.
 
  uint64_t allocatedAfterBytes() const {
 
    return minAfterBytes() + TM->Bits->After.Bytes.size();
 
  }
 
 
 
  // Set the bit at position Pos before the address point to RetVal.
 
  void setBeforeBit(uint64_t Pos) {
 
    assert(Pos >= 8 * minBeforeBytes());
 
    TM->Bits->Before.setBit(Pos - 8 * minBeforeBytes(), RetVal);
 
  }
 
 
 
  // Set the bit at position Pos after the address point to RetVal.
 
  void setAfterBit(uint64_t Pos) {
 
    assert(Pos >= 8 * minAfterBytes());
 
    TM->Bits->After.setBit(Pos - 8 * minAfterBytes(), RetVal);
 
  }
 
 
 
  // Set the bytes at position Pos before the address point to RetVal.
 
  // Because the bytes in Before are stored in reverse order, we use the
 
  // opposite endianness to the target.
 
  void setBeforeBytes(uint64_t Pos, uint8_t Size) {
 
    assert(Pos >= 8 * minBeforeBytes());
 
    if (IsBigEndian)
 
      TM->Bits->Before.setLE(Pos - 8 * minBeforeBytes(), RetVal, Size);
 
    else
 
      TM->Bits->Before.setBE(Pos - 8 * minBeforeBytes(), RetVal, Size);
 
  }
 
 
 
  // Set the bytes at position Pos after the address point to RetVal.
 
  void setAfterBytes(uint64_t Pos, uint8_t Size) {
 
    assert(Pos >= 8 * minAfterBytes());
 
    if (IsBigEndian)
 
      TM->Bits->After.setBE(Pos - 8 * minAfterBytes(), RetVal, Size);
 
    else
 
      TM->Bits->After.setLE(Pos - 8 * minAfterBytes(), RetVal, Size);
 
  }
 
};
 
 
 
// Find the minimum offset that we may store a value of size Size bits at. If
 
// IsAfter is set, look for an offset before the object, otherwise look for an
 
// offset after the object.
 
uint64_t findLowestOffset(ArrayRef<VirtualCallTarget> Targets, bool IsAfter,
 
                          uint64_t Size);
 
 
 
// Set the stored value in each of Targets to VirtualCallTarget::RetVal at the
 
// given allocation offset before the vtable address. Stores the computed
 
// byte/bit offset to OffsetByte/OffsetBit.
 
void setBeforeReturnValues(MutableArrayRef<VirtualCallTarget> Targets,
 
                           uint64_t AllocBefore, unsigned BitWidth,
 
                           int64_t &OffsetByte, uint64_t &OffsetBit);
 
 
 
// Set the stored value in each of Targets to VirtualCallTarget::RetVal at the
 
// given allocation offset after the vtable address. Stores the computed
 
// byte/bit offset to OffsetByte/OffsetBit.
 
void setAfterReturnValues(MutableArrayRef<VirtualCallTarget> Targets,
 
                          uint64_t AllocAfter, unsigned BitWidth,
 
                          int64_t &OffsetByte, uint64_t &OffsetBit);
 
 
 
} // end namespace wholeprogramdevirt
 
 
 
struct WholeProgramDevirtPass : public PassInfoMixin<WholeProgramDevirtPass> {
 
  ModuleSummaryIndex *ExportSummary;
 
  const ModuleSummaryIndex *ImportSummary;
 
  bool UseCommandLine = false;
 
  WholeProgramDevirtPass()
 
      : ExportSummary(nullptr), ImportSummary(nullptr), UseCommandLine(true) {}
 
  WholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
 
                         const ModuleSummaryIndex *ImportSummary)
 
      : ExportSummary(ExportSummary), ImportSummary(ImportSummary) {
 
    assert(!(ExportSummary && ImportSummary));
 
  }
 
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &);
 
};
 
 
 
struct VTableSlotSummary {
 
  StringRef TypeID;
 
  uint64_t ByteOffset;
 
};
 
bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO);
 
void updatePublicTypeTestCalls(Module &M,
 
                               bool WholeProgramVisibilityEnabledInLTO);
 
void updateVCallVisibilityInModule(
 
    Module &M, bool WholeProgramVisibilityEnabledInLTO,
 
    const DenseSet<GlobalValue::GUID> &DynamicExportSymbols);
 
void updateVCallVisibilityInIndex(
 
    ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
 
    const DenseSet<GlobalValue::GUID> &DynamicExportSymbols);
 
 
 
/// Perform index-based whole program devirtualization on the \p Summary
 
/// index. Any devirtualized targets used by a type test in another module
 
/// are added to the \p ExportedGUIDs set. For any local devirtualized targets
 
/// only used within the defining module, the information necessary for
 
/// locating the corresponding WPD resolution is recorded for the ValueInfo
 
/// in case it is exported by cross module importing (in which case the
 
/// devirtualized target name will need adjustment).
 
void runWholeProgramDevirtOnIndex(
 
    ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
 
    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap);
 
 
 
/// Call after cross-module importing to update the recorded single impl
 
/// devirt target names for any locals that were exported.
 
void updateIndexWPDForExports(
 
    ModuleSummaryIndex &Summary,
 
    function_ref<bool(StringRef, ValueInfo)> isExported,
 
    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H