//===- Attributor.h --- Module-wide attribute deduction ---------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Attributor: An inter procedural (abstract) "attribute" deduction framework.
 
//
 
// The Attributor framework is an inter procedural abstract analysis (fixpoint
 
// iteration analysis). The goal is to allow easy deduction of new attributes as
 
// well as information exchange between abstract attributes in-flight.
 
//
 
// The Attributor class is the driver and the link between the various abstract
 
// attributes. The Attributor will iterate until a fixpoint state is reached by
 
// all abstract attributes in-flight, or until it will enforce a pessimistic fix
 
// point because an iteration limit is reached.
 
//
 
// Abstract attributes, derived from the AbstractAttribute class, actually
 
// describe properties of the code. They can correspond to actual LLVM-IR
 
// attributes, or they can be more general, ultimately unrelated to LLVM-IR
 
// attributes. The latter is useful when an abstract attributes provides
 
// information to other abstract attributes in-flight but we might not want to
 
// manifest the information. The Attributor allows to query in-flight abstract
 
// attributes through the `Attributor::getAAFor` method (see the method
 
// description for an example). If the method is used by an abstract attribute
 
// P, and it results in an abstract attribute Q, the Attributor will
 
// automatically capture a potential dependence from Q to P. This dependence
 
// will cause P to be reevaluated whenever Q changes in the future.
 
//
 
// The Attributor will only reevaluate abstract attributes that might have
 
// changed since the last iteration. That means that the Attribute will not
 
// revisit all instructions/blocks/functions in the module but only query
 
// an update from a subset of the abstract attributes.
 
//
 
// The update method `AbstractAttribute::updateImpl` is implemented by the
 
// specific "abstract attribute" subclasses. The method is invoked whenever the
 
// currently assumed state (see the AbstractState class) might not be valid
 
// anymore. This can, for example, happen if the state was dependent on another
 
// abstract attribute that changed. In every invocation, the update method has
 
// to adjust the internal state of an abstract attribute to a point that is
 
// justifiable by the underlying IR and the current state of abstract attributes
 
// in-flight. Since the IR is given and assumed to be valid, the information
 
// derived from it can be assumed to hold. However, information derived from
 
// other abstract attributes is conditional on various things. If the justifying
 
// state changed, the `updateImpl` has to revisit the situation and potentially
 
// find another justification or limit the optimistic assumes made.
 
//
 
// Change is the key in this framework. Until a state of no-change, thus a
 
// fixpoint, is reached, the Attributor will query the abstract attributes
 
// in-flight to re-evaluate their state. If the (current) state is too
 
// optimistic, hence it cannot be justified anymore through other abstract
 
// attributes or the state of the IR, the state of the abstract attribute will
 
// have to change. Generally, we assume abstract attribute state to be a finite
 
// height lattice and the update function to be monotone. However, these
 
// conditions are not enforced because the iteration limit will guarantee
 
// termination. If an optimistic fixpoint is reached, or a pessimistic fix
 
// point is enforced after a timeout, the abstract attributes are tasked to
 
// manifest their result in the IR for passes to come.
 
//
 
// Attribute manifestation is not mandatory. If desired, there is support to
 
// generate a single or multiple LLVM-IR attributes already in the helper struct
 
// IRAttribute. In the simplest case, a subclass inherits from IRAttribute with
 
// a proper Attribute::AttrKind as template parameter. The Attributor
 
// manifestation framework will then create and place a new attribute if it is
 
// allowed to do so (based on the abstract state). Other use cases can be
 
// achieved by overloading AbstractAttribute or IRAttribute methods.
 
//
 
//
 
// The "mechanics" of adding a new "abstract attribute":
 
// - Define a class (transitively) inheriting from AbstractAttribute and one
 
//   (which could be the same) that (transitively) inherits from AbstractState.
 
//   For the latter, consider the already available BooleanState and
 
//   {Inc,Dec,Bit}IntegerState if they fit your needs, e.g., you require only a
 
//   number tracking or bit-encoding.
 
// - Implement all pure methods. Also use overloading if the attribute is not
 
//   conforming with the "default" behavior: A (set of) LLVM-IR attribute(s) for
 
//   an argument, call site argument, function return value, or function. See
 
//   the class and method descriptions for more information on the two
 
//   "Abstract" classes and their respective methods.
 
// - Register opportunities for the new abstract attribute in the
 
//   `Attributor::identifyDefaultAbstractAttributes` method if it should be
 
//   counted as a 'default' attribute.
 
// - Add sufficient tests.
 
// - Add a Statistics object for bookkeeping. If it is a simple (set of)
 
//   attribute(s) manifested through the Attributor manifestation framework, see
 
//   the bookkeeping function in Attributor.cpp.
 
// - If instructions with a certain opcode are interesting to the attribute, add
 
//   that opcode to the switch in `Attributor::identifyAbstractAttributes`. This
 
//   will make it possible to query all those instructions through the
 
//   `InformationCache::getOpcodeInstMapForFunction` interface and eliminate the
 
//   need to traverse the IR repeatedly.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
 
#define LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
 
 
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/MapVector.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SetOperations.h"
 
#include "llvm/ADT/SetVector.h"
 
#include "llvm/ADT/Triple.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/Analysis/AssumeBundleQueries.h"
 
#include "llvm/Analysis/CFG.h"
 
#include "llvm/Analysis/CGSCCPassManager.h"
 
#include "llvm/Analysis/LazyCallGraph.h"
 
#include "llvm/Analysis/LoopInfo.h"
 
#include "llvm/Analysis/MemoryLocation.h"
 
#include "llvm/Analysis/MustExecute.h"
 
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 
#include "llvm/Analysis/PostDominators.h"
 
#include "llvm/Analysis/TargetLibraryInfo.h"
 
#include "llvm/IR/AbstractCallSite.h"
 
#include "llvm/IR/ConstantRange.h"
 
#include "llvm/IR/Constants.h"
 
#include "llvm/IR/InstIterator.h"
 
#include "llvm/IR/Instruction.h"
 
#include "llvm/IR/PassManager.h"
 
#include "llvm/IR/Value.h"
 
#include "llvm/Support/Alignment.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/DOTGraphTraits.h"
 
#include "llvm/Support/TimeProfiler.h"
 
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
 
 
 
#include <limits>
 
#include <map>
 
#include <optional>
 
 
 
namespace llvm {
 
 
 
class DataLayout;
 
class LLVMContext;
 
class Pass;
 
template <typename Fn> class function_ref;
 
struct AADepGraphNode;
 
struct AADepGraph;
 
struct Attributor;
 
struct AbstractAttribute;
 
struct InformationCache;
 
struct AAIsDead;
 
struct AttributorCallGraph;
 
struct IRPosition;
 
 
 
class AAResults;
 
class Function;
 
 
 
/// Abstract Attribute helper functions.
 
namespace AA {
 
using InstExclusionSetTy = SmallPtrSet<Instruction *, 4>;
 
 
 
enum class GPUAddressSpace : unsigned {
 
  Generic = 0,
 
  Global = 1,
 
  Shared = 3,
 
  Constant = 4,
 
  Local = 5,
 
};
 
 
 
/// Flags to distinguish intra-procedural queries from *potentially*
 
/// inter-procedural queries. Not that information can be valid for both and
 
/// therefore both bits might be set.
 
enum ValueScope : uint8_t {
 
  Intraprocedural = 1,
 
  Interprocedural = 2,
 
  AnyScope = Intraprocedural | Interprocedural,
 
};
 
 
 
struct ValueAndContext : public std::pair<Value *, const Instruction *> {
 
  using Base = std::pair<Value *, const Instruction *>;
 
  ValueAndContext(const Base &B) : Base(B) {}
 
  ValueAndContext(Value &V, const Instruction *CtxI) : Base(&V, CtxI) {}
 
  ValueAndContext(Value &V, const Instruction &CtxI) : Base(&V, &CtxI) {}
 
 
 
  Value *getValue() const { return this->first; }
 
  const Instruction *getCtxI() const { return this->second; }
 
};
 
 
 
/// Return true if \p I is a `nosync` instruction. Use generic reasoning and
 
/// potentially the corresponding AANoSync.
 
bool isNoSyncInst(Attributor &A, const Instruction &I,
 
                  const AbstractAttribute &QueryingAA);
 
 
 
/// Return true if \p V is dynamically unique, that is, there are no two
 
/// "instances" of \p V at runtime with different values.
 
/// Note: If \p ForAnalysisOnly is set we only check that the Attributor will
 
/// never use \p V to represent two "instances" not that \p V could not
 
/// technically represent them.
 
bool isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
 
                         const Value &V, bool ForAnalysisOnly = true);
 
 
 
/// Return true if \p V is a valid value in \p Scope, that is a constant or an
 
/// instruction/argument of \p Scope.
 
bool isValidInScope(const Value &V, const Function *Scope);
 
 
 
/// Return true if the value of \p VAC is a valid at the position of \p VAC,
 
/// that is a constant, an argument of the same function, or an instruction in
 
/// that function that dominates the position.
 
bool isValidAtPosition(const ValueAndContext &VAC, InformationCache &InfoCache);
 
 
 
/// Try to convert \p V to type \p Ty without introducing new instructions. If
 
/// this is not possible return `nullptr`. Note: this function basically knows
 
/// how to cast various constants.
 
Value *getWithType(Value &V, Type &Ty);
 
 
 
/// Return the combination of \p A and \p B such that the result is a possible
 
/// value of both. \p B is potentially casted to match the type \p Ty or the
 
/// type of \p A if \p Ty is null.
 
///
 
/// Examples:
 
///        X + none  => X
 
/// not_none + undef => not_none
 
///          V1 + V2 => nullptr
 
std::optional<Value *>
 
combineOptionalValuesInAAValueLatice(const std::optional<Value *> &A,
 
                                     const std::optional<Value *> &B, Type *Ty);
 
 
 
/// Helper to represent an access offset and size, with logic to deal with
 
/// uncertainty and check for overlapping accesses.
 
struct RangeTy {
 
  int64_t Offset = Unassigned;
 
  int64_t Size = Unassigned;
 
 
 
  RangeTy(int64_t Offset, int64_t Size) : Offset(Offset), Size(Size) {}
 
  RangeTy() = default;
 
  static RangeTy getUnknown() { return RangeTy{Unknown, Unknown}; }
 
 
 
  /// Return true if offset or size are unknown.
 
  bool offsetOrSizeAreUnknown() const {
 
    return Offset == RangeTy::Unknown || Size == RangeTy::Unknown;
 
  }
 
 
 
  /// Return true if offset and size are unknown, thus this is the default
 
  /// unknown object.
 
  bool offsetAndSizeAreUnknown() const {
 
    return Offset == RangeTy::Unknown && Size == RangeTy::Unknown;
 
  }
 
 
 
  /// Return true if the offset and size are unassigned.
 
  bool isUnassigned() const {
 
    assert((Offset == RangeTy::Unassigned) == (Size == RangeTy::Unassigned) &&
 
           "Inconsistent state!");
 
    return Offset == RangeTy::Unassigned;
 
  }
 
 
 
  /// Return true if this offset and size pair might describe an address that
 
  /// overlaps with \p Range.
 
  bool mayOverlap(const RangeTy &Range) const {
 
    // Any unknown value and we are giving up -> overlap.
 
    if (offsetOrSizeAreUnknown() || Range.offsetOrSizeAreUnknown())
 
      return true;
 
 
 
    // Check if one offset point is in the other interval [offset,
 
    // offset+size].
 
    return Range.Offset + Range.Size > Offset && Range.Offset < Offset + Size;
 
  }
 
 
 
  RangeTy &operator&=(const RangeTy &R) {
 
    if (Offset == Unassigned)
 
      Offset = R.Offset;
 
    else if (R.Offset != Unassigned && R.Offset != Offset)
 
      Offset = Unknown;
 
 
 
    if (Size == Unassigned)
 
      Size = R.Size;
 
    else if (Size == Unknown || R.Size == Unknown)
 
      Size = Unknown;
 
    else if (R.Size != Unassigned)
 
      Size = std::max(Size, R.Size);
 
 
 
    return *this;
 
  }
 
 
 
  /// Comparison for sorting ranges by offset.
 
  ///
 
  /// Returns true if the offset \p L is less than that of \p R.
 
  inline static bool OffsetLessThan(const RangeTy &L, const RangeTy &R) {
 
    return L.Offset < R.Offset;
 
  }
 
 
 
  /// Constants used to represent special offsets or sizes.
 
  /// - We cannot assume that Offsets and Size are non-negative.
 
  /// - The constants should not clash with DenseMapInfo, such as EmptyKey
 
  ///   (INT64_MAX) and TombstoneKey (INT64_MIN).
 
  /// We use values "in the middle" of the 64 bit range to represent these
 
  /// special cases.
 
  static constexpr int64_t Unassigned = std::numeric_limits<int32_t>::min();
 
  static constexpr int64_t Unknown = std::numeric_limits<int32_t>::max();
 
};
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, const RangeTy &R) {
 
  OS << "[" << R.Offset << ", " << R.Size << "]";
 
  return OS;
 
}
 
 
 
inline bool operator==(const RangeTy &A, const RangeTy &B) {
 
  return A.Offset == B.Offset && A.Size == B.Size;
 
}
 
 
 
inline bool operator!=(const RangeTy &A, const RangeTy &B) { return !(A == B); }
 
 
 
/// Return the initial value of \p Obj with type \p Ty if that is a constant.
 
Constant *getInitialValueForObj(Value &Obj, Type &Ty,
 
                                const TargetLibraryInfo *TLI,
 
                                const DataLayout &DL,
 
                                RangeTy *RangePtr = nullptr);
 
 
 
/// Collect all potential values \p LI could read into \p PotentialValues. That
 
/// is, the only values read by \p LI are assumed to be known and all are in
 
/// \p PotentialValues. \p PotentialValueOrigins will contain all the
 
/// instructions that might have put a potential value into \p PotentialValues.
 
/// Dependences onto \p QueryingAA are properly tracked, \p
 
/// UsedAssumedInformation will inform the caller if assumed information was
 
/// used.
 
///
 
/// \returns True if the assumed potential copies are all in \p PotentialValues,
 
///          false if something went wrong and the copies could not be
 
///          determined.
 
bool getPotentiallyLoadedValues(
 
    Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues,
 
    SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
 
    const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
 
    bool OnlyExact = false);
 
 
 
/// Collect all potential values of the one stored by \p SI into
 
/// \p PotentialCopies. That is, the only copies that were made via the
 
/// store are assumed to be known and all are in \p PotentialCopies. Dependences
 
/// onto \p QueryingAA are properly tracked, \p UsedAssumedInformation will
 
/// inform the caller if assumed information was used.
 
///
 
/// \returns True if the assumed potential copies are all in \p PotentialCopies,
 
///          false if something went wrong and the copies could not be
 
///          determined.
 
bool getPotentialCopiesOfStoredValue(
 
    Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
 
    const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
 
    bool OnlyExact = false);
 
 
 
/// Return true if \p IRP is readonly. This will query respective AAs that
 
/// deduce the information and introduce dependences for \p QueryingAA.
 
bool isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
 
                       const AbstractAttribute &QueryingAA, bool &IsKnown);
 
 
 
/// Return true if \p IRP is readnone. This will query respective AAs that
 
/// deduce the information and introduce dependences for \p QueryingAA.
 
bool isAssumedReadNone(Attributor &A, const IRPosition &IRP,
 
                       const AbstractAttribute &QueryingAA, bool &IsKnown);
 
 
 
/// Return true if \p ToI is potentially reachable from \p FromI without running
 
/// into any instruction in \p ExclusionSet The two instructions do not need to
 
/// be in the same function. \p GoBackwardsCB can be provided to convey domain
 
/// knowledge about the "lifespan" the user is interested in. By default, the
 
/// callers of \p FromI are checked as well to determine if \p ToI can be
 
/// reached. If the query is not interested in callers beyond a certain point,
 
/// e.g., a GPU kernel entry or the function containing an alloca, the
 
/// \p GoBackwardsCB should return false.
 
bool isPotentiallyReachable(
 
    Attributor &A, const Instruction &FromI, const Instruction &ToI,
 
    const AbstractAttribute &QueryingAA,
 
    const AA::InstExclusionSetTy *ExclusionSet = nullptr,
 
    std::function<bool(const Function &F)> GoBackwardsCB = nullptr);
 
 
 
/// Same as above but it is sufficient to reach any instruction in \p ToFn.
 
bool isPotentiallyReachable(
 
    Attributor &A, const Instruction &FromI, const Function &ToFn,
 
    const AbstractAttribute &QueryingAA,
 
    const AA::InstExclusionSetTy *ExclusionSet = nullptr,
 
    std::function<bool(const Function &F)> GoBackwardsCB = nullptr);
 
 
 
/// Return true if \p Obj is assumed to be a thread local object.
 
bool isAssumedThreadLocalObject(Attributor &A, Value &Obj,
 
                                const AbstractAttribute &QueryingAA);
 
 
 
/// Return true if \p I is potentially affected by a barrier.
 
bool isPotentiallyAffectedByBarrier(Attributor &A, const Instruction &I,
 
                                    const AbstractAttribute &QueryingAA);
 
bool isPotentiallyAffectedByBarrier(Attributor &A, ArrayRef<const Value *> Ptrs,
 
                                    const AbstractAttribute &QueryingAA,
 
                                    const Instruction *CtxI);
 
} // namespace AA
 
 
 
template <>
 
struct DenseMapInfo<AA::ValueAndContext>
 
    : public DenseMapInfo<AA::ValueAndContext::Base> {
 
  using Base = DenseMapInfo<AA::ValueAndContext::Base>;
 
  static inline AA::ValueAndContext getEmptyKey() {
 
    return Base::getEmptyKey();
 
  }
 
  static inline AA::ValueAndContext getTombstoneKey() {
 
    return Base::getTombstoneKey();
 
  }
 
  static unsigned getHashValue(const AA::ValueAndContext &VAC) {
 
    return Base::getHashValue(VAC);
 
  }
 
 
 
  static bool isEqual(const AA::ValueAndContext &LHS,
 
                      const AA::ValueAndContext &RHS) {
 
    return Base::isEqual(LHS, RHS);
 
  }
 
};
 
 
 
template <>
 
struct DenseMapInfo<AA::ValueScope> : public DenseMapInfo<unsigned char> {
 
  using Base = DenseMapInfo<unsigned char>;
 
  static inline AA::ValueScope getEmptyKey() {
 
    return AA::ValueScope(Base::getEmptyKey());
 
  }
 
  static inline AA::ValueScope getTombstoneKey() {
 
    return AA::ValueScope(Base::getTombstoneKey());
 
  }
 
  static unsigned getHashValue(const AA::ValueScope &S) {
 
    return Base::getHashValue(S);
 
  }
 
 
 
  static bool isEqual(const AA::ValueScope &LHS, const AA::ValueScope &RHS) {
 
    return Base::isEqual(LHS, RHS);
 
  }
 
};
 
 
 
template <>
 
struct DenseMapInfo<const AA::InstExclusionSetTy *>
 
    : public DenseMapInfo<void *> {
 
  using super = DenseMapInfo<void *>;
 
  static inline const AA::InstExclusionSetTy *getEmptyKey() {
 
    return static_cast<const AA::InstExclusionSetTy *>(super::getEmptyKey());
 
  }
 
  static inline const AA::InstExclusionSetTy *getTombstoneKey() {
 
    return static_cast<const AA::InstExclusionSetTy *>(
 
        super::getTombstoneKey());
 
  }
 
  static unsigned getHashValue(const AA::InstExclusionSetTy *BES) {
 
    unsigned H = 0;
 
    if (BES)
 
      for (const auto *II : *BES)
 
        H += DenseMapInfo<const Instruction *>::getHashValue(II);
 
    return H;
 
  }
 
  static bool isEqual(const AA::InstExclusionSetTy *LHS,
 
                      const AA::InstExclusionSetTy *RHS) {
 
    if (LHS == RHS)
 
      return true;
 
    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
 
        LHS == getTombstoneKey() || RHS == getTombstoneKey())
 
      return false;
 
    if (!LHS || !RHS)
 
      return ((LHS && LHS->empty()) || (RHS && RHS->empty()));
 
    if (LHS->size() != RHS->size())
 
      return false;
 
    return llvm::set_is_subset(*LHS, *RHS);
 
  }
 
};
 
 
 
/// The value passed to the line option that defines the maximal initialization
 
/// chain length.
 
extern unsigned MaxInitializationChainLength;
 
 
 
///{
 
enum class ChangeStatus {
 
  CHANGED,
 
  UNCHANGED,
 
};
 
 
 
ChangeStatus operator|(ChangeStatus l, ChangeStatus r);
 
ChangeStatus &operator|=(ChangeStatus &l, ChangeStatus r);
 
ChangeStatus operator&(ChangeStatus l, ChangeStatus r);
 
ChangeStatus &operator&=(ChangeStatus &l, ChangeStatus r);
 
 
 
enum class DepClassTy {
 
  REQUIRED, ///< The target cannot be valid if the source is not.
 
  OPTIONAL, ///< The target may be valid if the source is not.
 
  NONE,     ///< Do not track a dependence between source and target.
 
};
 
///}
 
 
 
/// The data structure for the nodes of a dependency graph
 
struct AADepGraphNode {
 
public:
 
  virtual ~AADepGraphNode() = default;
 
  using DepTy = PointerIntPair<AADepGraphNode *, 1>;
 
 
 
protected:
 
  /// Set of dependency graph nodes which should be updated if this one
 
  /// is updated. The bit encodes if it is optional.
 
  TinyPtrVector<DepTy> Deps;
 
 
 
  static AADepGraphNode *DepGetVal(DepTy &DT) { return DT.getPointer(); }
 
  static AbstractAttribute *DepGetValAA(DepTy &DT) {
 
    return cast<AbstractAttribute>(DT.getPointer());
 
  }
 
 
 
  operator AbstractAttribute *() { return cast<AbstractAttribute>(this); }
 
 
 
public:
 
  using iterator =
 
      mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
 
  using aaiterator =
 
      mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetValAA)>;
 
 
 
  aaiterator begin() { return aaiterator(Deps.begin(), &DepGetValAA); }
 
  aaiterator end() { return aaiterator(Deps.end(), &DepGetValAA); }
 
  iterator child_begin() { return iterator(Deps.begin(), &DepGetVal); }
 
  iterator child_end() { return iterator(Deps.end(), &DepGetVal); }
 
 
 
  virtual void print(raw_ostream &OS) const { OS << "AADepNode Impl\n"; }
 
  TinyPtrVector<DepTy> &getDeps() { return Deps; }
 
 
 
  friend struct Attributor;
 
  friend struct AADepGraph;
 
};
 
 
 
/// The data structure for the dependency graph
 
///
 
/// Note that in this graph if there is an edge from A to B (A -> B),
 
/// then it means that B depends on A, and when the state of A is
 
/// updated, node B should also be updated
 
struct AADepGraph {
 
  AADepGraph() = default;
 
  ~AADepGraph() = default;
 
 
 
  using DepTy = AADepGraphNode::DepTy;
 
  static AADepGraphNode *DepGetVal(DepTy &DT) { return DT.getPointer(); }
 
  using iterator =
 
      mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
 
 
 
  /// There is no root node for the dependency graph. But the SCCIterator
 
  /// requires a single entry point, so we maintain a fake("synthetic") root
 
  /// node that depends on every node.
 
  AADepGraphNode SyntheticRoot;
 
  AADepGraphNode *GetEntryNode() { return &SyntheticRoot; }
 
 
 
  iterator begin() { return SyntheticRoot.child_begin(); }
 
  iterator end() { return SyntheticRoot.child_end(); }
 
 
 
  void viewGraph();
 
 
 
  /// Dump graph to file
 
  void dumpGraph();
 
 
 
  /// Print dependency graph
 
  void print();
 
};
 
 
 
/// Helper to describe and deal with positions in the LLVM-IR.
 
///
 
/// A position in the IR is described by an anchor value and an "offset" that
 
/// could be the argument number, for call sites and arguments, or an indicator
 
/// of the "position kind". The kinds, specified in the Kind enum below, include
 
/// the locations in the attribute list, i.a., function scope and return value,
 
/// as well as a distinction between call sites and functions. Finally, there
 
/// are floating values that do not have a corresponding attribute list
 
/// position.
 
struct IRPosition {
 
  // NOTE: In the future this definition can be changed to support recursive
 
  // functions.
 
  using CallBaseContext = CallBase;
 
 
 
  /// The positions we distinguish in the IR.
 
  enum Kind : char {
 
    IRP_INVALID,  ///< An invalid position.
 
    IRP_FLOAT,    ///< A position that is not associated with a spot suitable
 
                  ///< for attributes. This could be any value or instruction.
 
    IRP_RETURNED, ///< An attribute for the function return value.
 
    IRP_CALL_SITE_RETURNED, ///< An attribute for a call site return value.
 
    IRP_FUNCTION,           ///< An attribute for a function (scope).
 
    IRP_CALL_SITE,          ///< An attribute for a call site (function scope).
 
    IRP_ARGUMENT,           ///< An attribute for a function argument.
 
    IRP_CALL_SITE_ARGUMENT, ///< An attribute for a call site argument.
 
  };
 
 
 
  /// Default constructor available to create invalid positions implicitly. All
 
  /// other positions need to be created explicitly through the appropriate
 
  /// static member function.
 
  IRPosition() : Enc(nullptr, ENC_VALUE) { verify(); }
 
 
 
  /// Create a position describing the value of \p V.
 
  static const IRPosition value(const Value &V,
 
                                const CallBaseContext *CBContext = nullptr) {
 
    if (auto *Arg = dyn_cast<Argument>(&V))
 
      return IRPosition::argument(*Arg, CBContext);
 
    if (auto *CB = dyn_cast<CallBase>(&V))
 
      return IRPosition::callsite_returned(*CB);
 
    return IRPosition(const_cast<Value &>(V), IRP_FLOAT, CBContext);
 
  }
 
 
 
  /// Create a position describing the instruction \p I. This is different from
 
  /// the value version because call sites are treated as intrusctions rather
 
  /// than their return value in this function.
 
  static const IRPosition inst(const Instruction &I,
 
                               const CallBaseContext *CBContext = nullptr) {
 
    return IRPosition(const_cast<Instruction &>(I), IRP_FLOAT, CBContext);
 
  }
 
 
 
  /// Create a position describing the function scope of \p F.
 
  /// \p CBContext is used for call base specific analysis.
 
  static const IRPosition function(const Function &F,
 
                                   const CallBaseContext *CBContext = nullptr) {
 
    return IRPosition(const_cast<Function &>(F), IRP_FUNCTION, CBContext);
 
  }
 
 
 
  /// Create a position describing the returned value of \p F.
 
  /// \p CBContext is used for call base specific analysis.
 
  static const IRPosition returned(const Function &F,
 
                                   const CallBaseContext *CBContext = nullptr) {
 
    return IRPosition(const_cast<Function &>(F), IRP_RETURNED, CBContext);
 
  }
 
 
 
  /// Create a position describing the argument \p Arg.
 
  /// \p CBContext is used for call base specific analysis.
 
  static const IRPosition argument(const Argument &Arg,
 
                                   const CallBaseContext *CBContext = nullptr) {
 
    return IRPosition(const_cast<Argument &>(Arg), IRP_ARGUMENT, CBContext);
 
  }
 
 
 
  /// Create a position describing the function scope of \p CB.
 
  static const IRPosition callsite_function(const CallBase &CB) {
 
    return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE);
 
  }
 
 
 
  /// Create a position describing the returned value of \p CB.
 
  static const IRPosition callsite_returned(const CallBase &CB) {
 
    return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE_RETURNED);
 
  }
 
 
 
  /// Create a position describing the argument of \p CB at position \p ArgNo.
 
  static const IRPosition callsite_argument(const CallBase &CB,
 
                                            unsigned ArgNo) {
 
    return IRPosition(const_cast<Use &>(CB.getArgOperandUse(ArgNo)),
 
                      IRP_CALL_SITE_ARGUMENT);
 
  }
 
 
 
  /// Create a position describing the argument of \p ACS at position \p ArgNo.
 
  static const IRPosition callsite_argument(AbstractCallSite ACS,
 
                                            unsigned ArgNo) {
 
    if (ACS.getNumArgOperands() <= ArgNo)
 
      return IRPosition();
 
    int CSArgNo = ACS.getCallArgOperandNo(ArgNo);
 
    if (CSArgNo >= 0)
 
      return IRPosition::callsite_argument(
 
          cast<CallBase>(*ACS.getInstruction()), CSArgNo);
 
    return IRPosition();
 
  }
 
 
 
  /// Create a position with function scope matching the "context" of \p IRP.
 
  /// If \p IRP is a call site (see isAnyCallSitePosition()) then the result
 
  /// will be a call site position, otherwise the function position of the
 
  /// associated function.
 
  static const IRPosition
 
  function_scope(const IRPosition &IRP,
 
                 const CallBaseContext *CBContext = nullptr) {
 
    if (IRP.isAnyCallSitePosition()) {
 
      return IRPosition::callsite_function(
 
          cast<CallBase>(IRP.getAnchorValue()));
 
    }
 
    assert(IRP.getAssociatedFunction());
 
    return IRPosition::function(*IRP.getAssociatedFunction(), CBContext);
 
  }
 
 
 
  bool operator==(const IRPosition &RHS) const {
 
    return Enc == RHS.Enc && RHS.CBContext == CBContext;
 
  }
 
  bool operator!=(const IRPosition &RHS) const { return !(*this == RHS); }
 
 
 
  /// Return the value this abstract attribute is anchored with.
 
  ///
 
  /// The anchor value might not be the associated value if the latter is not
 
  /// sufficient to determine where arguments will be manifested. This is, so
 
  /// far, only the case for call site arguments as the value is not sufficient
 
  /// to pinpoint them. Instead, we can use the call site as an anchor.
 
  Value &getAnchorValue() const {
 
    switch (getEncodingBits()) {
 
    case ENC_VALUE:
 
    case ENC_RETURNED_VALUE:
 
    case ENC_FLOATING_FUNCTION:
 
      return *getAsValuePtr();
 
    case ENC_CALL_SITE_ARGUMENT_USE:
 
      return *(getAsUsePtr()->getUser());
 
    default:
 
      llvm_unreachable("Unkown encoding!");
 
    };
 
  }
 
 
 
  /// Return the associated function, if any.
 
  Function *getAssociatedFunction() const {
 
    if (auto *CB = dyn_cast<CallBase>(&getAnchorValue())) {
 
      // We reuse the logic that associates callback calles to arguments of a
 
      // call site here to identify the callback callee as the associated
 
      // function.
 
      if (Argument *Arg = getAssociatedArgument())
 
        return Arg->getParent();
 
      return CB->getCalledFunction();
 
    }
 
    return getAnchorScope();
 
  }
 
 
 
  /// Return the associated argument, if any.
 
  Argument *getAssociatedArgument() const;
 
 
 
  /// Return true if the position refers to a function interface, that is the
 
  /// function scope, the function return, or an argument.
 
  bool isFnInterfaceKind() const {
 
    switch (getPositionKind()) {
 
    case IRPosition::IRP_FUNCTION:
 
    case IRPosition::IRP_RETURNED:
 
    case IRPosition::IRP_ARGUMENT:
 
      return true;
 
    default:
 
      return false;
 
    }
 
  }
 
 
 
  /// Return the Function surrounding the anchor value.
 
  Function *getAnchorScope() const {
 
    Value &V = getAnchorValue();
 
    if (isa<Function>(V))
 
      return &cast<Function>(V);
 
    if (isa<Argument>(V))
 
      return cast<Argument>(V).getParent();
 
    if (isa<Instruction>(V))
 
      return cast<Instruction>(V).getFunction();
 
    return nullptr;
 
  }
 
 
 
  /// Return the context instruction, if any.
 
  Instruction *getCtxI() const {
 
    Value &V = getAnchorValue();
 
    if (auto *I = dyn_cast<Instruction>(&V))
 
      return I;
 
    if (auto *Arg = dyn_cast<Argument>(&V))
 
      if (!Arg->getParent()->isDeclaration())
 
        return &Arg->getParent()->getEntryBlock().front();
 
    if (auto *F = dyn_cast<Function>(&V))
 
      if (!F->isDeclaration())
 
        return &(F->getEntryBlock().front());
 
    return nullptr;
 
  }
 
 
 
  /// Return the value this abstract attribute is associated with.
 
  Value &getAssociatedValue() const {
 
    if (getCallSiteArgNo() < 0 || isa<Argument>(&getAnchorValue()))
 
      return getAnchorValue();
 
    assert(isa<CallBase>(&getAnchorValue()) && "Expected a call base!");
 
    return *cast<CallBase>(&getAnchorValue())
 
                ->getArgOperand(getCallSiteArgNo());
 
  }
 
 
 
  /// Return the type this abstract attribute is associated with.
 
  Type *getAssociatedType() const {
 
    if (getPositionKind() == IRPosition::IRP_RETURNED)
 
      return getAssociatedFunction()->getReturnType();
 
    return getAssociatedValue().getType();
 
  }
 
 
 
  /// Return the callee argument number of the associated value if it is an
 
  /// argument or call site argument, otherwise a negative value. In contrast to
 
  /// `getCallSiteArgNo` this method will always return the "argument number"
 
  /// from the perspective of the callee. This may not the same as the call site
 
  /// if this is a callback call.
 
  int getCalleeArgNo() const {
 
    return getArgNo(/* CallbackCalleeArgIfApplicable */ true);
 
  }
 
 
 
  /// Return the call site argument number of the associated value if it is an
 
  /// argument or call site argument, otherwise a negative value. In contrast to
 
  /// `getCalleArgNo` this method will always return the "operand number" from
 
  /// the perspective of the call site. This may not the same as the callee
 
  /// perspective if this is a callback call.
 
  int getCallSiteArgNo() const {
 
    return getArgNo(/* CallbackCalleeArgIfApplicable */ false);
 
  }
 
 
 
  /// Return the index in the attribute list for this position.
 
  unsigned getAttrIdx() const {
 
    switch (getPositionKind()) {
 
    case IRPosition::IRP_INVALID:
 
    case IRPosition::IRP_FLOAT:
 
      break;
 
    case IRPosition::IRP_FUNCTION:
 
    case IRPosition::IRP_CALL_SITE:
 
      return AttributeList::FunctionIndex;
 
    case IRPosition::IRP_RETURNED:
 
    case IRPosition::IRP_CALL_SITE_RETURNED:
 
      return AttributeList::ReturnIndex;
 
    case IRPosition::IRP_ARGUMENT:
 
    case IRPosition::IRP_CALL_SITE_ARGUMENT:
 
      return getCallSiteArgNo() + AttributeList::FirstArgIndex;
 
    }
 
    llvm_unreachable(
 
        "There is no attribute index for a floating or invalid position!");
 
  }
 
 
 
  /// Return the associated position kind.
 
  Kind getPositionKind() const {
 
    char EncodingBits = getEncodingBits();
 
    if (EncodingBits == ENC_CALL_SITE_ARGUMENT_USE)
 
      return IRP_CALL_SITE_ARGUMENT;
 
    if (EncodingBits == ENC_FLOATING_FUNCTION)
 
      return IRP_FLOAT;
 
 
 
    Value *V = getAsValuePtr();
 
    if (!V)
 
      return IRP_INVALID;
 
    if (isa<Argument>(V))
 
      return IRP_ARGUMENT;
 
    if (isa<Function>(V))
 
      return isReturnPosition(EncodingBits) ? IRP_RETURNED : IRP_FUNCTION;
 
    if (isa<CallBase>(V))
 
      return isReturnPosition(EncodingBits) ? IRP_CALL_SITE_RETURNED
 
                                            : IRP_CALL_SITE;
 
    return IRP_FLOAT;
 
  }
 
 
 
  /// TODO: Figure out if the attribute related helper functions should live
 
  ///       here or somewhere else.
 
 
 
  /// Return true if any kind in \p AKs existing in the IR at a position that
 
  /// will affect this one. See also getAttrs(...).
 
  /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
 
  ///                                 e.g., the function position if this is an
 
  ///                                 argument position, should be ignored.
 
  bool hasAttr(ArrayRef<Attribute::AttrKind> AKs,
 
               bool IgnoreSubsumingPositions = false,
 
               Attributor *A = nullptr) const;
 
 
 
  /// Return the attributes of any kind in \p AKs existing in the IR at a
 
  /// position that will affect this one. While each position can only have a
 
  /// single attribute of any kind in \p AKs, there are "subsuming" positions
 
  /// that could have an attribute as well. This method returns all attributes
 
  /// found in \p Attrs.
 
  /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
 
  ///                                 e.g., the function position if this is an
 
  ///                                 argument position, should be ignored.
 
  void getAttrs(ArrayRef<Attribute::AttrKind> AKs,
 
                SmallVectorImpl<Attribute> &Attrs,
 
                bool IgnoreSubsumingPositions = false,
 
                Attributor *A = nullptr) const;
 
 
 
  /// Remove the attribute of kind \p AKs existing in the IR at this position.
 
  void removeAttrs(ArrayRef<Attribute::AttrKind> AKs) const {
 
    if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
 
      return;
 
 
 
    AttributeList AttrList;
 
    auto *CB = dyn_cast<CallBase>(&getAnchorValue());
 
    if (CB)
 
      AttrList = CB->getAttributes();
 
    else
 
      AttrList = getAssociatedFunction()->getAttributes();
 
 
 
    LLVMContext &Ctx = getAnchorValue().getContext();
 
    for (Attribute::AttrKind AK : AKs)
 
      AttrList = AttrList.removeAttributeAtIndex(Ctx, getAttrIdx(), AK);
 
 
 
    if (CB)
 
      CB->setAttributes(AttrList);
 
    else
 
      getAssociatedFunction()->setAttributes(AttrList);
 
  }
 
 
 
  bool isAnyCallSitePosition() const {
 
    switch (getPositionKind()) {
 
    case IRPosition::IRP_CALL_SITE:
 
    case IRPosition::IRP_CALL_SITE_RETURNED:
 
    case IRPosition::IRP_CALL_SITE_ARGUMENT:
 
      return true;
 
    default:
 
      return false;
 
    }
 
  }
 
 
 
  /// Return true if the position is an argument or call site argument.
 
  bool isArgumentPosition() const {
 
    switch (getPositionKind()) {
 
    case IRPosition::IRP_ARGUMENT:
 
    case IRPosition::IRP_CALL_SITE_ARGUMENT:
 
      return true;
 
    default:
 
      return false;
 
    }
 
  }
 
 
 
  /// Return the same position without the call base context.
 
  IRPosition stripCallBaseContext() const {
 
    IRPosition Result = *this;
 
    Result.CBContext = nullptr;
 
    return Result;
 
  }
 
 
 
  /// Get the call base context from the position.
 
  const CallBaseContext *getCallBaseContext() const { return CBContext; }
 
 
 
  /// Check if the position has any call base context.
 
  bool hasCallBaseContext() const { return CBContext != nullptr; }
 
 
 
  /// Special DenseMap key values.
 
  ///
 
  ///{
 
  static const IRPosition EmptyKey;
 
  static const IRPosition TombstoneKey;
 
  ///}
 
 
 
  /// Conversion into a void * to allow reuse of pointer hashing.
 
  operator void *() const { return Enc.getOpaqueValue(); }
 
 
 
private:
 
  /// Private constructor for special values only!
 
  explicit IRPosition(void *Ptr, const CallBaseContext *CBContext = nullptr)
 
      : CBContext(CBContext) {
 
    Enc.setFromOpaqueValue(Ptr);
 
  }
 
 
 
  /// IRPosition anchored at \p AnchorVal with kind/argument numbet \p PK.
 
  explicit IRPosition(Value &AnchorVal, Kind PK,
 
                      const CallBaseContext *CBContext = nullptr)
 
      : CBContext(CBContext) {
 
    switch (PK) {
 
    case IRPosition::IRP_INVALID:
 
      llvm_unreachable("Cannot create invalid IRP with an anchor value!");
 
      break;
 
    case IRPosition::IRP_FLOAT:
 
      // Special case for floating functions.
 
      if (isa<Function>(AnchorVal) || isa<CallBase>(AnchorVal))
 
        Enc = {&AnchorVal, ENC_FLOATING_FUNCTION};
 
      else
 
        Enc = {&AnchorVal, ENC_VALUE};
 
      break;
 
    case IRPosition::IRP_FUNCTION:
 
    case IRPosition::IRP_CALL_SITE:
 
      Enc = {&AnchorVal, ENC_VALUE};
 
      break;
 
    case IRPosition::IRP_RETURNED:
 
    case IRPosition::IRP_CALL_SITE_RETURNED:
 
      Enc = {&AnchorVal, ENC_RETURNED_VALUE};
 
      break;
 
    case IRPosition::IRP_ARGUMENT:
 
      Enc = {&AnchorVal, ENC_VALUE};
 
      break;
 
    case IRPosition::IRP_CALL_SITE_ARGUMENT:
 
      llvm_unreachable(
 
          "Cannot create call site argument IRP with an anchor value!");
 
      break;
 
    }
 
    verify();
 
  }
 
 
 
  /// Return the callee argument number of the associated value if it is an
 
  /// argument or call site argument. See also `getCalleeArgNo` and
 
  /// `getCallSiteArgNo`.
 
  int getArgNo(bool CallbackCalleeArgIfApplicable) const {
 
    if (CallbackCalleeArgIfApplicable)
 
      if (Argument *Arg = getAssociatedArgument())
 
        return Arg->getArgNo();
 
    switch (getPositionKind()) {
 
    case IRPosition::IRP_ARGUMENT:
 
      return cast<Argument>(getAsValuePtr())->getArgNo();
 
    case IRPosition::IRP_CALL_SITE_ARGUMENT: {
 
      Use &U = *getAsUsePtr();
 
      return cast<CallBase>(U.getUser())->getArgOperandNo(&U);
 
    }
 
    default:
 
      return -1;
 
    }
 
  }
 
 
 
  /// IRPosition for the use \p U. The position kind \p PK needs to be
 
  /// IRP_CALL_SITE_ARGUMENT, the anchor value is the user, the associated value
 
  /// the used value.
 
  explicit IRPosition(Use &U, Kind PK) {
 
    assert(PK == IRP_CALL_SITE_ARGUMENT &&
 
           "Use constructor is for call site arguments only!");
 
    Enc = {&U, ENC_CALL_SITE_ARGUMENT_USE};
 
    verify();
 
  }
 
 
 
  /// Verify internal invariants.
 
  void verify();
 
 
 
  /// Return the attributes of kind \p AK existing in the IR as attribute.
 
  bool getAttrsFromIRAttr(Attribute::AttrKind AK,
 
                          SmallVectorImpl<Attribute> &Attrs) const;
 
 
 
  /// Return the attributes of kind \p AK existing in the IR as operand bundles
 
  /// of an llvm.assume.
 
  bool getAttrsFromAssumes(Attribute::AttrKind AK,
 
                           SmallVectorImpl<Attribute> &Attrs,
 
                           Attributor &A) const;
 
 
 
  /// Return the underlying pointer as Value *, valid for all positions but
 
  /// IRP_CALL_SITE_ARGUMENT.
 
  Value *getAsValuePtr() const {
 
    assert(getEncodingBits() != ENC_CALL_SITE_ARGUMENT_USE &&
 
           "Not a value pointer!");
 
    return reinterpret_cast<Value *>(Enc.getPointer());
 
  }
 
 
 
  /// Return the underlying pointer as Use *, valid only for
 
  /// IRP_CALL_SITE_ARGUMENT positions.
 
  Use *getAsUsePtr() const {
 
    assert(getEncodingBits() == ENC_CALL_SITE_ARGUMENT_USE &&
 
           "Not a value pointer!");
 
    return reinterpret_cast<Use *>(Enc.getPointer());
 
  }
 
 
 
  /// Return true if \p EncodingBits describe a returned or call site returned
 
  /// position.
 
  static bool isReturnPosition(char EncodingBits) {
 
    return EncodingBits == ENC_RETURNED_VALUE;
 
  }
 
 
 
  /// Return true if the encoding bits describe a returned or call site returned
 
  /// position.
 
  bool isReturnPosition() const { return isReturnPosition(getEncodingBits()); }
 
 
 
  /// The encoding of the IRPosition is a combination of a pointer and two
 
  /// encoding bits. The values of the encoding bits are defined in the enum
 
  /// below. The pointer is either a Value* (for the first three encoding bit
 
  /// combinations) or Use* (for ENC_CALL_SITE_ARGUMENT_USE).
 
  ///
 
  ///{
 
  enum {
 
    ENC_VALUE = 0b00,
 
    ENC_RETURNED_VALUE = 0b01,
 
    ENC_FLOATING_FUNCTION = 0b10,
 
    ENC_CALL_SITE_ARGUMENT_USE = 0b11,
 
  };
 
 
 
  // Reserve the maximal amount of bits so there is no need to mask out the
 
  // remaining ones. We will not encode anything else in the pointer anyway.
 
  static constexpr int NumEncodingBits =
 
      PointerLikeTypeTraits<void *>::NumLowBitsAvailable;
 
  static_assert(NumEncodingBits >= 2, "At least two bits are required!");
 
 
 
  /// The pointer with the encoding bits.
 
  PointerIntPair<void *, NumEncodingBits, char> Enc;
 
  ///}
 
 
 
  /// Call base context. Used for callsite specific analysis.
 
  const CallBaseContext *CBContext = nullptr;
 
 
 
  /// Return the encoding bits.
 
  char getEncodingBits() const { return Enc.getInt(); }
 
};
 
 
 
/// Helper that allows IRPosition as a key in a DenseMap.
 
template <> struct DenseMapInfo<IRPosition> {
 
  static inline IRPosition getEmptyKey() { return IRPosition::EmptyKey; }
 
  static inline IRPosition getTombstoneKey() {
 
    return IRPosition::TombstoneKey;
 
  }
 
  static unsigned getHashValue(const IRPosition &IRP) {
 
    return (DenseMapInfo<void *>::getHashValue(IRP) << 4) ^
 
           (DenseMapInfo<Value *>::getHashValue(IRP.getCallBaseContext()));
 
  }
 
 
 
  static bool isEqual(const IRPosition &a, const IRPosition &b) {
 
    return a == b;
 
  }
 
};
 
 
 
/// A visitor class for IR positions.
 
///
 
/// Given a position P, the SubsumingPositionIterator allows to visit "subsuming
 
/// positions" wrt. attributes/information. Thus, if a piece of information
 
/// holds for a subsuming position, it also holds for the position P.
 
///
 
/// The subsuming positions always include the initial position and then,
 
/// depending on the position kind, additionally the following ones:
 
/// - for IRP_RETURNED:
 
///   - the function (IRP_FUNCTION)
 
/// - for IRP_ARGUMENT:
 
///   - the function (IRP_FUNCTION)
 
/// - for IRP_CALL_SITE:
 
///   - the callee (IRP_FUNCTION), if known
 
/// - for IRP_CALL_SITE_RETURNED:
 
///   - the callee (IRP_RETURNED), if known
 
///   - the call site (IRP_FUNCTION)
 
///   - the callee (IRP_FUNCTION), if known
 
/// - for IRP_CALL_SITE_ARGUMENT:
 
///   - the argument of the callee (IRP_ARGUMENT), if known
 
///   - the callee (IRP_FUNCTION), if known
 
///   - the position the call site argument is associated with if it is not
 
///     anchored to the call site, e.g., if it is an argument then the argument
 
///     (IRP_ARGUMENT)
 
class SubsumingPositionIterator {
 
  SmallVector<IRPosition, 4> IRPositions;
 
  using iterator = decltype(IRPositions)::iterator;
 
 
 
public:
 
  SubsumingPositionIterator(const IRPosition &IRP);
 
  iterator begin() { return IRPositions.begin(); }
 
  iterator end() { return IRPositions.end(); }
 
};
 
 
 
/// Wrapper for FunctionAnalysisManager.
 
struct AnalysisGetter {
 
  // The client may be running the old pass manager, in which case, we need to
 
  // map the requested Analysis to its equivalent wrapper in the old pass
 
  // manager. The scheme implemented here does not require every Analysis to be
 
  // updated. Only those new analyses that the client cares about in the old
 
  // pass manager need to expose a LegacyWrapper type, and that wrapper should
 
  // support a getResult() method that matches the new Analysis.
 
  //
 
  // We need SFINAE to check for the LegacyWrapper, but function templates don't
 
  // allow partial specialization, which is needed in this case. So instead, we
 
  // use a constexpr bool to perform the SFINAE, and then use this information
 
  // inside the function template.
 
  template <typename, typename = void> static constexpr bool HasLegacyWrapper = false;
 
 
 
  template <typename Analysis>
 
  typename Analysis::Result *getAnalysis(const Function &F) {
 
    if (FAM)
 
      return &FAM->getResult<Analysis>(const_cast<Function &>(F));
 
    if constexpr (HasLegacyWrapper<Analysis>)
 
      if (LegacyPass)
 
        return &LegacyPass
 
                    ->getAnalysis<typename Analysis::LegacyWrapper>(
 
                        const_cast<Function &>(F))
 
                    .getResult();
 
    return nullptr;
 
  }
 
 
 
  AnalysisGetter(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
 
  AnalysisGetter(Pass *P) : LegacyPass(P) {}
 
  AnalysisGetter() = default;
 
 
 
private:
 
  FunctionAnalysisManager *FAM = nullptr;
 
  Pass *LegacyPass = nullptr;
 
};
 
 
 
template <typename Analysis>
 
constexpr bool AnalysisGetter::HasLegacyWrapper<
 
      Analysis, std::void_t<typename Analysis::LegacyWrapper>> = true;
 
 
 
/// Data structure to hold cached (LLVM-IR) information.
 
///
 
/// All attributes are given an InformationCache object at creation time to
 
/// avoid inspection of the IR by all of them individually. This default
 
/// InformationCache will hold information required by 'default' attributes,
 
/// thus the ones deduced when Attributor::identifyDefaultAbstractAttributes(..)
 
/// is called.
 
///
 
/// If custom abstract attributes, registered manually through
 
/// Attributor::registerAA(...), need more information, especially if it is not
 
/// reusable, it is advised to inherit from the InformationCache and cast the
 
/// instance down in the abstract attributes.
 
struct InformationCache {
 
  InformationCache(const Module &M, AnalysisGetter &AG,
 
                   BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC)
 
      : DL(M.getDataLayout()), Allocator(Allocator),
 
        Explorer(
 
            /* ExploreInterBlock */ true, /* ExploreCFGForward */ true,
 
            /* ExploreCFGBackward */ true,
 
            /* LIGetter */
 
            [&](const Function &F) { return AG.getAnalysis<LoopAnalysis>(F); },
 
            /* DTGetter */
 
            [&](const Function &F) {
 
              return AG.getAnalysis<DominatorTreeAnalysis>(F);
 
            },
 
            /* PDTGetter */
 
            [&](const Function &F) {
 
              return AG.getAnalysis<PostDominatorTreeAnalysis>(F);
 
            }),
 
        AG(AG), TargetTriple(M.getTargetTriple()) {
 
    if (CGSCC)
 
      initializeModuleSlice(*CGSCC);
 
  }
 
 
 
  ~InformationCache() {
 
    // The FunctionInfo objects are allocated via a BumpPtrAllocator, we call
 
    // the destructor manually.
 
    for (auto &It : FuncInfoMap)
 
      It.getSecond()->~FunctionInfo();
 
    // Same is true for the instruction exclusions sets.
 
    using AA::InstExclusionSetTy;
 
    for (auto *BES : BESets)
 
      BES->~InstExclusionSetTy();
 
  }
 
 
 
  /// Apply \p CB to all uses of \p F. If \p LookThroughConstantExprUses is
 
  /// true, constant expression users are not given to \p CB but their uses are
 
  /// traversed transitively.
 
  template <typename CBTy>
 
  static void foreachUse(Function &F, CBTy CB,
 
                         bool LookThroughConstantExprUses = true) {
 
    SmallVector<Use *, 8> Worklist(make_pointer_range(F.uses()));
 
 
 
    for (unsigned Idx = 0; Idx < Worklist.size(); ++Idx) {
 
      Use &U = *Worklist[Idx];
 
 
 
      // Allow use in constant bitcasts and simply look through them.
 
      if (LookThroughConstantExprUses && isa<ConstantExpr>(U.getUser())) {
 
        for (Use &CEU : cast<ConstantExpr>(U.getUser())->uses())
 
          Worklist.push_back(&CEU);
 
        continue;
 
      }
 
 
 
      CB(U);
 
    }
 
  }
 
 
 
  /// Initialize the ModuleSlice member based on \p SCC. ModuleSlices contains
 
  /// (a subset of) all functions that we can look at during this SCC traversal.
 
  /// This includes functions (transitively) called from the SCC and the
 
  /// (transitive) callers of SCC functions. We also can look at a function if
 
  /// there is a "reference edge", i.a., if the function somehow uses (!=calls)
 
  /// a function in the SCC or a caller of a function in the SCC.
 
  void initializeModuleSlice(SetVector<Function *> &SCC) {
 
    ModuleSlice.insert(SCC.begin(), SCC.end());
 
 
 
    SmallPtrSet<Function *, 16> Seen;
 
    SmallVector<Function *, 16> Worklist(SCC.begin(), SCC.end());
 
    while (!Worklist.empty()) {
 
      Function *F = Worklist.pop_back_val();
 
      ModuleSlice.insert(F);
 
 
 
      for (Instruction &I : instructions(*F))
 
        if (auto *CB = dyn_cast<CallBase>(&I))
 
          if (Function *Callee = CB->getCalledFunction())
 
            if (Seen.insert(Callee).second)
 
              Worklist.push_back(Callee);
 
    }
 
 
 
    Seen.clear();
 
    Worklist.append(SCC.begin(), SCC.end());
 
    while (!Worklist.empty()) {
 
      Function *F = Worklist.pop_back_val();
 
      ModuleSlice.insert(F);
 
 
 
      // Traverse all transitive uses.
 
      foreachUse(*F, [&](Use &U) {
 
        if (auto *UsrI = dyn_cast<Instruction>(U.getUser()))
 
          if (Seen.insert(UsrI->getFunction()).second)
 
            Worklist.push_back(UsrI->getFunction());
 
      });
 
    }
 
  }
 
 
 
  /// The slice of the module we are allowed to look at.
 
  SmallPtrSet<Function *, 8> ModuleSlice;
 
 
 
  /// A vector type to hold instructions.
 
  using InstructionVectorTy = SmallVector<Instruction *, 8>;
 
 
 
  /// A map type from opcodes to instructions with this opcode.
 
  using OpcodeInstMapTy = DenseMap<unsigned, InstructionVectorTy *>;
 
 
 
  /// Return the map that relates "interesting" opcodes with all instructions
 
  /// with that opcode in \p F.
 
  OpcodeInstMapTy &getOpcodeInstMapForFunction(const Function &F) {
 
    return getFunctionInfo(F).OpcodeInstMap;
 
  }
 
 
 
  /// Return the instructions in \p F that may read or write memory.
 
  InstructionVectorTy &getReadOrWriteInstsForFunction(const Function &F) {
 
    return getFunctionInfo(F).RWInsts;
 
  }
 
 
 
  /// Return MustBeExecutedContextExplorer
 
  MustBeExecutedContextExplorer &getMustBeExecutedContextExplorer() {
 
    return Explorer;
 
  }
 
 
 
  /// Return TargetLibraryInfo for function \p F.
 
  TargetLibraryInfo *getTargetLibraryInfoForFunction(const Function &F) {
 
    return AG.getAnalysis<TargetLibraryAnalysis>(F);
 
  }
 
 
 
  /// Return AliasAnalysis Result for function \p F.
 
  AAResults *getAAResultsForFunction(const Function &F);
 
 
 
  /// Return true if \p Arg is involved in a must-tail call, thus the argument
 
  /// of the caller or callee.
 
  bool isInvolvedInMustTailCall(const Argument &Arg) {
 
    FunctionInfo &FI = getFunctionInfo(*Arg.getParent());
 
    return FI.CalledViaMustTail || FI.ContainsMustTailCall;
 
  }
 
 
 
  bool isOnlyUsedByAssume(const Instruction &I) const {
 
    return AssumeOnlyValues.contains(&I);
 
  }
 
 
 
  /// Return the analysis result from a pass \p AP for function \p F.
 
  template <typename AP>
 
  typename AP::Result *getAnalysisResultForFunction(const Function &F) {
 
    return AG.getAnalysis<AP>(F);
 
  }
 
 
 
  /// Return datalayout used in the module.
 
  const DataLayout &getDL() { return DL; }
 
 
 
  /// Return the map conaining all the knowledge we have from `llvm.assume`s.
 
  const RetainedKnowledgeMap &getKnowledgeMap() const { return KnowledgeMap; }
 
 
 
  /// Given \p BES, return a uniqued version. \p BES is destroyed in the
 
  /// process.
 
  const AA::InstExclusionSetTy *
 
  getOrCreateUniqueBlockExecutionSet(const AA::InstExclusionSetTy *BES) {
 
    auto It = BESets.find(BES);
 
    if (It != BESets.end())
 
      return *It;
 
    auto *UniqueBES = new (Allocator) AA::InstExclusionSetTy(*BES);
 
    BESets.insert(UniqueBES);
 
    return UniqueBES;
 
  }
 
 
 
  /// Check whether \p F is part of module slice.
 
  bool isInModuleSlice(const Function &F) {
 
    return ModuleSlice.empty() || ModuleSlice.count(const_cast<Function *>(&F));
 
  }
 
 
 
  /// Return true if the stack (llvm::Alloca) can be accessed by other threads.
 
  bool stackIsAccessibleByOtherThreads() { return !targetIsGPU(); }
 
 
 
  /// Return true if the target is a GPU.
 
  bool targetIsGPU() {
 
    return TargetTriple.isAMDGPU() || TargetTriple.isNVPTX();
 
  }
 
 
 
private:
 
  struct FunctionInfo {
 
    ~FunctionInfo();
 
 
 
    /// A nested map that remembers all instructions in a function with a
 
    /// certain instruction opcode (Instruction::getOpcode()).
 
    OpcodeInstMapTy OpcodeInstMap;
 
 
 
    /// A map from functions to their instructions that may read or write
 
    /// memory.
 
    InstructionVectorTy RWInsts;
 
 
 
    /// Function is called by a `musttail` call.
 
    bool CalledViaMustTail;
 
 
 
    /// Function contains a `musttail` call.
 
    bool ContainsMustTailCall;
 
  };
 
 
 
  /// A map type from functions to informatio about it.
 
  DenseMap<const Function *, FunctionInfo *> FuncInfoMap;
 
 
 
  /// Return information about the function \p F, potentially by creating it.
 
  FunctionInfo &getFunctionInfo(const Function &F) {
 
    FunctionInfo *&FI = FuncInfoMap[&F];
 
    if (!FI) {
 
      FI = new (Allocator) FunctionInfo();
 
      initializeInformationCache(F, *FI);
 
    }
 
    return *FI;
 
  }
 
 
 
  /// Initialize the function information cache \p FI for the function \p F.
 
  ///
 
  /// This method needs to be called for all function that might be looked at
 
  /// through the information cache interface *prior* to looking at them.
 
  void initializeInformationCache(const Function &F, FunctionInfo &FI);
 
 
 
  /// The datalayout used in the module.
 
  const DataLayout &DL;
 
 
 
  /// The allocator used to allocate memory, e.g. for `FunctionInfo`s.
 
  BumpPtrAllocator &Allocator;
 
 
 
  /// MustBeExecutedContextExplorer
 
  MustBeExecutedContextExplorer Explorer;
 
 
 
  /// A map with knowledge retained in `llvm.assume` instructions.
 
  RetainedKnowledgeMap KnowledgeMap;
 
 
 
  /// A container for all instructions that are only used by `llvm.assume`.
 
  SetVector<const Instruction *> AssumeOnlyValues;
 
 
 
  /// Cache for block sets to allow reuse.
 
  DenseSet<AA::InstExclusionSetTy *> BESets;
 
 
 
  /// Getters for analysis.
 
  AnalysisGetter &AG;
 
 
 
  /// Set of inlineable functions
 
  SmallPtrSet<const Function *, 8> InlineableFunctions;
 
 
 
  /// The triple describing the target machine.
 
  Triple TargetTriple;
 
 
 
  /// Give the Attributor access to the members so
 
  /// Attributor::identifyDefaultAbstractAttributes(...) can initialize them.
 
  friend struct Attributor;
 
};
 
 
 
/// Configuration for the Attributor.
 
struct AttributorConfig {
 
 
 
  AttributorConfig(CallGraphUpdater &CGUpdater) : CGUpdater(CGUpdater) {}
 
 
 
  /// Is the user of the Attributor a module pass or not. This determines what
 
  /// IR we can look at and modify. If it is a module pass we might deduce facts
 
  /// outside the initial function set and modify functions outside that set,
 
  /// but only as part of the optimization of the functions in the initial
 
  /// function set. For CGSCC passes we can look at the IR of the module slice
 
  /// but never run any deduction, or perform any modification, outside the
 
  /// initial function set (which we assume is the SCC).
 
  bool IsModulePass = true;
 
 
 
  /// Flag to determine if we can delete functions or keep dead ones around.
 
  bool DeleteFns = true;
 
 
 
  /// Flag to determine if we rewrite function signatures.
 
  bool RewriteSignatures = true;
 
 
 
  /// Flag to determine if we want to initialize all default AAs for an internal
 
  /// function marked live. See also: InitializationCallback>
 
  bool DefaultInitializeLiveInternals = true;
 
 
 
  /// Callback function to be invoked on internal functions marked live.
 
  std::function<void(Attributor &A, const Function &F)> InitializationCallback =
 
      nullptr;
 
 
 
  /// Helper to update an underlying call graph and to delete functions.
 
  CallGraphUpdater &CGUpdater;
 
 
 
  /// If not null, a set limiting the attribute opportunities.
 
  DenseSet<const char *> *Allowed = nullptr;
 
 
 
  /// Maximum number of iterations to run until fixpoint.
 
  std::optional<unsigned> MaxFixpointIterations;
 
 
 
  /// A callback function that returns an ORE object from a Function pointer.
 
  ///{
 
  using OptimizationRemarkGetter =
 
      function_ref<OptimizationRemarkEmitter &(Function *)>;
 
  OptimizationRemarkGetter OREGetter = nullptr;
 
  ///}
 
 
 
  /// The name of the pass running the attributor, used to emit remarks.
 
  const char *PassName = nullptr;
 
};
 
 
 
/// The fixpoint analysis framework that orchestrates the attribute deduction.
 
///
 
/// The Attributor provides a general abstract analysis framework (guided
 
/// fixpoint iteration) as well as helper functions for the deduction of
 
/// (LLVM-IR) attributes. However, also other code properties can be deduced,
 
/// propagated, and ultimately manifested through the Attributor framework. This
 
/// is particularly useful if these properties interact with attributes and a
 
/// co-scheduled deduction allows to improve the solution. Even if not, thus if
 
/// attributes/properties are completely isolated, they should use the
 
/// Attributor framework to reduce the number of fixpoint iteration frameworks
 
/// in the code base. Note that the Attributor design makes sure that isolated
 
/// attributes are not impacted, in any way, by others derived at the same time
 
/// if there is no cross-reasoning performed.
 
///
 
/// The public facing interface of the Attributor is kept simple and basically
 
/// allows abstract attributes to one thing, query abstract attributes
 
/// in-flight. There are two reasons to do this:
 
///    a) The optimistic state of one abstract attribute can justify an
 
///       optimistic state of another, allowing to framework to end up with an
 
///       optimistic (=best possible) fixpoint instead of one based solely on
 
///       information in the IR.
 
///    b) This avoids reimplementing various kinds of lookups, e.g., to check
 
///       for existing IR attributes, in favor of a single lookups interface
 
///       provided by an abstract attribute subclass.
 
///
 
/// NOTE: The mechanics of adding a new "concrete" abstract attribute are
 
///       described in the file comment.
 
struct Attributor {
 
 
 
  /// Constructor
 
  ///
 
  /// \param Functions The set of functions we are deriving attributes for.
 
  /// \param InfoCache Cache to hold various information accessible for
 
  ///                  the abstract attributes.
 
  /// \param Configuration The Attributor configuration which determines what
 
  ///                      generic features to use.
 
  Attributor(SetVector<Function *> &Functions, InformationCache &InfoCache,
 
             AttributorConfig Configuration)
 
      : Allocator(InfoCache.Allocator), Functions(Functions),
 
        InfoCache(InfoCache), Configuration(Configuration) {}
 
 
 
  ~Attributor();
 
 
 
  /// Run the analyses until a fixpoint is reached or enforced (timeout).
 
  ///
 
  /// The attributes registered with this Attributor can be used after as long
 
  /// as the Attributor is not destroyed (it owns the attributes now).
 
  ///
 
  /// \Returns CHANGED if the IR was changed, otherwise UNCHANGED.
 
  ChangeStatus run();
 
 
 
  /// Lookup an abstract attribute of type \p AAType at position \p IRP. While
 
  /// no abstract attribute is found equivalent positions are checked, see
 
  /// SubsumingPositionIterator. Thus, the returned abstract attribute
 
  /// might be anchored at a different position, e.g., the callee if \p IRP is a
 
  /// call base.
 
  ///
 
  /// This method is the only (supported) way an abstract attribute can retrieve
 
  /// information from another abstract attribute. As an example, take an
 
  /// abstract attribute that determines the memory access behavior for a
 
  /// argument (readnone, readonly, ...). It should use `getAAFor` to get the
 
  /// most optimistic information for other abstract attributes in-flight, e.g.
 
  /// the one reasoning about the "captured" state for the argument or the one
 
  /// reasoning on the memory access behavior of the function as a whole.
 
  ///
 
  /// If the DepClass enum is set to `DepClassTy::None` the dependence from
 
  /// \p QueryingAA to the return abstract attribute is not automatically
 
  /// recorded. This should only be used if the caller will record the
 
  /// dependence explicitly if necessary, thus if it the returned abstract
 
  /// attribute is used for reasoning. To record the dependences explicitly use
 
  /// the `Attributor::recordDependence` method.
 
  template <typename AAType>
 
  const AAType &getAAFor(const AbstractAttribute &QueryingAA,
 
                         const IRPosition &IRP, DepClassTy DepClass) {
 
    return getOrCreateAAFor<AAType>(IRP, &QueryingAA, DepClass,
 
                                    /* ForceUpdate */ false);
 
  }
 
 
 
  /// Similar to getAAFor but the return abstract attribute will be updated (via
 
  /// `AbstractAttribute::update`) even if it is found in the cache. This is
 
  /// especially useful for AAIsDead as changes in liveness can make updates
 
  /// possible/useful that were not happening before as the abstract attribute
 
  /// was assumed dead.
 
  template <typename AAType>
 
  const AAType &getAndUpdateAAFor(const AbstractAttribute &QueryingAA,
 
                                  const IRPosition &IRP, DepClassTy DepClass) {
 
    return getOrCreateAAFor<AAType>(IRP, &QueryingAA, DepClass,
 
                                    /* ForceUpdate */ true);
 
  }
 
 
 
  /// The version of getAAFor that allows to omit a querying abstract
 
  /// attribute. Using this after Attributor started running is restricted to
 
  /// only the Attributor itself. Initial seeding of AAs can be done via this
 
  /// function.
 
  /// NOTE: ForceUpdate is ignored in any stage other than the update stage.
 
  template <typename AAType>
 
  const AAType &getOrCreateAAFor(IRPosition IRP,
 
                                 const AbstractAttribute *QueryingAA,
 
                                 DepClassTy DepClass, bool ForceUpdate = false,
 
                                 bool UpdateAfterInit = true) {
 
    if (!shouldPropagateCallBaseContext(IRP))
 
      IRP = IRP.stripCallBaseContext();
 
 
 
    if (AAType *AAPtr = lookupAAFor<AAType>(IRP, QueryingAA, DepClass,
 
                                            /* AllowInvalidState */ true)) {
 
      if (ForceUpdate && Phase == AttributorPhase::UPDATE)
 
        updateAA(*AAPtr);
 
      return *AAPtr;
 
    }
 
 
 
    // No matching attribute found, create one.
 
    // Use the static create method.
 
    auto &AA = AAType::createForPosition(IRP, *this);
 
 
 
    // Always register a new attribute to make sure we clean up the allocated
 
    // memory properly.
 
    registerAA(AA);
 
 
 
    // If we are currenty seeding attributes, enforce seeding rules.
 
    if (Phase == AttributorPhase::SEEDING && !shouldSeedAttribute(AA)) {
 
      AA.getState().indicatePessimisticFixpoint();
 
      return AA;
 
    }
 
 
 
    // For now we ignore naked and optnone functions.
 
    bool Invalidate =
 
        Configuration.Allowed && !Configuration.Allowed->count(&AAType::ID);
 
    const Function *AnchorFn = IRP.getAnchorScope();
 
    if (AnchorFn) {
 
      Invalidate |=
 
          AnchorFn->hasFnAttribute(Attribute::Naked) ||
 
          AnchorFn->hasFnAttribute(Attribute::OptimizeNone) ||
 
          (!isModulePass() && !getInfoCache().isInModuleSlice(*AnchorFn));
 
    }
 
 
 
    // Avoid too many nested initializations to prevent a stack overflow.
 
    Invalidate |= InitializationChainLength > MaxInitializationChainLength;
 
 
 
    // Bootstrap the new attribute with an initial update to propagate
 
    // information, e.g., function -> call site. If it is not on a given
 
    // Allowed we will not perform updates at all.
 
    if (Invalidate) {
 
      AA.getState().indicatePessimisticFixpoint();
 
      return AA;
 
    }
 
 
 
    {
 
      TimeTraceScope TimeScope(AA.getName() + "::initialize");
 
      ++InitializationChainLength;
 
      AA.initialize(*this);
 
      --InitializationChainLength;
 
    }
 
 
 
    // We update only AAs associated with functions in the Functions set or
 
    // call sites of them.
 
    if ((AnchorFn && !isRunOn(const_cast<Function *>(AnchorFn))) &&
 
        !isRunOn(IRP.getAssociatedFunction())) {
 
      AA.getState().indicatePessimisticFixpoint();
 
      return AA;
 
    }
 
 
 
    // If this is queried in the manifest stage, we force the AA to indicate
 
    // pessimistic fixpoint immediately.
 
    if (Phase == AttributorPhase::MANIFEST ||
 
        Phase == AttributorPhase::CLEANUP) {
 
      AA.getState().indicatePessimisticFixpoint();
 
      return AA;
 
    }
 
 
 
    // Allow seeded attributes to declare dependencies.
 
    // Remember the seeding state.
 
    if (UpdateAfterInit) {
 
      AttributorPhase OldPhase = Phase;
 
      Phase = AttributorPhase::UPDATE;
 
 
 
      updateAA(AA);
 
 
 
      Phase = OldPhase;
 
    }
 
 
 
    if (QueryingAA && AA.getState().isValidState())
 
      recordDependence(AA, const_cast<AbstractAttribute &>(*QueryingAA),
 
                       DepClass);
 
    return AA;
 
  }
 
  template <typename AAType>
 
  const AAType &getOrCreateAAFor(const IRPosition &IRP) {
 
    return getOrCreateAAFor<AAType>(IRP, /* QueryingAA */ nullptr,
 
                                    DepClassTy::NONE);
 
  }
 
 
 
  /// Return the attribute of \p AAType for \p IRP if existing and valid. This
 
  /// also allows non-AA users lookup.
 
  template <typename AAType>
 
  AAType *lookupAAFor(const IRPosition &IRP,
 
                      const AbstractAttribute *QueryingAA = nullptr,
 
                      DepClassTy DepClass = DepClassTy::OPTIONAL,
 
                      bool AllowInvalidState = false) {
 
    static_assert(std::is_base_of<AbstractAttribute, AAType>::value,
 
                  "Cannot query an attribute with a type not derived from "
 
                  "'AbstractAttribute'!");
 
    // Lookup the abstract attribute of type AAType. If found, return it after
 
    // registering a dependence of QueryingAA on the one returned attribute.
 
    AbstractAttribute *AAPtr = AAMap.lookup({&AAType::ID, IRP});
 
    if (!AAPtr)
 
      return nullptr;
 
 
 
    AAType *AA = static_cast<AAType *>(AAPtr);
 
 
 
    // Do not register a dependence on an attribute with an invalid state.
 
    if (DepClass != DepClassTy::NONE && QueryingAA &&
 
        AA->getState().isValidState())
 
      recordDependence(*AA, const_cast<AbstractAttribute &>(*QueryingAA),
 
                       DepClass);
 
 
 
    // Return nullptr if this attribute has an invalid state.
 
    if (!AllowInvalidState && !AA->getState().isValidState())
 
      return nullptr;
 
    return AA;
 
  }
 
 
 
  /// Allows a query AA to request an update if a new query was received.
 
  void registerForUpdate(AbstractAttribute &AA);
 
 
 
  /// Explicitly record a dependence from \p FromAA to \p ToAA, that is if
 
  /// \p FromAA changes \p ToAA should be updated as well.
 
  ///
 
  /// This method should be used in conjunction with the `getAAFor` method and
 
  /// with the DepClass enum passed to the method set to None. This can
 
  /// be beneficial to avoid false dependences but it requires the users of
 
  /// `getAAFor` to explicitly record true dependences through this method.
 
  /// The \p DepClass flag indicates if the dependence is striclty necessary.
 
  /// That means for required dependences, if \p FromAA changes to an invalid
 
  /// state, \p ToAA can be moved to a pessimistic fixpoint because it required
 
  /// information from \p FromAA but none are available anymore.
 
  void recordDependence(const AbstractAttribute &FromAA,
 
                        const AbstractAttribute &ToAA, DepClassTy DepClass);
 
 
 
  /// Introduce a new abstract attribute into the fixpoint analysis.
 
  ///
 
  /// Note that ownership of the attribute is given to the Attributor. It will
 
  /// invoke delete for the Attributor on destruction of the Attributor.
 
  ///
 
  /// Attributes are identified by their IR position (AAType::getIRPosition())
 
  /// and the address of their static member (see AAType::ID).
 
  template <typename AAType> AAType ®isterAA(AAType &AA) {
 
    static_assert(std::is_base_of<AbstractAttribute, AAType>::value,
 
                  "Cannot register an attribute with a type not derived from "
 
                  "'AbstractAttribute'!");
 
    // Put the attribute in the lookup map structure and the container we use to
 
    // keep track of all attributes.
 
    const IRPosition &IRP = AA.getIRPosition();
 
    AbstractAttribute *&AAPtr = AAMap[{&AAType::ID, IRP}];
 
 
 
    assert(!AAPtr && "Attribute already in map!");
 
    AAPtr = &AA;
 
 
 
    // Register AA with the synthetic root only before the manifest stage.
 
    if (Phase == AttributorPhase::SEEDING || Phase == AttributorPhase::UPDATE)
 
      DG.SyntheticRoot.Deps.push_back(
 
          AADepGraphNode::DepTy(&AA, unsigned(DepClassTy::REQUIRED)));
 
 
 
    return AA;
 
  }
 
 
 
  /// Return the internal information cache.
 
  InformationCache &getInfoCache() { return InfoCache; }
 
 
 
  /// Return true if this is a module pass, false otherwise.
 
  bool isModulePass() const { return Configuration.IsModulePass; }
 
 
 
  /// Return true if we derive attributes for \p Fn
 
  bool isRunOn(Function &Fn) const { return isRunOn(&Fn); }
 
  bool isRunOn(Function *Fn) const {
 
    return Functions.empty() || Functions.count(Fn);
 
  }
 
 
 
  /// Determine opportunities to derive 'default' attributes in \p F and create
 
  /// abstract attribute objects for them.
 
  ///
 
  /// \param F The function that is checked for attribute opportunities.
 
  ///
 
  /// Note that abstract attribute instances are generally created even if the
 
  /// IR already contains the information they would deduce. The most important
 
  /// reason for this is the single interface, the one of the abstract attribute
 
  /// instance, which can be queried without the need to look at the IR in
 
  /// various places.
 
  void identifyDefaultAbstractAttributes(Function &F);
 
 
 
  /// Determine whether the function \p F is IPO amendable
 
  ///
 
  /// If a function is exactly defined or it has alwaysinline attribute
 
  /// and is viable to be inlined, we say it is IPO amendable
 
  bool isFunctionIPOAmendable(const Function &F) {
 
    return F.hasExactDefinition() || InfoCache.InlineableFunctions.count(&F);
 
  }
 
 
 
  /// Mark the internal function \p F as live.
 
  ///
 
  /// This will trigger the identification and initialization of attributes for
 
  /// \p F.
 
  void markLiveInternalFunction(const Function &F) {
 
    assert(F.hasLocalLinkage() &&
 
           "Only local linkage is assumed dead initially.");
 
 
 
    if (Configuration.DefaultInitializeLiveInternals)
 
      identifyDefaultAbstractAttributes(const_cast<Function &>(F));
 
    if (Configuration.InitializationCallback)
 
      Configuration.InitializationCallback(*this, F);
 
  }
 
 
 
  /// Helper function to remove callsite.
 
  void removeCallSite(CallInst *CI) {
 
    if (!CI)
 
      return;
 
 
 
    Configuration.CGUpdater.removeCallSite(*CI);
 
  }
 
 
 
  /// Record that \p U is to be replaces with \p NV after information was
 
  /// manifested. This also triggers deletion of trivially dead istructions.
 
  bool changeUseAfterManifest(Use &U, Value &NV) {
 
    Value *&V = ToBeChangedUses[&U];
 
    if (V && (V->stripPointerCasts() == NV.stripPointerCasts() ||
 
              isa_and_nonnull<UndefValue>(V)))
 
      return false;
 
    assert((!V || V == &NV || isa<UndefValue>(NV)) &&
 
           "Use was registered twice for replacement with different values!");
 
    V = &NV;
 
    return true;
 
  }
 
 
 
  /// Helper function to replace all uses associated with \p IRP with \p NV.
 
  /// Return true if there is any change. The flag \p ChangeDroppable indicates
 
  /// if dropppable uses should be changed too.
 
  bool changeAfterManifest(const IRPosition IRP, Value &NV,
 
                           bool ChangeDroppable = true) {
 
    if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT) {
 
      auto *CB = cast<CallBase>(IRP.getCtxI());
 
      return changeUseAfterManifest(
 
          CB->getArgOperandUse(IRP.getCallSiteArgNo()), NV);
 
    }
 
    Value &V = IRP.getAssociatedValue();
 
    auto &Entry = ToBeChangedValues[&V];
 
    Value *CurNV = get<0>(Entry);
 
    if (CurNV && (CurNV->stripPointerCasts() == NV.stripPointerCasts() ||
 
                  isa<UndefValue>(CurNV)))
 
      return false;
 
    assert((!CurNV || CurNV == &NV || isa<UndefValue>(NV)) &&
 
           "Value replacement was registered twice with different values!");
 
    Entry = {&NV, ChangeDroppable};
 
    return true;
 
  }
 
 
 
  /// Record that \p I is to be replaced with `unreachable` after information
 
  /// was manifested.
 
  void changeToUnreachableAfterManifest(Instruction *I) {
 
    ToBeChangedToUnreachableInsts.insert(I);
 
  }
 
 
 
  /// Record that \p II has at least one dead successor block. This information
 
  /// is used, e.g., to replace \p II with a call, after information was
 
  /// manifested.
 
  void registerInvokeWithDeadSuccessor(InvokeInst &II) {
 
    InvokeWithDeadSuccessor.insert(&II);
 
  }
 
 
 
  /// Record that \p I is deleted after information was manifested. This also
 
  /// triggers deletion of trivially dead istructions.
 
  void deleteAfterManifest(Instruction &I) { ToBeDeletedInsts.insert(&I); }
 
 
 
  /// Record that \p BB is deleted after information was manifested. This also
 
  /// triggers deletion of trivially dead istructions.
 
  void deleteAfterManifest(BasicBlock &BB) { ToBeDeletedBlocks.insert(&BB); }
 
 
 
  // Record that \p BB is added during the manifest of an AA. Added basic blocks
 
  // are preserved in the IR.
 
  void registerManifestAddedBasicBlock(BasicBlock &BB) {
 
    ManifestAddedBlocks.insert(&BB);
 
  }
 
 
 
  /// Record that \p F is deleted after information was manifested.
 
  void deleteAfterManifest(Function &F) {
 
    if (Configuration.DeleteFns)
 
      ToBeDeletedFunctions.insert(&F);
 
  }
 
 
 
  /// If \p IRP is assumed to be a constant, return it, if it is unclear yet,
 
  /// return std::nullopt, otherwise return `nullptr`.
 
  std::optional<Constant *> getAssumedConstant(const IRPosition &IRP,
 
                                               const AbstractAttribute &AA,
 
                                               bool &UsedAssumedInformation);
 
  std::optional<Constant *> getAssumedConstant(const Value &V,
 
                                               const AbstractAttribute &AA,
 
                                               bool &UsedAssumedInformation) {
 
    return getAssumedConstant(IRPosition::value(V), AA, UsedAssumedInformation);
 
  }
 
 
 
  /// If \p V is assumed simplified, return it, if it is unclear yet,
 
  /// return std::nullopt, otherwise return `nullptr`.
 
  std::optional<Value *> getAssumedSimplified(const IRPosition &IRP,
 
                                              const AbstractAttribute &AA,
 
                                              bool &UsedAssumedInformation,
 
                                              AA::ValueScope S) {
 
    return getAssumedSimplified(IRP, &AA, UsedAssumedInformation, S);
 
  }
 
  std::optional<Value *> getAssumedSimplified(const Value &V,
 
                                              const AbstractAttribute &AA,
 
                                              bool &UsedAssumedInformation,
 
                                              AA::ValueScope S) {
 
    return getAssumedSimplified(IRPosition::value(V), AA,
 
                                UsedAssumedInformation, S);
 
  }
 
 
 
  /// If \p V is assumed simplified, return it, if it is unclear yet,
 
  /// return std::nullopt, otherwise return `nullptr`. Same as the public
 
  /// version except that it can be used without recording dependences on any \p
 
  /// AA.
 
  std::optional<Value *> getAssumedSimplified(const IRPosition &V,
 
                                              const AbstractAttribute *AA,
 
                                              bool &UsedAssumedInformation,
 
                                              AA::ValueScope S);
 
 
 
  /// Try to simplify \p IRP and in the scope \p S. If successful, true is
 
  /// returned and all potential values \p IRP can take are put into \p Values.
 
  /// If the result in \p Values contains select or PHI instructions it means
 
  /// those could not be simplified to a single value. Recursive calls with
 
  /// these instructions will yield their respective potential values. If false
 
  /// is returned no other information is valid.
 
  bool getAssumedSimplifiedValues(const IRPosition &IRP,
 
                                  const AbstractAttribute *AA,
 
                                  SmallVectorImpl<AA::ValueAndContext> &Values,
 
                                  AA::ValueScope S,
 
                                  bool &UsedAssumedInformation);
 
 
 
  /// Register \p CB as a simplification callback.
 
  /// `Attributor::getAssumedSimplified` will use these callbacks before
 
  /// we it will ask `AAValueSimplify`. It is important to ensure this
 
  /// is called before `identifyDefaultAbstractAttributes`, assuming the
 
  /// latter is called at all.
 
  using SimplifictionCallbackTy = std::function<std::optional<Value *>(
 
      const IRPosition &, const AbstractAttribute *, bool &)>;
 
  void registerSimplificationCallback(const IRPosition &IRP,
 
                                      const SimplifictionCallbackTy &CB) {
 
    SimplificationCallbacks[IRP].emplace_back(CB);
 
  }
 
 
 
  /// Return true if there is a simplification callback for \p IRP.
 
  bool hasSimplificationCallback(const IRPosition &IRP) {
 
    return SimplificationCallbacks.count(IRP);
 
  }
 
 
 
  using VirtualUseCallbackTy =
 
      std::function<bool(Attributor &, const AbstractAttribute *)>;
 
  void registerVirtualUseCallback(const Value &V,
 
                                  const VirtualUseCallbackTy &CB) {
 
    VirtualUseCallbacks[&V].emplace_back(CB);
 
  }
 
 
 
private:
 
  /// The vector with all simplification callbacks registered by outside AAs.
 
  DenseMap<IRPosition, SmallVector<SimplifictionCallbackTy, 1>>
 
      SimplificationCallbacks;
 
 
 
  DenseMap<const Value *, SmallVector<VirtualUseCallbackTy, 1>>
 
      VirtualUseCallbacks;
 
 
 
public:
 
  /// Translate \p V from the callee context into the call site context.
 
  std::optional<Value *>
 
  translateArgumentToCallSiteContent(std::optional<Value *> V, CallBase &CB,
 
                                     const AbstractAttribute &AA,
 
                                     bool &UsedAssumedInformation);
 
 
 
  /// Return true if \p AA (or its context instruction) is assumed dead.
 
  ///
 
  /// If \p LivenessAA is not provided it is queried.
 
  bool isAssumedDead(const AbstractAttribute &AA, const AAIsDead *LivenessAA,
 
                     bool &UsedAssumedInformation,
 
                     bool CheckBBLivenessOnly = false,
 
                     DepClassTy DepClass = DepClassTy::OPTIONAL);
 
 
 
  /// Return true if \p I is assumed dead.
 
  ///
 
  /// If \p LivenessAA is not provided it is queried.
 
  bool isAssumedDead(const Instruction &I, const AbstractAttribute *QueryingAA,
 
                     const AAIsDead *LivenessAA, bool &UsedAssumedInformation,
 
                     bool CheckBBLivenessOnly = false,
 
                     DepClassTy DepClass = DepClassTy::OPTIONAL,
 
                     bool CheckForDeadStore = false);
 
 
 
  /// Return true if \p U is assumed dead.
 
  ///
 
  /// If \p FnLivenessAA is not provided it is queried.
 
  bool isAssumedDead(const Use &U, const AbstractAttribute *QueryingAA,
 
                     const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation,
 
                     bool CheckBBLivenessOnly = false,
 
                     DepClassTy DepClass = DepClassTy::OPTIONAL);
 
 
 
  /// Return true if \p IRP is assumed dead.
 
  ///
 
  /// If \p FnLivenessAA is not provided it is queried.
 
  bool isAssumedDead(const IRPosition &IRP, const AbstractAttribute *QueryingAA,
 
                     const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation,
 
                     bool CheckBBLivenessOnly = false,
 
                     DepClassTy DepClass = DepClassTy::OPTIONAL);
 
 
 
  /// Return true if \p BB is assumed dead.
 
  ///
 
  /// If \p LivenessAA is not provided it is queried.
 
  bool isAssumedDead(const BasicBlock &BB, const AbstractAttribute *QueryingAA,
 
                     const AAIsDead *FnLivenessAA,
 
                     DepClassTy DepClass = DepClassTy::OPTIONAL);
 
 
 
  /// Check \p Pred on all (transitive) uses of \p V.
 
  ///
 
  /// This method will evaluate \p Pred on all (transitive) uses of the
 
  /// associated value and return true if \p Pred holds every time.
 
  /// If uses are skipped in favor of equivalent ones, e.g., if we look through
 
  /// memory, the \p EquivalentUseCB will be used to give the caller an idea
 
  /// what original used was replaced by a new one (or new ones). The visit is
 
  /// cut short if \p EquivalentUseCB returns false and the function will return
 
  /// false as well.
 
  bool checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
 
                       const AbstractAttribute &QueryingAA, const Value &V,
 
                       bool CheckBBLivenessOnly = false,
 
                       DepClassTy LivenessDepClass = DepClassTy::OPTIONAL,
 
                       bool IgnoreDroppableUses = true,
 
                       function_ref<bool(const Use &OldU, const Use &NewU)>
 
                           EquivalentUseCB = nullptr);
 
 
 
  /// Emit a remark generically.
 
  ///
 
  /// This template function can be used to generically emit a remark. The
 
  /// RemarkKind should be one of the following:
 
  ///   - OptimizationRemark to indicate a successful optimization attempt
 
  ///   - OptimizationRemarkMissed to report a failed optimization attempt
 
  ///   - OptimizationRemarkAnalysis to provide additional information about an
 
  ///     optimization attempt
 
  ///
 
  /// The remark is built using a callback function \p RemarkCB that takes a
 
  /// RemarkKind as input and returns a RemarkKind.
 
  template <typename RemarkKind, typename RemarkCallBack>
 
  void emitRemark(Instruction *I, StringRef RemarkName,
 
                  RemarkCallBack &&RemarkCB) const {
 
    if (!Configuration.OREGetter)
 
      return;
 
 
 
    Function *F = I->getFunction();
 
    auto &ORE = Configuration.OREGetter(F);
 
 
 
    if (RemarkName.startswith("OMP"))
 
      ORE.emit([&]() {
 
        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, I))
 
               << " [" << RemarkName << "]";
 
      });
 
    else
 
      ORE.emit([&]() {
 
        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, I));
 
      });
 
  }
 
 
 
  /// Emit a remark on a function.
 
  template <typename RemarkKind, typename RemarkCallBack>
 
  void emitRemark(Function *F, StringRef RemarkName,
 
                  RemarkCallBack &&RemarkCB) const {
 
    if (!Configuration.OREGetter)
 
      return;
 
 
 
    auto &ORE = Configuration.OREGetter(F);
 
 
 
    if (RemarkName.startswith("OMP"))
 
      ORE.emit([&]() {
 
        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, F))
 
               << " [" << RemarkName << "]";
 
      });
 
    else
 
      ORE.emit([&]() {
 
        return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, F));
 
      });
 
  }
 
 
 
  /// Helper struct used in the communication between an abstract attribute (AA)
 
  /// that wants to change the signature of a function and the Attributor which
 
  /// applies the changes. The struct is partially initialized with the
 
  /// information from the AA (see the constructor). All other members are
 
  /// provided by the Attributor prior to invoking any callbacks.
 
  struct ArgumentReplacementInfo {
 
    /// Callee repair callback type
 
    ///
 
    /// The function repair callback is invoked once to rewire the replacement
 
    /// arguments in the body of the new function. The argument replacement info
 
    /// is passed, as build from the registerFunctionSignatureRewrite call, as
 
    /// well as the replacement function and an iteratore to the first
 
    /// replacement argument.
 
    using CalleeRepairCBTy = std::function<void(
 
        const ArgumentReplacementInfo &, Function &, Function::arg_iterator)>;
 
 
 
    /// Abstract call site (ACS) repair callback type
 
    ///
 
    /// The abstract call site repair callback is invoked once on every abstract
 
    /// call site of the replaced function (\see ReplacedFn). The callback needs
 
    /// to provide the operands for the call to the new replacement function.
 
    /// The number and type of the operands appended to the provided vector
 
    /// (second argument) is defined by the number and types determined through
 
    /// the replacement type vector (\see ReplacementTypes). The first argument
 
    /// is the ArgumentReplacementInfo object registered with the Attributor
 
    /// through the registerFunctionSignatureRewrite call.
 
    using ACSRepairCBTy =
 
        std::function<void(const ArgumentReplacementInfo &, AbstractCallSite,
 
                           SmallVectorImpl<Value *> &)>;
 
 
 
    /// Simple getters, see the corresponding members for details.
 
    ///{
 
 
 
    Attributor &getAttributor() const { return A; }
 
    const Function &getReplacedFn() const { return ReplacedFn; }
 
    const Argument &getReplacedArg() const { return ReplacedArg; }
 
    unsigned getNumReplacementArgs() const { return ReplacementTypes.size(); }
 
    const SmallVectorImpl<Type *> &getReplacementTypes() const {
 
      return ReplacementTypes;
 
    }
 
 
 
    ///}
 
 
 
  private:
 
    /// Constructor that takes the argument to be replaced, the types of
 
    /// the replacement arguments, as well as callbacks to repair the call sites
 
    /// and new function after the replacement happened.
 
    ArgumentReplacementInfo(Attributor &A, Argument &Arg,
 
                            ArrayRef<Type *> ReplacementTypes,
 
                            CalleeRepairCBTy &&CalleeRepairCB,
 
                            ACSRepairCBTy &&ACSRepairCB)
 
        : A(A), ReplacedFn(*Arg.getParent()), ReplacedArg(Arg),
 
          ReplacementTypes(ReplacementTypes.begin(), ReplacementTypes.end()),
 
          CalleeRepairCB(std::move(CalleeRepairCB)),
 
          ACSRepairCB(std::move(ACSRepairCB)) {}
 
 
 
    /// Reference to the attributor to allow access from the callbacks.
 
    Attributor &A;
 
 
 
    /// The "old" function replaced by ReplacementFn.
 
    const Function &ReplacedFn;
 
 
 
    /// The "old" argument replaced by new ones defined via ReplacementTypes.
 
    const Argument &ReplacedArg;
 
 
 
    /// The types of the arguments replacing ReplacedArg.
 
    const SmallVector<Type *, 8> ReplacementTypes;
 
 
 
    /// Callee repair callback, see CalleeRepairCBTy.
 
    const CalleeRepairCBTy CalleeRepairCB;
 
 
 
    /// Abstract call site (ACS) repair callback, see ACSRepairCBTy.
 
    const ACSRepairCBTy ACSRepairCB;
 
 
 
    /// Allow access to the private members from the Attributor.
 
    friend struct Attributor;
 
  };
 
 
 
  /// Check if we can rewrite a function signature.
 
  ///
 
  /// The argument \p Arg is replaced with new ones defined by the number,
 
  /// order, and types in \p ReplacementTypes.
 
  ///
 
  /// \returns True, if the replacement can be registered, via
 
  /// registerFunctionSignatureRewrite, false otherwise.
 
  bool isValidFunctionSignatureRewrite(Argument &Arg,
 
                                       ArrayRef<Type *> ReplacementTypes);
 
 
 
  /// Register a rewrite for a function signature.
 
  ///
 
  /// The argument \p Arg is replaced with new ones defined by the number,
 
  /// order, and types in \p ReplacementTypes. The rewiring at the call sites is
 
  /// done through \p ACSRepairCB and at the callee site through
 
  /// \p CalleeRepairCB.
 
  ///
 
  /// \returns True, if the replacement was registered, false otherwise.
 
  bool registerFunctionSignatureRewrite(
 
      Argument &Arg, ArrayRef<Type *> ReplacementTypes,
 
      ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
 
      ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB);
 
 
 
  /// Check \p Pred on all function call sites.
 
  ///
 
  /// This method will evaluate \p Pred on call sites and return
 
  /// true if \p Pred holds in every call sites. However, this is only possible
 
  /// all call sites are known, hence the function has internal linkage.
 
  /// If true is returned, \p UsedAssumedInformation is set if assumed
 
  /// information was used to skip or simplify potential call sites.
 
  bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
 
                            const AbstractAttribute &QueryingAA,
 
                            bool RequireAllCallSites,
 
                            bool &UsedAssumedInformation);
 
 
 
  /// Check \p Pred on all call sites of \p Fn.
 
  ///
 
  /// This method will evaluate \p Pred on call sites and return
 
  /// true if \p Pred holds in every call sites. However, this is only possible
 
  /// all call sites are known, hence the function has internal linkage.
 
  /// If true is returned, \p UsedAssumedInformation is set if assumed
 
  /// information was used to skip or simplify potential call sites.
 
  bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
 
                            const Function &Fn, bool RequireAllCallSites,
 
                            const AbstractAttribute *QueryingAA,
 
                            bool &UsedAssumedInformation,
 
                            bool CheckPotentiallyDead = false);
 
 
 
  /// Check \p Pred on all values potentially returned by \p F.
 
  ///
 
  /// This method will evaluate \p Pred on all values potentially returned by
 
  /// the function associated with \p QueryingAA. The returned values are
 
  /// matched with their respective return instructions. Returns true if \p Pred
 
  /// holds on all of them.
 
  bool checkForAllReturnedValuesAndReturnInsts(
 
      function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
 
      const AbstractAttribute &QueryingAA);
 
 
 
  /// Check \p Pred on all values potentially returned by the function
 
  /// associated with \p QueryingAA.
 
  ///
 
  /// This is the context insensitive version of the method above.
 
  bool checkForAllReturnedValues(function_ref<bool(Value &)> Pred,
 
                                 const AbstractAttribute &QueryingAA);
 
 
 
  /// Check \p Pred on all instructions in \p Fn with an opcode present in
 
  /// \p Opcodes.
 
  ///
 
  /// This method will evaluate \p Pred on all instructions with an opcode
 
  /// present in \p Opcode and return true if \p Pred holds on all of them.
 
  bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
 
                               const Function *Fn,
 
                               const AbstractAttribute &QueryingAA,
 
                               const ArrayRef<unsigned> &Opcodes,
 
                               bool &UsedAssumedInformation,
 
                               bool CheckBBLivenessOnly = false,
 
                               bool CheckPotentiallyDead = false);
 
 
 
  /// Check \p Pred on all instructions with an opcode present in \p Opcodes.
 
  ///
 
  /// This method will evaluate \p Pred on all instructions with an opcode
 
  /// present in \p Opcode and return true if \p Pred holds on all of them.
 
  bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
 
                               const AbstractAttribute &QueryingAA,
 
                               const ArrayRef<unsigned> &Opcodes,
 
                               bool &UsedAssumedInformation,
 
                               bool CheckBBLivenessOnly = false,
 
                               bool CheckPotentiallyDead = false);
 
 
 
  /// Check \p Pred on all call-like instructions (=CallBased derived).
 
  ///
 
  /// See checkForAllCallLikeInstructions(...) for more information.
 
  bool checkForAllCallLikeInstructions(function_ref<bool(Instruction &)> Pred,
 
                                       const AbstractAttribute &QueryingAA,
 
                                       bool &UsedAssumedInformation,
 
                                       bool CheckBBLivenessOnly = false,
 
                                       bool CheckPotentiallyDead = false) {
 
    return checkForAllInstructions(
 
        Pred, QueryingAA,
 
        {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
 
         (unsigned)Instruction::Call},
 
        UsedAssumedInformation, CheckBBLivenessOnly, CheckPotentiallyDead);
 
  }
 
 
 
  /// Check \p Pred on all Read/Write instructions.
 
  ///
 
  /// This method will evaluate \p Pred on all instructions that read or write
 
  /// to memory present in the information cache and return true if \p Pred
 
  /// holds on all of them.
 
  bool checkForAllReadWriteInstructions(function_ref<bool(Instruction &)> Pred,
 
                                        AbstractAttribute &QueryingAA,
 
                                        bool &UsedAssumedInformation);
 
 
 
  /// Create a shallow wrapper for \p F such that \p F has internal linkage
 
  /// afterwards. It also sets the original \p F 's name to anonymous
 
  ///
 
  /// A wrapper is a function with the same type (and attributes) as \p F
 
  /// that will only call \p F and return the result, if any.
 
  ///
 
  /// Assuming the declaration of looks like:
 
  ///   rty F(aty0 arg0, ..., atyN argN);
 
  ///
 
  /// The wrapper will then look as follows:
 
  ///   rty wrapper(aty0 arg0, ..., atyN argN) {
 
  ///     return F(arg0, ..., argN);
 
  ///   }
 
  ///
 
  static void createShallowWrapper(Function &F);
 
 
 
  /// Returns true if the function \p F can be internalized. i.e. it has a
 
  /// compatible linkage.
 
  static bool isInternalizable(Function &F);
 
 
 
  /// Make another copy of the function \p F such that the copied version has
 
  /// internal linkage afterwards and can be analysed. Then we replace all uses
 
  /// of the original function to the copied one
 
  ///
 
  /// Only non-locally linked functions that have `linkonce_odr` or `weak_odr`
 
  /// linkage can be internalized because these linkages guarantee that other
 
  /// definitions with the same name have the same semantics as this one.
 
  ///
 
  /// This will only be run if the `attributor-allow-deep-wrappers` option is
 
  /// set, or if the function is called with \p Force set to true.
 
  ///
 
  /// If the function \p F failed to be internalized the return value will be a
 
  /// null pointer.
 
  static Function *internalizeFunction(Function &F, bool Force = false);
 
 
 
  /// Make copies of each function in the set \p FnSet such that the copied
 
  /// version has internal linkage afterwards and can be analysed. Then we
 
  /// replace all uses of the original function to the copied one. The map
 
  /// \p FnMap contains a mapping of functions to their internalized versions.
 
  ///
 
  /// Only non-locally linked functions that have `linkonce_odr` or `weak_odr`
 
  /// linkage can be internalized because these linkages guarantee that other
 
  /// definitions with the same name have the same semantics as this one.
 
  ///
 
  /// This version will internalize all the functions in the set \p FnSet at
 
  /// once and then replace the uses. This prevents internalized functions being
 
  /// called by external functions when there is an internalized version in the
 
  /// module.
 
  static bool internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
 
                                   DenseMap<Function *, Function *> &FnMap);
 
 
 
  /// Return the data layout associated with the anchor scope.
 
  const DataLayout &getDataLayout() const { return InfoCache.DL; }
 
 
 
  /// The allocator used to allocate memory, e.g. for `AbstractAttribute`s.
 
  BumpPtrAllocator &Allocator;
 
 
 
private:
 
  /// This method will do fixpoint iteration until fixpoint or the
 
  /// maximum iteration count is reached.
 
  ///
 
  /// If the maximum iteration count is reached, This method will
 
  /// indicate pessimistic fixpoint on attributes that transitively depend
 
  /// on attributes that were scheduled for an update.
 
  void runTillFixpoint();
 
 
 
  /// Gets called after scheduling, manifests attributes to the LLVM IR.
 
  ChangeStatus manifestAttributes();
 
 
 
  /// Gets called after attributes have been manifested, cleans up the IR.
 
  /// Deletes dead functions, blocks and instructions.
 
  /// Rewrites function signitures and updates the call graph.
 
  ChangeStatus cleanupIR();
 
 
 
  /// Identify internal functions that are effectively dead, thus not reachable
 
  /// from a live entry point. The functions are added to ToBeDeletedFunctions.
 
  void identifyDeadInternalFunctions();
 
 
 
  /// Run `::update` on \p AA and track the dependences queried while doing so.
 
  /// Also adjust the state if we know further updates are not necessary.
 
  ChangeStatus updateAA(AbstractAttribute &AA);
 
 
 
  /// Remember the dependences on the top of the dependence stack such that they
 
  /// may trigger further updates. (\see DependenceStack)
 
  void rememberDependences();
 
 
 
  /// Determine if CallBase context in \p IRP should be propagated.
 
  bool shouldPropagateCallBaseContext(const IRPosition &IRP);
 
 
 
  /// Apply all requested function signature rewrites
 
  /// (\see registerFunctionSignatureRewrite) and return Changed if the module
 
  /// was altered.
 
  ChangeStatus
 
  rewriteFunctionSignatures(SmallSetVector<Function *, 8> &ModifiedFns);
 
 
 
  /// Check if the Attribute \p AA should be seeded.
 
  /// See getOrCreateAAFor.
 
  bool shouldSeedAttribute(AbstractAttribute &AA);
 
 
 
  /// A nested map to lookup abstract attributes based on the argument position
 
  /// on the outer level, and the addresses of the static member (AAType::ID) on
 
  /// the inner level.
 
  ///{
 
  using AAMapKeyTy = std::pair<const char *, IRPosition>;
 
  DenseMap<AAMapKeyTy, AbstractAttribute *> AAMap;
 
  ///}
 
 
 
  /// Map to remember all requested signature changes (= argument replacements).
 
  DenseMap<Function *, SmallVector<std::unique_ptr<ArgumentReplacementInfo>, 8>>
 
      ArgumentReplacementMap;
 
 
 
  /// The set of functions we are deriving attributes for.
 
  SetVector<Function *> &Functions;
 
 
 
  /// The information cache that holds pre-processed (LLVM-IR) information.
 
  InformationCache &InfoCache;
 
 
 
  /// Abstract Attribute dependency graph
 
  AADepGraph DG;
 
 
 
  /// Set of functions for which we modified the content such that it might
 
  /// impact the call graph.
 
  SmallSetVector<Function *, 8> CGModifiedFunctions;
 
 
 
  /// Information about a dependence. If FromAA is changed ToAA needs to be
 
  /// updated as well.
 
  struct DepInfo {
 
    const AbstractAttribute *FromAA;
 
    const AbstractAttribute *ToAA;
 
    DepClassTy DepClass;
 
  };
 
 
 
  /// The dependence stack is used to track dependences during an
 
  /// `AbstractAttribute::update` call. As `AbstractAttribute::update` can be
 
  /// recursive we might have multiple vectors of dependences in here. The stack
 
  /// size, should be adjusted according to the expected recursion depth and the
 
  /// inner dependence vector size to the expected number of dependences per
 
  /// abstract attribute. Since the inner vectors are actually allocated on the
 
  /// stack we can be generous with their size.
 
  using DependenceVector = SmallVector<DepInfo, 8>;
 
  SmallVector<DependenceVector *, 16> DependenceStack;
 
 
 
  /// A set to remember the functions we already assume to be live and visited.
 
  DenseSet<const Function *> VisitedFunctions;
 
 
 
  /// Uses we replace with a new value after manifest is done. We will remove
 
  /// then trivially dead instructions as well.
 
  SmallMapVector<Use *, Value *, 32> ToBeChangedUses;
 
 
 
  /// Values we replace with a new value after manifest is done. We will remove
 
  /// then trivially dead instructions as well.
 
  SmallMapVector<Value *, PointerIntPair<Value *, 1, bool>, 32>
 
      ToBeChangedValues;
 
 
 
  /// Instructions we replace with `unreachable` insts after manifest is done.
 
  SmallSetVector<WeakVH, 16> ToBeChangedToUnreachableInsts;
 
 
 
  /// Invoke instructions with at least a single dead successor block.
 
  SmallSetVector<WeakVH, 16> InvokeWithDeadSuccessor;
 
 
 
  /// A flag that indicates which stage of the process we are in. Initially, the
 
  /// phase is SEEDING. Phase is changed in `Attributor::run()`
 
  enum class AttributorPhase {
 
    SEEDING,
 
    UPDATE,
 
    MANIFEST,
 
    CLEANUP,
 
  } Phase = AttributorPhase::SEEDING;
 
 
 
  /// The current initialization chain length. Tracked to avoid stack overflows.
 
  unsigned InitializationChainLength = 0;
 
 
 
  /// Functions, blocks, and instructions we delete after manifest is done.
 
  ///
 
  ///{
 
  SmallPtrSet<BasicBlock *, 8> ManifestAddedBlocks;
 
  SmallSetVector<Function *, 8> ToBeDeletedFunctions;
 
  SmallSetVector<BasicBlock *, 8> ToBeDeletedBlocks;
 
  SmallSetVector<WeakVH, 8> ToBeDeletedInsts;
 
  ///}
 
 
 
  /// Container with all the query AAs that requested an update via
 
  /// registerForUpdate.
 
  SmallSetVector<AbstractAttribute *, 16> QueryAAsAwaitingUpdate;
 
 
 
  /// User provided configuration for this Attributor instance.
 
  const AttributorConfig Configuration;
 
 
 
  friend AADepGraph;
 
  friend AttributorCallGraph;
 
};
 
 
 
/// An interface to query the internal state of an abstract attribute.
 
///
 
/// The abstract state is a minimal interface that allows the Attributor to
 
/// communicate with the abstract attributes about their internal state without
 
/// enforcing or exposing implementation details, e.g., the (existence of an)
 
/// underlying lattice.
 
///
 
/// It is sufficient to be able to query if a state is (1) valid or invalid, (2)
 
/// at a fixpoint, and to indicate to the state that (3) an optimistic fixpoint
 
/// was reached or (4) a pessimistic fixpoint was enforced.
 
///
 
/// All methods need to be implemented by the subclass. For the common use case,
 
/// a single boolean state or a bit-encoded state, the BooleanState and
 
/// {Inc,Dec,Bit}IntegerState classes are already provided. An abstract
 
/// attribute can inherit from them to get the abstract state interface and
 
/// additional methods to directly modify the state based if needed. See the
 
/// class comments for help.
 
struct AbstractState {
 
  virtual ~AbstractState() = default;
 
 
 
  /// Return if this abstract state is in a valid state. If false, no
 
  /// information provided should be used.
 
  virtual bool isValidState() const = 0;
 
 
 
  /// Return if this abstract state is fixed, thus does not need to be updated
 
  /// if information changes as it cannot change itself.
 
  virtual bool isAtFixpoint() const = 0;
 
 
 
  /// Indicate that the abstract state should converge to the optimistic state.
 
  ///
 
  /// This will usually make the optimistically assumed state the known to be
 
  /// true state.
 
  ///
 
  /// \returns ChangeStatus::UNCHANGED as the assumed value should not change.
 
  virtual ChangeStatus indicateOptimisticFixpoint() = 0;
 
 
 
  /// Indicate that the abstract state should converge to the pessimistic state.
 
  ///
 
  /// This will usually revert the optimistically assumed state to the known to
 
  /// be true state.
 
  ///
 
  /// \returns ChangeStatus::CHANGED as the assumed value may change.
 
  virtual ChangeStatus indicatePessimisticFixpoint() = 0;
 
};
 
 
 
/// Simple state with integers encoding.
 
///
 
/// The interface ensures that the assumed bits are always a subset of the known
 
/// bits. Users can only add known bits and, except through adding known bits,
 
/// they can only remove assumed bits. This should guarantee monotoniticy and
 
/// thereby the existence of a fixpoint (if used corretly). The fixpoint is
 
/// reached when the assumed and known state/bits are equal. Users can
 
/// force/inidicate a fixpoint. If an optimistic one is indicated, the known
 
/// state will catch up with the assumed one, for a pessimistic fixpoint it is
 
/// the other way around.
 
template <typename base_ty, base_ty BestState, base_ty WorstState>
 
struct IntegerStateBase : public AbstractState {
 
  using base_t = base_ty;
 
 
 
  IntegerStateBase() = default;
 
  IntegerStateBase(base_t Assumed) : Assumed(Assumed) {}
 
 
 
  /// Return the best possible representable state.
 
  static constexpr base_t getBestState() { return BestState; }
 
  static constexpr base_t getBestState(const IntegerStateBase &) {
 
    return getBestState();
 
  }
 
 
 
  /// Return the worst possible representable state.
 
  static constexpr base_t getWorstState() { return WorstState; }
 
  static constexpr base_t getWorstState(const IntegerStateBase &) {
 
    return getWorstState();
 
  }
 
 
 
  /// See AbstractState::isValidState()
 
  /// NOTE: For now we simply pretend that the worst possible state is invalid.
 
  bool isValidState() const override { return Assumed != getWorstState(); }
 
 
 
  /// See AbstractState::isAtFixpoint()
 
  bool isAtFixpoint() const override { return Assumed == Known; }
 
 
 
  /// See AbstractState::indicateOptimisticFixpoint(...)
 
  ChangeStatus indicateOptimisticFixpoint() override {
 
    Known = Assumed;
 
    return ChangeStatus::UNCHANGED;
 
  }
 
 
 
  /// See AbstractState::indicatePessimisticFixpoint(...)
 
  ChangeStatus indicatePessimisticFixpoint() override {
 
    Assumed = Known;
 
    return ChangeStatus::CHANGED;
 
  }
 
 
 
  /// Return the known state encoding
 
  base_t getKnown() const { return Known; }
 
 
 
  /// Return the assumed state encoding.
 
  base_t getAssumed() const { return Assumed; }
 
 
 
  /// Equality for IntegerStateBase.
 
  bool
 
  operator==(const IntegerStateBase<base_t, BestState, WorstState> &R) const {
 
    return this->getAssumed() == R.getAssumed() &&
 
           this->getKnown() == R.getKnown();
 
  }
 
 
 
  /// Inequality for IntegerStateBase.
 
  bool
 
  operator!=(const IntegerStateBase<base_t, BestState, WorstState> &R) const {
 
    return !(*this == R);
 
  }
 
 
 
  /// "Clamp" this state with \p R. The result is subtype dependent but it is
 
  /// intended that only information assumed in both states will be assumed in
 
  /// this one afterwards.
 
  void operator^=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
 
    handleNewAssumedValue(R.getAssumed());
 
  }
 
 
 
  /// "Clamp" this state with \p R. The result is subtype dependent but it is
 
  /// intended that information known in either state will be known in
 
  /// this one afterwards.
 
  void operator+=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
 
    handleNewKnownValue(R.getKnown());
 
  }
 
 
 
  void operator|=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
 
    joinOR(R.getAssumed(), R.getKnown());
 
  }
 
 
 
  void operator&=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
 
    joinAND(R.getAssumed(), R.getKnown());
 
  }
 
 
 
protected:
 
  /// Handle a new assumed value \p Value. Subtype dependent.
 
  virtual void handleNewAssumedValue(base_t Value) = 0;
 
 
 
  /// Handle a new known value \p Value. Subtype dependent.
 
  virtual void handleNewKnownValue(base_t Value) = 0;
 
 
 
  /// Handle a  value \p Value. Subtype dependent.
 
  virtual void joinOR(base_t AssumedValue, base_t KnownValue) = 0;
 
 
 
  /// Handle a new assumed value \p Value. Subtype dependent.
 
  virtual void joinAND(base_t AssumedValue, base_t KnownValue) = 0;
 
 
 
  /// The known state encoding in an integer of type base_t.
 
  base_t Known = getWorstState();
 
 
 
  /// The assumed state encoding in an integer of type base_t.
 
  base_t Assumed = getBestState();
 
};
 
 
 
/// Specialization of the integer state for a bit-wise encoding.
 
template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0),
 
          base_ty WorstState = 0>
 
struct BitIntegerState
 
    : public IntegerStateBase<base_ty, BestState, WorstState> {
 
  using base_t = base_ty;
 
 
 
  /// Return true if the bits set in \p BitsEncoding are "known bits".
 
  bool isKnown(base_t BitsEncoding) const {
 
    return (this->Known & BitsEncoding) == BitsEncoding;
 
  }
 
 
 
  /// Return true if the bits set in \p BitsEncoding are "assumed bits".
 
  bool isAssumed(base_t BitsEncoding) const {
 
    return (this->Assumed & BitsEncoding) == BitsEncoding;
 
  }
 
 
 
  /// Add the bits in \p BitsEncoding to the "known bits".
 
  BitIntegerState &addKnownBits(base_t Bits) {
 
    // Make sure we never miss any "known bits".
 
    this->Assumed |= Bits;
 
    this->Known |= Bits;
 
    return *this;
 
  }
 
 
 
  /// Remove the bits in \p BitsEncoding from the "assumed bits" if not known.
 
  BitIntegerState &removeAssumedBits(base_t BitsEncoding) {
 
    return intersectAssumedBits(~BitsEncoding);
 
  }
 
 
 
  /// Remove the bits in \p BitsEncoding from the "known bits".
 
  BitIntegerState &removeKnownBits(base_t BitsEncoding) {
 
    this->Known = (this->Known & ~BitsEncoding);
 
    return *this;
 
  }
 
 
 
  /// Keep only "assumed bits" also set in \p BitsEncoding but all known ones.
 
  BitIntegerState &intersectAssumedBits(base_t BitsEncoding) {
 
    // Make sure we never loose any "known bits".
 
    this->Assumed = (this->Assumed & BitsEncoding) | this->Known;
 
    return *this;
 
  }
 
 
 
private:
 
  void handleNewAssumedValue(base_t Value) override {
 
    intersectAssumedBits(Value);
 
  }
 
  void handleNewKnownValue(base_t Value) override { addKnownBits(Value); }
 
  void joinOR(base_t AssumedValue, base_t KnownValue) override {
 
    this->Known |= KnownValue;
 
    this->Assumed |= AssumedValue;
 
  }
 
  void joinAND(base_t AssumedValue, base_t KnownValue) override {
 
    this->Known &= KnownValue;
 
    this->Assumed &= AssumedValue;
 
  }
 
};
 
 
 
/// Specialization of the integer state for an increasing value, hence ~0u is
 
/// the best state and 0 the worst.
 
template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0),
 
          base_ty WorstState = 0>
 
struct IncIntegerState
 
    : public IntegerStateBase<base_ty, BestState, WorstState> {
 
  using super = IntegerStateBase<base_ty, BestState, WorstState>;
 
  using base_t = base_ty;
 
 
 
  IncIntegerState() : super() {}
 
  IncIntegerState(base_t Assumed) : super(Assumed) {}
 
 
 
  /// Return the best possible representable state.
 
  static constexpr base_t getBestState() { return BestState; }
 
  static constexpr base_t
 
  getBestState(const IncIntegerState<base_ty, BestState, WorstState> &) {
 
    return getBestState();
 
  }
 
 
 
  /// Take minimum of assumed and \p Value.
 
  IncIntegerState &takeAssumedMinimum(base_t Value) {
 
    // Make sure we never loose "known value".
 
    this->Assumed = std::max(std::min(this->Assumed, Value), this->Known);
 
    return *this;
 
  }
 
 
 
  /// Take maximum of known and \p Value.
 
  IncIntegerState &takeKnownMaximum(base_t Value) {
 
    // Make sure we never loose "known value".
 
    this->Assumed = std::max(Value, this->Assumed);
 
    this->Known = std::max(Value, this->Known);
 
    return *this;
 
  }
 
 
 
private:
 
  void handleNewAssumedValue(base_t Value) override {
 
    takeAssumedMinimum(Value);
 
  }
 
  void handleNewKnownValue(base_t Value) override { takeKnownMaximum(Value); }
 
  void joinOR(base_t AssumedValue, base_t KnownValue) override {
 
    this->Known = std::max(this->Known, KnownValue);
 
    this->Assumed = std::max(this->Assumed, AssumedValue);
 
  }
 
  void joinAND(base_t AssumedValue, base_t KnownValue) override {
 
    this->Known = std::min(this->Known, KnownValue);
 
    this->Assumed = std::min(this->Assumed, AssumedValue);
 
  }
 
};
 
 
 
/// Specialization of the integer state for a decreasing value, hence 0 is the
 
/// best state and ~0u the worst.
 
template <typename base_ty = uint32_t>
 
struct DecIntegerState : public IntegerStateBase<base_ty, 0, ~base_ty(0)> {
 
  using base_t = base_ty;
 
 
 
  /// Take maximum of assumed and \p Value.
 
  DecIntegerState &takeAssumedMaximum(base_t Value) {
 
    // Make sure we never loose "known value".
 
    this->Assumed = std::min(std::max(this->Assumed, Value), this->Known);
 
    return *this;
 
  }
 
 
 
  /// Take minimum of known and \p Value.
 
  DecIntegerState &takeKnownMinimum(base_t Value) {
 
    // Make sure we never loose "known value".
 
    this->Assumed = std::min(Value, this->Assumed);
 
    this->Known = std::min(Value, this->Known);
 
    return *this;
 
  }
 
 
 
private:
 
  void handleNewAssumedValue(base_t Value) override {
 
    takeAssumedMaximum(Value);
 
  }
 
  void handleNewKnownValue(base_t Value) override { takeKnownMinimum(Value); }
 
  void joinOR(base_t AssumedValue, base_t KnownValue) override {
 
    this->Assumed = std::min(this->Assumed, KnownValue);
 
    this->Assumed = std::min(this->Assumed, AssumedValue);
 
  }
 
  void joinAND(base_t AssumedValue, base_t KnownValue) override {
 
    this->Assumed = std::max(this->Assumed, KnownValue);
 
    this->Assumed = std::max(this->Assumed, AssumedValue);
 
  }
 
};
 
 
 
/// Simple wrapper for a single bit (boolean) state.
 
struct BooleanState : public IntegerStateBase<bool, true, false> {
 
  using super = IntegerStateBase<bool, true, false>;
 
  using base_t = IntegerStateBase::base_t;
 
 
 
  BooleanState() = default;
 
  BooleanState(base_t Assumed) : super(Assumed) {}
 
 
 
  /// Set the assumed value to \p Value but never below the known one.
 
  void setAssumed(bool Value) { Assumed &= (Known | Value); }
 
 
 
  /// Set the known and asssumed value to \p Value.
 
  void setKnown(bool Value) {
 
    Known |= Value;
 
    Assumed |= Value;
 
  }
 
 
 
  /// Return true if the state is assumed to hold.
 
  bool isAssumed() const { return getAssumed(); }
 
 
 
  /// Return true if the state is known to hold.
 
  bool isKnown() const { return getKnown(); }
 
 
 
private:
 
  void handleNewAssumedValue(base_t Value) override {
 
    if (!Value)
 
      Assumed = Known;
 
  }
 
  void handleNewKnownValue(base_t Value) override {
 
    if (Value)
 
      Known = (Assumed = Value);
 
  }
 
  void joinOR(base_t AssumedValue, base_t KnownValue) override {
 
    Known |= KnownValue;
 
    Assumed |= AssumedValue;
 
  }
 
  void joinAND(base_t AssumedValue, base_t KnownValue) override {
 
    Known &= KnownValue;
 
    Assumed &= AssumedValue;
 
  }
 
};
 
 
 
/// State for an integer range.
 
struct IntegerRangeState : public AbstractState {
 
 
 
  /// Bitwidth of the associated value.
 
  uint32_t BitWidth;
 
 
 
  /// State representing assumed range, initially set to empty.
 
  ConstantRange Assumed;
 
 
 
  /// State representing known range, initially set to [-inf, inf].
 
  ConstantRange Known;
 
 
 
  IntegerRangeState(uint32_t BitWidth)
 
      : BitWidth(BitWidth), Assumed(ConstantRange::getEmpty(BitWidth)),
 
        Known(ConstantRange::getFull(BitWidth)) {}
 
 
 
  IntegerRangeState(const ConstantRange &CR)
 
      : BitWidth(CR.getBitWidth()), Assumed(CR),
 
        Known(getWorstState(CR.getBitWidth())) {}
 
 
 
  /// Return the worst possible representable state.
 
  static ConstantRange getWorstState(uint32_t BitWidth) {
 
    return ConstantRange::getFull(BitWidth);
 
  }
 
 
 
  /// Return the best possible representable state.
 
  static ConstantRange getBestState(uint32_t BitWidth) {
 
    return ConstantRange::getEmpty(BitWidth);
 
  }
 
  static ConstantRange getBestState(const IntegerRangeState &IRS) {
 
    return getBestState(IRS.getBitWidth());
 
  }
 
 
 
  /// Return associated values' bit width.
 
  uint32_t getBitWidth() const { return BitWidth; }
 
 
 
  /// See AbstractState::isValidState()
 
  bool isValidState() const override {
 
    return BitWidth > 0 && !Assumed.isFullSet();
 
  }
 
 
 
  /// See AbstractState::isAtFixpoint()
 
  bool isAtFixpoint() const override { return Assumed == Known; }
 
 
 
  /// See AbstractState::indicateOptimisticFixpoint(...)
 
  ChangeStatus indicateOptimisticFixpoint() override {
 
    Known = Assumed;
 
    return ChangeStatus::CHANGED;
 
  }
 
 
 
  /// See AbstractState::indicatePessimisticFixpoint(...)
 
  ChangeStatus indicatePessimisticFixpoint() override {
 
    Assumed = Known;
 
    return ChangeStatus::CHANGED;
 
  }
 
 
 
  /// Return the known state encoding
 
  ConstantRange getKnown() const { return Known; }
 
 
 
  /// Return the assumed state encoding.
 
  ConstantRange getAssumed() const { return Assumed; }
 
 
 
  /// Unite assumed range with the passed state.
 
  void unionAssumed(const ConstantRange &R) {
 
    // Don't loose a known range.
 
    Assumed = Assumed.unionWith(R).intersectWith(Known);
 
  }
 
 
 
  /// See IntegerRangeState::unionAssumed(..).
 
  void unionAssumed(const IntegerRangeState &R) {
 
    unionAssumed(R.getAssumed());
 
  }
 
 
 
  /// Intersect known range with the passed state.
 
  void intersectKnown(const ConstantRange &R) {
 
    Assumed = Assumed.intersectWith(R);
 
    Known = Known.intersectWith(R);
 
  }
 
 
 
  /// See IntegerRangeState::intersectKnown(..).
 
  void intersectKnown(const IntegerRangeState &R) {
 
    intersectKnown(R.getKnown());
 
  }
 
 
 
  /// Equality for IntegerRangeState.
 
  bool operator==(const IntegerRangeState &R) const {
 
    return getAssumed() == R.getAssumed() && getKnown() == R.getKnown();
 
  }
 
 
 
  /// "Clamp" this state with \p R. The result is subtype dependent but it is
 
  /// intended that only information assumed in both states will be assumed in
 
  /// this one afterwards.
 
  IntegerRangeState operator^=(const IntegerRangeState &R) {
 
    // NOTE: `^=` operator seems like `intersect` but in this case, we need to
 
    // take `union`.
 
    unionAssumed(R);
 
    return *this;
 
  }
 
 
 
  IntegerRangeState operator&=(const IntegerRangeState &R) {
 
    // NOTE: `&=` operator seems like `intersect` but in this case, we need to
 
    // take `union`.
 
    Known = Known.unionWith(R.getKnown());
 
    Assumed = Assumed.unionWith(R.getAssumed());
 
    return *this;
 
  }
 
};
 
 
 
/// Simple state for a set.
 
///
 
/// This represents a state containing a set of values. The interface supports
 
/// modelling sets that contain all possible elements. The state's internal
 
/// value is modified using union or intersection operations.
 
template <typename BaseTy> struct SetState : public AbstractState {
 
  /// A wrapper around a set that has semantics for handling unions and
 
  /// intersections with a "universal" set that contains all elements.
 
  struct SetContents {
 
    /// Creates a universal set with no concrete elements or an empty set.
 
    SetContents(bool Universal) : Universal(Universal) {}
 
 
 
    /// Creates a non-universal set with concrete values.
 
    SetContents(const DenseSet<BaseTy> &Assumptions)
 
        : Universal(false), Set(Assumptions) {}
 
 
 
    SetContents(bool Universal, const DenseSet<BaseTy> &Assumptions)
 
        : Universal(Universal), Set(Assumptions) {}
 
 
 
    const DenseSet<BaseTy> &getSet() const { return Set; }
 
 
 
    bool isUniversal() const { return Universal; }
 
 
 
    bool empty() const { return Set.empty() && !Universal; }
 
 
 
    /// Finds A := A ^ B where A or B could be the "Universal" set which
 
    /// contains every possible attribute. Returns true if changes were made.
 
    bool getIntersection(const SetContents &RHS) {
 
      bool IsUniversal = Universal;
 
      unsigned Size = Set.size();
 
 
 
      // A := A ^ U = A
 
      if (RHS.isUniversal())
 
        return false;
 
 
 
      // A := U ^ B = B
 
      if (Universal)
 
        Set = RHS.getSet();
 
      else
 
        set_intersect(Set, RHS.getSet());
 
 
 
      Universal &= RHS.isUniversal();
 
      return IsUniversal != Universal || Size != Set.size();
 
    }
 
 
 
    /// Finds A := A u B where A or B could be the "Universal" set which
 
    /// contains every possible attribute. returns true if changes were made.
 
    bool getUnion(const SetContents &RHS) {
 
      bool IsUniversal = Universal;
 
      unsigned Size = Set.size();
 
 
 
      // A := A u U = U = U u B
 
      if (!RHS.isUniversal() && !Universal)
 
        set_union(Set, RHS.getSet());
 
 
 
      Universal |= RHS.isUniversal();
 
      return IsUniversal != Universal || Size != Set.size();
 
    }
 
 
 
  private:
 
    /// Indicates if this set is "universal", containing every possible element.
 
    bool Universal;
 
 
 
    /// The set of currently active assumptions.
 
    DenseSet<BaseTy> Set;
 
  };
 
 
 
  SetState() : Known(false), Assumed(true), IsAtFixedpoint(false) {}
 
 
 
  /// Initializes the known state with an initial set and initializes the
 
  /// assumed state as universal.
 
  SetState(const DenseSet<BaseTy> &Known)
 
      : Known(Known), Assumed(true), IsAtFixedpoint(false) {}
 
 
 
  /// See AbstractState::isValidState()
 
  bool isValidState() const override { return !Assumed.empty(); }
 
 
 
  /// See AbstractState::isAtFixpoint()
 
  bool isAtFixpoint() const override { return IsAtFixedpoint; }
 
 
 
  /// See AbstractState::indicateOptimisticFixpoint(...)
 
  ChangeStatus indicateOptimisticFixpoint() override {
 
    IsAtFixedpoint = true;
 
    Known = Assumed;
 
    return ChangeStatus::UNCHANGED;
 
  }
 
 
 
  /// See AbstractState::indicatePessimisticFixpoint(...)
 
  ChangeStatus indicatePessimisticFixpoint() override {
 
    IsAtFixedpoint = true;
 
    Assumed = Known;
 
    return ChangeStatus::CHANGED;
 
  }
 
 
 
  /// Return the known state encoding.
 
  const SetContents &getKnown() const { return Known; }
 
 
 
  /// Return the assumed state encoding.
 
  const SetContents &getAssumed() const { return Assumed; }
 
 
 
  /// Returns if the set state contains the element.
 
  bool setContains(const BaseTy &Elem) const {
 
    return Assumed.getSet().contains(Elem) || Known.getSet().contains(Elem);
 
  }
 
 
 
  /// Performs the set intersection between this set and \p RHS. Returns true if
 
  /// changes were made.
 
  bool getIntersection(const SetContents &RHS) {
 
    unsigned SizeBefore = Assumed.getSet().size();
 
 
 
    // Get intersection and make sure that the known set is still a proper
 
    // subset of the assumed set. A := K u (A ^ R).
 
    Assumed.getIntersection(RHS);
 
    Assumed.getUnion(Known);
 
 
 
    return SizeBefore != Assumed.getSet().size();
 
  }
 
 
 
  /// Performs the set union between this set and \p RHS. Returns true if
 
  /// changes were made.
 
  bool getUnion(const SetContents &RHS) { return Assumed.getUnion(RHS); }
 
 
 
private:
 
  /// The set of values known for this state.
 
  SetContents Known;
 
 
 
  /// The set of assumed values for this state.
 
  SetContents Assumed;
 
 
 
  bool IsAtFixedpoint;
 
};
 
 
 
/// Helper struct necessary as the modular build fails if the virtual method
 
/// IRAttribute::manifest is defined in the Attributor.cpp.
 
struct IRAttributeManifest {
 
  static ChangeStatus manifestAttrs(Attributor &A, const IRPosition &IRP,
 
                                    const ArrayRef<Attribute> &DeducedAttrs,
 
                                    bool ForceReplace = false);
 
};
 
 
 
/// Helper to tie a abstract state implementation to an abstract attribute.
 
template <typename StateTy, typename BaseType, class... Ts>
 
struct StateWrapper : public BaseType, public StateTy {
 
  /// Provide static access to the type of the state.
 
  using StateType = StateTy;
 
 
 
  StateWrapper(const IRPosition &IRP, Ts... Args)
 
      : BaseType(IRP), StateTy(Args...) {}
 
 
 
  /// See AbstractAttribute::getState(...).
 
  StateType &getState() override { return *this; }
 
 
 
  /// See AbstractAttribute::getState(...).
 
  const StateType &getState() const override { return *this; }
 
};
 
 
 
/// Helper class that provides common functionality to manifest IR attributes.
 
template <Attribute::AttrKind AK, typename BaseType>
 
struct IRAttribute : public BaseType {
 
  IRAttribute(const IRPosition &IRP) : BaseType(IRP) {}
 
 
 
  /// See AbstractAttribute::initialize(...).
 
  void initialize(Attributor &A) override {
 
    const IRPosition &IRP = this->getIRPosition();
 
    if (isa<UndefValue>(IRP.getAssociatedValue()) ||
 
        this->hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ false,
 
                      &A)) {
 
      this->getState().indicateOptimisticFixpoint();
 
      return;
 
    }
 
 
 
    bool IsFnInterface = IRP.isFnInterfaceKind();
 
    const Function *FnScope = IRP.getAnchorScope();
 
    // TODO: Not all attributes require an exact definition. Find a way to
 
    //       enable deduction for some but not all attributes in case the
 
    //       definition might be changed at runtime, see also
 
    //       http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
 
    // TODO: We could always determine abstract attributes and if sufficient
 
    //       information was found we could duplicate the functions that do not
 
    //       have an exact definition.
 
    if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope)))
 
      this->getState().indicatePessimisticFixpoint();
 
  }
 
 
 
  /// See AbstractAttribute::manifest(...).
 
  ChangeStatus manifest(Attributor &A) override {
 
    if (isa<UndefValue>(this->getIRPosition().getAssociatedValue()))
 
      return ChangeStatus::UNCHANGED;
 
    SmallVector<Attribute, 4> DeducedAttrs;
 
    getDeducedAttributes(this->getAnchorValue().getContext(), DeducedAttrs);
 
    return IRAttributeManifest::manifestAttrs(A, this->getIRPosition(),
 
                                              DeducedAttrs);
 
  }
 
 
 
  /// Return the kind that identifies the abstract attribute implementation.
 
  Attribute::AttrKind getAttrKind() const { return AK; }
 
 
 
  /// Return the deduced attributes in \p Attrs.
 
  virtual void getDeducedAttributes(LLVMContext &Ctx,
 
                                    SmallVectorImpl<Attribute> &Attrs) const {
 
    Attrs.emplace_back(Attribute::get(Ctx, getAttrKind()));
 
  }
 
};
 
 
 
/// Base struct for all "concrete attribute" deductions.
 
///
 
/// The abstract attribute is a minimal interface that allows the Attributor to
 
/// orchestrate the abstract/fixpoint analysis. The design allows to hide away
 
/// implementation choices made for the subclasses but also to structure their
 
/// implementation and simplify the use of other abstract attributes in-flight.
 
///
 
/// To allow easy creation of new attributes, most methods have default
 
/// implementations. The ones that do not are generally straight forward, except
 
/// `AbstractAttribute::updateImpl` which is the location of most reasoning
 
/// associated with the abstract attribute. The update is invoked by the
 
/// Attributor in case the situation used to justify the current optimistic
 
/// state might have changed. The Attributor determines this automatically
 
/// by monitoring the `Attributor::getAAFor` calls made by abstract attributes.
 
///
 
/// The `updateImpl` method should inspect the IR and other abstract attributes
 
/// in-flight to justify the best possible (=optimistic) state. The actual
 
/// implementation is, similar to the underlying abstract state encoding, not
 
/// exposed. In the most common case, the `updateImpl` will go through a list of
 
/// reasons why its optimistic state is valid given the current information. If
 
/// any combination of them holds and is sufficient to justify the current
 
/// optimistic state, the method shall return UNCHAGED. If not, the optimistic
 
/// state is adjusted to the situation and the method shall return CHANGED.
 
///
 
/// If the manifestation of the "concrete attribute" deduced by the subclass
 
/// differs from the "default" behavior, which is a (set of) LLVM-IR
 
/// attribute(s) for an argument, call site argument, function return value, or
 
/// function, the `AbstractAttribute::manifest` method should be overloaded.
 
///
 
/// NOTE: If the state obtained via getState() is INVALID, thus if
 
///       AbstractAttribute::getState().isValidState() returns false, no
 
///       information provided by the methods of this class should be used.
 
/// NOTE: The Attributor currently has certain limitations to what we can do.
 
///       As a general rule of thumb, "concrete" abstract attributes should *for
 
///       now* only perform "backward" information propagation. That means
 
///       optimistic information obtained through abstract attributes should
 
///       only be used at positions that precede the origin of the information
 
///       with regards to the program flow. More practically, information can
 
///       *now* be propagated from instructions to their enclosing function, but
 
///       *not* from call sites to the called function. The mechanisms to allow
 
///       both directions will be added in the future.
 
/// NOTE: The mechanics of adding a new "concrete" abstract attribute are
 
///       described in the file comment.
 
struct AbstractAttribute : public IRPosition, public AADepGraphNode {
 
  using StateType = AbstractState;
 
 
 
  AbstractAttribute(const IRPosition &IRP) : IRPosition(IRP) {}
 
 
 
  /// Virtual destructor.
 
  virtual ~AbstractAttribute() = default;
 
 
 
  /// This function is used to identify if an \p DGN is of type
 
  /// AbstractAttribute so that the dyn_cast and cast can use such information
 
  /// to cast an AADepGraphNode to an AbstractAttribute.
 
  ///
 
  /// We eagerly return true here because all AADepGraphNodes except for the
 
  /// Synthethis Node are of type AbstractAttribute
 
  static bool classof(const AADepGraphNode *DGN) { return true; }
 
 
 
  /// Initialize the state with the information in the Attributor \p A.
 
  ///
 
  /// This function is called by the Attributor once all abstract attributes
 
  /// have been identified. It can and shall be used for task like:
 
  ///  - identify existing knowledge in the IR and use it for the "known state"
 
  ///  - perform any work that is not going to change over time, e.g., determine
 
  ///    a subset of the IR, or attributes in-flight, that have to be looked at
 
  ///    in the `updateImpl` method.
 
  virtual void initialize(Attributor &A) {}
 
 
 
  /// A query AA is always scheduled as long as we do updates because it does
 
  /// lazy computation that cannot be determined to be done from the outside.
 
  /// However, while query AAs will not be fixed if they do not have outstanding
 
  /// dependences, we will only schedule them like other AAs. If a query AA that
 
  /// received a new query it needs to request an update via
 
  /// `Attributor::requestUpdateForAA`.
 
  virtual bool isQueryAA() const { return false; }
 
 
 
  /// Return the internal abstract state for inspection.
 
  virtual StateType &getState() = 0;
 
  virtual const StateType &getState() const = 0;
 
 
 
  /// Return an IR position, see struct IRPosition.
 
  const IRPosition &getIRPosition() const { return *this; };
 
  IRPosition &getIRPosition() { return *this; };
 
 
 
  /// Helper functions, for debug purposes only.
 
  ///{
 
  void print(raw_ostream &OS) const override;
 
  virtual void printWithDeps(raw_ostream &OS) const;
 
  void dump() const { print(dbgs()); }
 
 
 
  /// This function should return the "summarized" assumed state as string.
 
  virtual const std::string getAsStr() const = 0;
 
 
 
  /// This function should return the name of the AbstractAttribute
 
  virtual const std::string getName() const = 0;
 
 
 
  /// This function should return the address of the ID of the AbstractAttribute
 
  virtual const char *getIdAddr() const = 0;
 
  ///}
 
 
 
  /// Allow the Attributor access to the protected methods.
 
  friend struct Attributor;
 
 
 
protected:
 
  /// Hook for the Attributor to trigger an update of the internal state.
 
  ///
 
  /// If this attribute is already fixed, this method will return UNCHANGED,
 
  /// otherwise it delegates to `AbstractAttribute::updateImpl`.
 
  ///
 
  /// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
 
  ChangeStatus update(Attributor &A);
 
 
 
  /// Hook for the Attributor to trigger the manifestation of the information
 
  /// represented by the abstract attribute in the LLVM-IR.
 
  ///
 
  /// \Return CHANGED if the IR was altered, otherwise UNCHANGED.
 
  virtual ChangeStatus manifest(Attributor &A) {
 
    return ChangeStatus::UNCHANGED;
 
  }
 
 
 
  /// Hook to enable custom statistic tracking, called after manifest that
 
  /// resulted in a change if statistics are enabled.
 
  ///
 
  /// We require subclasses to provide an implementation so we remember to
 
  /// add statistics for them.
 
  virtual void trackStatistics() const = 0;
 
 
 
  /// The actual update/transfer function which has to be implemented by the
 
  /// derived classes.
 
  ///
 
  /// If it is called, the environment has changed and we have to determine if
 
  /// the current information is still valid or adjust it otherwise.
 
  ///
 
  /// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
 
  virtual ChangeStatus updateImpl(Attributor &A) = 0;
 
};
 
 
 
/// Forward declarations of output streams for debug purposes.
 
///
 
///{
 
raw_ostream &operator<<(raw_ostream &OS, const AbstractAttribute &AA);
 
raw_ostream &operator<<(raw_ostream &OS, ChangeStatus S);
 
raw_ostream &operator<<(raw_ostream &OS, IRPosition::Kind);
 
raw_ostream &operator<<(raw_ostream &OS, const IRPosition &);
 
raw_ostream &operator<<(raw_ostream &OS, const AbstractState &State);
 
template <typename base_ty, base_ty BestState, base_ty WorstState>
 
raw_ostream &
 
operator<<(raw_ostream &OS,
 
           const IntegerStateBase<base_ty, BestState, WorstState> &S) {
 
  return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
 
            << static_cast<const AbstractState &>(S);
 
}
 
raw_ostream &operator<<(raw_ostream &OS, const IntegerRangeState &State);
 
///}
 
 
 
struct AttributorPass : public PassInfoMixin<AttributorPass> {
 
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
 
};
 
struct AttributorCGSCCPass : public PassInfoMixin<AttributorCGSCCPass> {
 
  PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
 
                        LazyCallGraph &CG, CGSCCUpdateResult &UR);
 
};
 
 
 
Pass *createAttributorLegacyPass();
 
Pass *createAttributorCGSCCLegacyPass();
 
 
 
/// Helper function to clamp a state \p S of type \p StateType with the
 
/// information in \p R and indicate/return if \p S did change (as-in update is
 
/// required to be run again).
 
template <typename StateType>
 
ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
 
  auto Assumed = S.getAssumed();
 
  S ^= R;
 
  return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
 
                                   : ChangeStatus::CHANGED;
 
}
 
 
 
/// ----------------------------------------------------------------------------
 
///                       Abstract Attribute Classes
 
/// ----------------------------------------------------------------------------
 
 
 
/// An abstract attribute for the returned values of a function.
 
struct AAReturnedValues
 
    : public IRAttribute<Attribute::Returned, AbstractAttribute> {
 
  AAReturnedValues(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Check \p Pred on all returned values.
 
  ///
 
  /// This method will evaluate \p Pred on returned values and return
 
  /// true if (1) all returned values are known, and (2) \p Pred returned true
 
  /// for all returned values.
 
  ///
 
  /// Note: Unlike the Attributor::checkForAllReturnedValuesAndReturnInsts
 
  /// method, this one will not filter dead return instructions.
 
  virtual bool checkForAllReturnedValuesAndReturnInsts(
 
      function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
 
      const = 0;
 
 
 
  using iterator =
 
      MapVector<Value *, SmallSetVector<ReturnInst *, 4>>::iterator;
 
  using const_iterator =
 
      MapVector<Value *, SmallSetVector<ReturnInst *, 4>>::const_iterator;
 
  virtual llvm::iterator_range<iterator> returned_values() = 0;
 
  virtual llvm::iterator_range<const_iterator> returned_values() const = 0;
 
 
 
  virtual size_t getNumReturnValues() const = 0;
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAReturnedValues &createForPosition(const IRPosition &IRP,
 
                                             Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAReturnedValues"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAReturnedValues
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
struct AANoUnwind
 
    : public IRAttribute<Attribute::NoUnwind,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AANoUnwind(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Returns true if nounwind is assumed.
 
  bool isAssumedNoUnwind() const { return getAssumed(); }
 
 
 
  /// Returns true if nounwind is known.
 
  bool isKnownNoUnwind() const { return getKnown(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANoUnwind &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANoUnwind"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANoUnwind
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
struct AANoSync
 
    : public IRAttribute<Attribute::NoSync,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AANoSync(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Returns true if "nosync" is assumed.
 
  bool isAssumedNoSync() const { return getAssumed(); }
 
 
 
  /// Returns true if "nosync" is known.
 
  bool isKnownNoSync() const { return getKnown(); }
 
 
 
  /// Helper function used to determine whether an instruction is non-relaxed
 
  /// atomic. In other words, if an atomic instruction does not have unordered
 
  /// or monotonic ordering
 
  static bool isNonRelaxedAtomic(const Instruction *I);
 
 
 
  /// Helper function specific for intrinsics which are potentially volatile.
 
  static bool isNoSyncIntrinsic(const Instruction *I);
 
 
 
  /// Helper function to determine if \p CB is an aligned (GPU) barrier. Aligned
 
  /// barriers have to be executed by all threads. The flag \p ExecutedAligned
 
  /// indicates if the call is executed by all threads in a (thread) block in an
 
  /// aligned way. If that is the case, non-aligned barriers are effectively
 
  /// aligned barriers.
 
  static bool isAlignedBarrier(const CallBase &CB, bool ExecutedAligned);
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANoSync &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANoSync"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANoSync
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for all nonnull attributes.
 
struct AANonNull
 
    : public IRAttribute<Attribute::NonNull,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AANonNull(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return true if we assume that the underlying value is nonnull.
 
  bool isAssumedNonNull() const { return getAssumed(); }
 
 
 
  /// Return true if we know that underlying value is nonnull.
 
  bool isKnownNonNull() const { return getKnown(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANonNull &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANonNull"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANonNull
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract attribute for norecurse.
 
struct AANoRecurse
 
    : public IRAttribute<Attribute::NoRecurse,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AANoRecurse(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return true if "norecurse" is assumed.
 
  bool isAssumedNoRecurse() const { return getAssumed(); }
 
 
 
  /// Return true if "norecurse" is known.
 
  bool isKnownNoRecurse() const { return getKnown(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANoRecurse &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANoRecurse"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANoRecurse
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract attribute for willreturn.
 
struct AAWillReturn
 
    : public IRAttribute<Attribute::WillReturn,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AAWillReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return true if "willreturn" is assumed.
 
  bool isAssumedWillReturn() const { return getAssumed(); }
 
 
 
  /// Return true if "willreturn" is known.
 
  bool isKnownWillReturn() const { return getKnown(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAWillReturn &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAWillReturn"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AAWillReturn
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract attribute for undefined behavior.
 
struct AAUndefinedBehavior
 
    : public StateWrapper<BooleanState, AbstractAttribute> {
 
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
 
  AAUndefinedBehavior(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// Return true if "undefined behavior" is assumed.
 
  bool isAssumedToCauseUB() const { return getAssumed(); }
 
 
 
  /// Return true if "undefined behavior" is assumed for a specific instruction.
 
  virtual bool isAssumedToCauseUB(Instruction *I) const = 0;
 
 
 
  /// Return true if "undefined behavior" is known.
 
  bool isKnownToCauseUB() const { return getKnown(); }
 
 
 
  /// Return true if "undefined behavior" is known for a specific instruction.
 
  virtual bool isKnownToCauseUB(Instruction *I) const = 0;
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAUndefinedBehavior &createForPosition(const IRPosition &IRP,
 
                                                Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAUndefinedBehavior"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAUndefineBehavior
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface to determine reachability of point A to B.
 
struct AAIntraFnReachability
 
    : public StateWrapper<BooleanState, AbstractAttribute> {
 
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
 
  AAIntraFnReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// Returns true if 'From' instruction is assumed to reach, 'To' instruction.
 
  /// Users should provide two positions they are interested in, and the class
 
  /// determines (and caches) reachability.
 
  virtual bool isAssumedReachable(
 
      Attributor &A, const Instruction &From, const Instruction &To,
 
      const AA::InstExclusionSetTy *ExclusionSet = nullptr) const = 0;
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAIntraFnReachability &createForPosition(const IRPosition &IRP,
 
                                                  Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAIntraFnReachability"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAIntraFnReachability
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for all noalias attributes.
 
struct AANoAlias
 
    : public IRAttribute<Attribute::NoAlias,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AANoAlias(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return true if we assume that the underlying value is alias.
 
  bool isAssumedNoAlias() const { return getAssumed(); }
 
 
 
  /// Return true if we know that underlying value is noalias.
 
  bool isKnownNoAlias() const { return getKnown(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANoAlias &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANoAlias"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANoAlias
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An AbstractAttribute for nofree.
 
struct AANoFree
 
    : public IRAttribute<Attribute::NoFree,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AANoFree(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return true if "nofree" is assumed.
 
  bool isAssumedNoFree() const { return getAssumed(); }
 
 
 
  /// Return true if "nofree" is known.
 
  bool isKnownNoFree() const { return getKnown(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANoFree &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANoFree"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANoFree
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An AbstractAttribute for noreturn.
 
struct AANoReturn
 
    : public IRAttribute<Attribute::NoReturn,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AANoReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return true if the underlying object is assumed to never return.
 
  bool isAssumedNoReturn() const { return getAssumed(); }
 
 
 
  /// Return true if the underlying object is known to never return.
 
  bool isKnownNoReturn() const { return getKnown(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANoReturn &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANoReturn"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANoReturn
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for liveness abstract attribute.
 
struct AAIsDead
 
    : public StateWrapper<BitIntegerState<uint8_t, 3, 0>, AbstractAttribute> {
 
  using Base = StateWrapper<BitIntegerState<uint8_t, 3, 0>, AbstractAttribute>;
 
  AAIsDead(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// State encoding bits. A set bit in the state means the property holds.
 
  enum {
 
    HAS_NO_EFFECT = 1 << 0,
 
    IS_REMOVABLE = 1 << 1,
 
 
 
    IS_DEAD = HAS_NO_EFFECT | IS_REMOVABLE,
 
  };
 
  static_assert(IS_DEAD == getBestState(), "Unexpected BEST_STATE value");
 
 
 
protected:
 
  /// The query functions are protected such that other attributes need to go
 
  /// through the Attributor interfaces: `Attributor::isAssumedDead(...)`
 
 
 
  /// Returns true if the underlying value is assumed dead.
 
  virtual bool isAssumedDead() const = 0;
 
 
 
  /// Returns true if the underlying value is known dead.
 
  virtual bool isKnownDead() const = 0;
 
 
 
  /// Returns true if \p BB is known dead.
 
  virtual bool isKnownDead(const BasicBlock *BB) const = 0;
 
 
 
  /// Returns true if \p I is assumed dead.
 
  virtual bool isAssumedDead(const Instruction *I) const = 0;
 
 
 
  /// Returns true if \p I is known dead.
 
  virtual bool isKnownDead(const Instruction *I) const = 0;
 
 
 
  /// Return true if the underlying value is a store that is known to be
 
  /// removable. This is different from dead stores as the removable store
 
  /// can have an effect on live values, especially loads, but that effect
 
  /// is propagated which allows us to remove the store in turn.
 
  virtual bool isRemovableStore() const { return false; }
 
 
 
  /// This method is used to check if at least one instruction in a collection
 
  /// of instructions is live.
 
  template <typename T> bool isLiveInstSet(T begin, T end) const {
 
    for (const auto &I : llvm::make_range(begin, end)) {
 
      assert(I->getFunction() == getIRPosition().getAssociatedFunction() &&
 
             "Instruction must be in the same anchor scope function.");
 
 
 
      if (!isAssumedDead(I))
 
        return true;
 
    }
 
 
 
    return false;
 
  }
 
 
 
public:
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAIsDead &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// Determine if \p F might catch asynchronous exceptions.
 
  static bool mayCatchAsynchronousExceptions(const Function &F) {
 
    return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
 
  }
 
 
 
  /// Returns true if \p BB is assumed dead.
 
  virtual bool isAssumedDead(const BasicBlock *BB) const = 0;
 
 
 
  /// Return if the edge from \p From BB to \p To BB is assumed dead.
 
  /// This is specifically useful in AAReachability.
 
  virtual bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const {
 
    return false;
 
  }
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAIsDead"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AAIsDead
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
 
 
  friend struct Attributor;
 
};
 
 
 
/// State for dereferenceable attribute
 
struct DerefState : AbstractState {
 
 
 
  static DerefState getBestState() { return DerefState(); }
 
  static DerefState getBestState(const DerefState &) { return getBestState(); }
 
 
 
  /// Return the worst possible representable state.
 
  static DerefState getWorstState() {
 
    DerefState DS;
 
    DS.indicatePessimisticFixpoint();
 
    return DS;
 
  }
 
  static DerefState getWorstState(const DerefState &) {
 
    return getWorstState();
 
  }
 
 
 
  /// State representing for dereferenceable bytes.
 
  IncIntegerState<> DerefBytesState;
 
 
 
  /// Map representing for accessed memory offsets and sizes.
 
  /// A key is Offset and a value is size.
 
  /// If there is a load/store instruction something like,
 
  ///   p[offset] = v;
 
  /// (offset, sizeof(v)) will be inserted to this map.
 
  /// std::map is used because we want to iterate keys in ascending order.
 
  std::map<int64_t, uint64_t> AccessedBytesMap;
 
 
 
  /// Helper function to calculate dereferenceable bytes from current known
 
  /// bytes and accessed bytes.
 
  ///
 
  /// int f(int *A){
 
  ///    *A = 0;
 
  ///    *(A+2) = 2;
 
  ///    *(A+1) = 1;
 
  ///    *(A+10) = 10;
 
  /// }
 
  /// ```
 
  /// In that case, AccessedBytesMap is `{0:4, 4:4, 8:4, 40:4}`.
 
  /// AccessedBytesMap is std::map so it is iterated in accending order on
 
  /// key(Offset). So KnownBytes will be updated like this:
 
  ///
 
  /// |Access | KnownBytes
 
  /// |(0, 4)| 0 -> 4
 
  /// |(4, 4)| 4 -> 8
 
  /// |(8, 4)| 8 -> 12
 
  /// |(40, 4) | 12 (break)
 
  void computeKnownDerefBytesFromAccessedMap() {
 
    int64_t KnownBytes = DerefBytesState.getKnown();
 
    for (auto &Access : AccessedBytesMap) {
 
      if (KnownBytes < Access.first)
 
        break;
 
      KnownBytes = std::max(KnownBytes, Access.first + (int64_t)Access.second);
 
    }
 
 
 
    DerefBytesState.takeKnownMaximum(KnownBytes);
 
  }
 
 
 
  /// State representing that whether the value is globaly dereferenceable.
 
  BooleanState GlobalState;
 
 
 
  /// See AbstractState::isValidState()
 
  bool isValidState() const override { return DerefBytesState.isValidState(); }
 
 
 
  /// See AbstractState::isAtFixpoint()
 
  bool isAtFixpoint() const override {
 
    return !isValidState() ||
 
           (DerefBytesState.isAtFixpoint() && GlobalState.isAtFixpoint());
 
  }
 
 
 
  /// See AbstractState::indicateOptimisticFixpoint(...)
 
  ChangeStatus indicateOptimisticFixpoint() override {
 
    DerefBytesState.indicateOptimisticFixpoint();
 
    GlobalState.indicateOptimisticFixpoint();
 
    return ChangeStatus::UNCHANGED;
 
  }
 
 
 
  /// See AbstractState::indicatePessimisticFixpoint(...)
 
  ChangeStatus indicatePessimisticFixpoint() override {
 
    DerefBytesState.indicatePessimisticFixpoint();
 
    GlobalState.indicatePessimisticFixpoint();
 
    return ChangeStatus::CHANGED;
 
  }
 
 
 
  /// Update known dereferenceable bytes.
 
  void takeKnownDerefBytesMaximum(uint64_t Bytes) {
 
    DerefBytesState.takeKnownMaximum(Bytes);
 
 
 
    // Known bytes might increase.
 
    computeKnownDerefBytesFromAccessedMap();
 
  }
 
 
 
  /// Update assumed dereferenceable bytes.
 
  void takeAssumedDerefBytesMinimum(uint64_t Bytes) {
 
    DerefBytesState.takeAssumedMinimum(Bytes);
 
  }
 
 
 
  /// Add accessed bytes to the map.
 
  void addAccessedBytes(int64_t Offset, uint64_t Size) {
 
    uint64_t &AccessedBytes = AccessedBytesMap[Offset];
 
    AccessedBytes = std::max(AccessedBytes, Size);
 
 
 
    // Known bytes might increase.
 
    computeKnownDerefBytesFromAccessedMap();
 
  }
 
 
 
  /// Equality for DerefState.
 
  bool operator==(const DerefState &R) const {
 
    return this->DerefBytesState == R.DerefBytesState &&
 
           this->GlobalState == R.GlobalState;
 
  }
 
 
 
  /// Inequality for DerefState.
 
  bool operator!=(const DerefState &R) const { return !(*this == R); }
 
 
 
  /// See IntegerStateBase::operator^=
 
  DerefState operator^=(const DerefState &R) {
 
    DerefBytesState ^= R.DerefBytesState;
 
    GlobalState ^= R.GlobalState;
 
    return *this;
 
  }
 
 
 
  /// See IntegerStateBase::operator+=
 
  DerefState operator+=(const DerefState &R) {
 
    DerefBytesState += R.DerefBytesState;
 
    GlobalState += R.GlobalState;
 
    return *this;
 
  }
 
 
 
  /// See IntegerStateBase::operator&=
 
  DerefState operator&=(const DerefState &R) {
 
    DerefBytesState &= R.DerefBytesState;
 
    GlobalState &= R.GlobalState;
 
    return *this;
 
  }
 
 
 
  /// See IntegerStateBase::operator|=
 
  DerefState operator|=(const DerefState &R) {
 
    DerefBytesState |= R.DerefBytesState;
 
    GlobalState |= R.GlobalState;
 
    return *this;
 
  }
 
 
 
protected:
 
  const AANonNull *NonNullAA = nullptr;
 
};
 
 
 
/// An abstract interface for all dereferenceable attribute.
 
struct AADereferenceable
 
    : public IRAttribute<Attribute::Dereferenceable,
 
                         StateWrapper<DerefState, AbstractAttribute>> {
 
  AADereferenceable(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return true if we assume that the underlying value is nonnull.
 
  bool isAssumedNonNull() const {
 
    return NonNullAA && NonNullAA->isAssumedNonNull();
 
  }
 
 
 
  /// Return true if we know that the underlying value is nonnull.
 
  bool isKnownNonNull() const {
 
    return NonNullAA && NonNullAA->isKnownNonNull();
 
  }
 
 
 
  /// Return true if we assume that underlying value is
 
  /// dereferenceable(_or_null) globally.
 
  bool isAssumedGlobal() const { return GlobalState.getAssumed(); }
 
 
 
  /// Return true if we know that underlying value is
 
  /// dereferenceable(_or_null) globally.
 
  bool isKnownGlobal() const { return GlobalState.getKnown(); }
 
 
 
  /// Return assumed dereferenceable bytes.
 
  uint32_t getAssumedDereferenceableBytes() const {
 
    return DerefBytesState.getAssumed();
 
  }
 
 
 
  /// Return known dereferenceable bytes.
 
  uint32_t getKnownDereferenceableBytes() const {
 
    return DerefBytesState.getKnown();
 
  }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AADereferenceable &createForPosition(const IRPosition &IRP,
 
                                              Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AADereferenceable"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AADereferenceable
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
using AAAlignmentStateType =
 
    IncIntegerState<uint64_t, Value::MaximumAlignment, 1>;
 
/// An abstract interface for all align attributes.
 
struct AAAlign : public IRAttribute<
 
                     Attribute::Alignment,
 
                     StateWrapper<AAAlignmentStateType, AbstractAttribute>> {
 
  AAAlign(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return assumed alignment.
 
  Align getAssumedAlign() const { return Align(getAssumed()); }
 
 
 
  /// Return known alignment.
 
  Align getKnownAlign() const { return Align(getKnown()); }
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAAlign"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AAAlign
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAAlign &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface to track if a value leaves it's defining function
 
/// instance.
 
/// TODO: We should make it a ternary AA tracking uniqueness, and uniqueness
 
/// wrt. the Attributor analysis separately.
 
struct AAInstanceInfo : public StateWrapper<BooleanState, AbstractAttribute> {
 
  AAInstanceInfo(const IRPosition &IRP, Attributor &A)
 
      : StateWrapper<BooleanState, AbstractAttribute>(IRP) {}
 
 
 
  /// Return true if we know that the underlying value is unique in its scope
 
  /// wrt. the Attributor analysis. That means it might not be unique but we can
 
  /// still use pointer equality without risking to represent two instances with
 
  /// one `llvm::Value`.
 
  bool isKnownUniqueForAnalysis() const { return isKnown(); }
 
 
 
  /// Return true if we assume that the underlying value is unique in its scope
 
  /// wrt. the Attributor analysis. That means it might not be unique but we can
 
  /// still use pointer equality without risking to represent two instances with
 
  /// one `llvm::Value`.
 
  bool isAssumedUniqueForAnalysis() const { return isAssumed(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAInstanceInfo &createForPosition(const IRPosition &IRP,
 
                                           Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAInstanceInfo"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAInstanceInfo
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for all nocapture attributes.
 
struct AANoCapture
 
    : public IRAttribute<
 
          Attribute::NoCapture,
 
          StateWrapper<BitIntegerState<uint16_t, 7, 0>, AbstractAttribute>> {
 
  AANoCapture(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// State encoding bits. A set bit in the state means the property holds.
 
  /// NO_CAPTURE is the best possible state, 0 the worst possible state.
 
  enum {
 
    NOT_CAPTURED_IN_MEM = 1 << 0,
 
    NOT_CAPTURED_IN_INT = 1 << 1,
 
    NOT_CAPTURED_IN_RET = 1 << 2,
 
 
 
    /// If we do not capture the value in memory or through integers we can only
 
    /// communicate it back as a derived pointer.
 
    NO_CAPTURE_MAYBE_RETURNED = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT,
 
 
 
    /// If we do not capture the value in memory, through integers, or as a
 
    /// derived pointer we know it is not captured.
 
    NO_CAPTURE =
 
        NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT | NOT_CAPTURED_IN_RET,
 
  };
 
 
 
  /// Return true if we know that the underlying value is not captured in its
 
  /// respective scope.
 
  bool isKnownNoCapture() const { return isKnown(NO_CAPTURE); }
 
 
 
  /// Return true if we assume that the underlying value is not captured in its
 
  /// respective scope.
 
  bool isAssumedNoCapture() const { return isAssumed(NO_CAPTURE); }
 
 
 
  /// Return true if we know that the underlying value is not captured in its
 
  /// respective scope but we allow it to escape through a "return".
 
  bool isKnownNoCaptureMaybeReturned() const {
 
    return isKnown(NO_CAPTURE_MAYBE_RETURNED);
 
  }
 
 
 
  /// Return true if we assume that the underlying value is not captured in its
 
  /// respective scope but we allow it to escape through a "return".
 
  bool isAssumedNoCaptureMaybeReturned() const {
 
    return isAssumed(NO_CAPTURE_MAYBE_RETURNED);
 
  }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANoCapture &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANoCapture"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANoCapture
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
struct ValueSimplifyStateType : public AbstractState {
 
 
 
  ValueSimplifyStateType(Type *Ty) : Ty(Ty) {}
 
 
 
  static ValueSimplifyStateType getBestState(Type *Ty) {
 
    return ValueSimplifyStateType(Ty);
 
  }
 
  static ValueSimplifyStateType getBestState(const ValueSimplifyStateType &VS) {
 
    return getBestState(VS.Ty);
 
  }
 
 
 
  /// Return the worst possible representable state.
 
  static ValueSimplifyStateType getWorstState(Type *Ty) {
 
    ValueSimplifyStateType DS(Ty);
 
    DS.indicatePessimisticFixpoint();
 
    return DS;
 
  }
 
  static ValueSimplifyStateType
 
  getWorstState(const ValueSimplifyStateType &VS) {
 
    return getWorstState(VS.Ty);
 
  }
 
 
 
  /// See AbstractState::isValidState(...)
 
  bool isValidState() const override { return BS.isValidState(); }
 
 
 
  /// See AbstractState::isAtFixpoint(...)
 
  bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
 
 
 
  /// Return the assumed state encoding.
 
  ValueSimplifyStateType getAssumed() { return *this; }
 
  const ValueSimplifyStateType &getAssumed() const { return *this; }
 
 
 
  /// See AbstractState::indicatePessimisticFixpoint(...)
 
  ChangeStatus indicatePessimisticFixpoint() override {
 
    return BS.indicatePessimisticFixpoint();
 
  }
 
 
 
  /// See AbstractState::indicateOptimisticFixpoint(...)
 
  ChangeStatus indicateOptimisticFixpoint() override {
 
    return BS.indicateOptimisticFixpoint();
 
  }
 
 
 
  /// "Clamp" this state with \p PVS.
 
  ValueSimplifyStateType operator^=(const ValueSimplifyStateType &VS) {
 
    BS ^= VS.BS;
 
    unionAssumed(VS.SimplifiedAssociatedValue);
 
    return *this;
 
  }
 
 
 
  bool operator==(const ValueSimplifyStateType &RHS) const {
 
    if (isValidState() != RHS.isValidState())
 
      return false;
 
    if (!isValidState() && !RHS.isValidState())
 
      return true;
 
    return SimplifiedAssociatedValue == RHS.SimplifiedAssociatedValue;
 
  }
 
 
 
protected:
 
  /// The type of the original value.
 
  Type *Ty;
 
 
 
  /// Merge \p Other into the currently assumed simplified value
 
  bool unionAssumed(std::optional<Value *> Other);
 
 
 
  /// Helper to track validity and fixpoint
 
  BooleanState BS;
 
 
 
  /// An assumed simplified value. Initially, it is set to std::nullopt, which
 
  /// means that the value is not clear under current assumption. If in the
 
  /// pessimistic state, getAssumedSimplifiedValue doesn't return this value but
 
  /// returns orignal associated value.
 
  std::optional<Value *> SimplifiedAssociatedValue;
 
};
 
 
 
/// An abstract interface for value simplify abstract attribute.
 
struct AAValueSimplify
 
    : public StateWrapper<ValueSimplifyStateType, AbstractAttribute, Type *> {
 
  using Base = StateWrapper<ValueSimplifyStateType, AbstractAttribute, Type *>;
 
  AAValueSimplify(const IRPosition &IRP, Attributor &A)
 
      : Base(IRP, IRP.getAssociatedType()) {}
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAValueSimplify &createForPosition(const IRPosition &IRP,
 
                                            Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAValueSimplify"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAValueSimplify
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
 
 
private:
 
  /// Return an assumed simplified value if a single candidate is found. If
 
  /// there cannot be one, return original value. If it is not clear yet, return
 
  /// std::nullopt.
 
  ///
 
  /// Use `Attributor::getAssumedSimplified` for value simplification.
 
  virtual std::optional<Value *>
 
  getAssumedSimplifiedValue(Attributor &A) const = 0;
 
 
 
  friend struct Attributor;
 
};
 
 
 
struct AAHeapToStack : public StateWrapper<BooleanState, AbstractAttribute> {
 
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
 
  AAHeapToStack(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// Returns true if HeapToStack conversion is assumed to be possible.
 
  virtual bool isAssumedHeapToStack(const CallBase &CB) const = 0;
 
 
 
  /// Returns true if HeapToStack conversion is assumed and the CB is a
 
  /// callsite to a free operation to be removed.
 
  virtual bool isAssumedHeapToStackRemovedFree(CallBase &CB) const = 0;
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAHeapToStack &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAHeapToStack"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AAHeapToStack
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for privatizability.
 
///
 
/// A pointer is privatizable if it can be replaced by a new, private one.
 
/// Privatizing pointer reduces the use count, interaction between unrelated
 
/// code parts.
 
///
 
/// In order for a pointer to be privatizable its value cannot be observed
 
/// (=nocapture), it is (for now) not written (=readonly & noalias), we know
 
/// what values are necessary to make the private copy look like the original
 
/// one, and the values we need can be loaded (=dereferenceable).
 
struct AAPrivatizablePtr
 
    : public StateWrapper<BooleanState, AbstractAttribute> {
 
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
 
  AAPrivatizablePtr(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// Returns true if pointer privatization is assumed to be possible.
 
  bool isAssumedPrivatizablePtr() const { return getAssumed(); }
 
 
 
  /// Returns true if pointer privatization is known to be possible.
 
  bool isKnownPrivatizablePtr() const { return getKnown(); }
 
 
 
  /// Return the type we can choose for a private copy of the underlying
 
  /// value. std::nullopt means it is not clear yet, nullptr means there is
 
  /// none.
 
  virtual std::optional<Type *> getPrivatizableType() const = 0;
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAPrivatizablePtr &createForPosition(const IRPosition &IRP,
 
                                              Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAPrivatizablePtr"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAPricatizablePtr
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for memory access kind related attributes
 
/// (readnone/readonly/writeonly).
 
struct AAMemoryBehavior
 
    : public IRAttribute<
 
          Attribute::ReadNone,
 
          StateWrapper<BitIntegerState<uint8_t, 3>, AbstractAttribute>> {
 
  AAMemoryBehavior(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// State encoding bits. A set bit in the state means the property holds.
 
  /// BEST_STATE is the best possible state, 0 the worst possible state.
 
  enum {
 
    NO_READS = 1 << 0,
 
    NO_WRITES = 1 << 1,
 
    NO_ACCESSES = NO_READS | NO_WRITES,
 
 
 
    BEST_STATE = NO_ACCESSES,
 
  };
 
  static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value");
 
 
 
  /// Return true if we know that the underlying value is not read or accessed
 
  /// in its respective scope.
 
  bool isKnownReadNone() const { return isKnown(NO_ACCESSES); }
 
 
 
  /// Return true if we assume that the underlying value is not read or accessed
 
  /// in its respective scope.
 
  bool isAssumedReadNone() const { return isAssumed(NO_ACCESSES); }
 
 
 
  /// Return true if we know that the underlying value is not accessed
 
  /// (=written) in its respective scope.
 
  bool isKnownReadOnly() const { return isKnown(NO_WRITES); }
 
 
 
  /// Return true if we assume that the underlying value is not accessed
 
  /// (=written) in its respective scope.
 
  bool isAssumedReadOnly() const { return isAssumed(NO_WRITES); }
 
 
 
  /// Return true if we know that the underlying value is not read in its
 
  /// respective scope.
 
  bool isKnownWriteOnly() const { return isKnown(NO_READS); }
 
 
 
  /// Return true if we assume that the underlying value is not read in its
 
  /// respective scope.
 
  bool isAssumedWriteOnly() const { return isAssumed(NO_READS); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAMemoryBehavior &createForPosition(const IRPosition &IRP,
 
                                             Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAMemoryBehavior"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAMemoryBehavior
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for all memory location attributes
 
/// (readnone/argmemonly/inaccessiblememonly/inaccessibleorargmemonly).
 
struct AAMemoryLocation
 
    : public IRAttribute<
 
          Attribute::ReadNone,
 
          StateWrapper<BitIntegerState<uint32_t, 511>, AbstractAttribute>> {
 
  using MemoryLocationsKind = StateType::base_t;
 
 
 
  AAMemoryLocation(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Encoding of different locations that could be accessed by a memory
 
  /// access.
 
  enum {
 
    ALL_LOCATIONS = 0,
 
    NO_LOCAL_MEM = 1 << 0,
 
    NO_CONST_MEM = 1 << 1,
 
    NO_GLOBAL_INTERNAL_MEM = 1 << 2,
 
    NO_GLOBAL_EXTERNAL_MEM = 1 << 3,
 
    NO_GLOBAL_MEM = NO_GLOBAL_INTERNAL_MEM | NO_GLOBAL_EXTERNAL_MEM,
 
    NO_ARGUMENT_MEM = 1 << 4,
 
    NO_INACCESSIBLE_MEM = 1 << 5,
 
    NO_MALLOCED_MEM = 1 << 6,
 
    NO_UNKOWN_MEM = 1 << 7,
 
    NO_LOCATIONS = NO_LOCAL_MEM | NO_CONST_MEM | NO_GLOBAL_INTERNAL_MEM |
 
                   NO_GLOBAL_EXTERNAL_MEM | NO_ARGUMENT_MEM |
 
                   NO_INACCESSIBLE_MEM | NO_MALLOCED_MEM | NO_UNKOWN_MEM,
 
 
 
    // Helper bit to track if we gave up or not.
 
    VALID_STATE = NO_LOCATIONS + 1,
 
 
 
    BEST_STATE = NO_LOCATIONS | VALID_STATE,
 
  };
 
  static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value");
 
 
 
  /// Return true if we know that the associated functions has no observable
 
  /// accesses.
 
  bool isKnownReadNone() const { return isKnown(NO_LOCATIONS); }
 
 
 
  /// Return true if we assume that the associated functions has no observable
 
  /// accesses.
 
  bool isAssumedReadNone() const {
 
    return isAssumed(NO_LOCATIONS) || isAssumedStackOnly();
 
  }
 
 
 
  /// Return true if we know that the associated functions has at most
 
  /// local/stack accesses.
 
  bool isKnowStackOnly() const {
 
    return isKnown(inverseLocation(NO_LOCAL_MEM, true, true));
 
  }
 
 
 
  /// Return true if we assume that the associated functions has at most
 
  /// local/stack accesses.
 
  bool isAssumedStackOnly() const {
 
    return isAssumed(inverseLocation(NO_LOCAL_MEM, true, true));
 
  }
 
 
 
  /// Return true if we know that the underlying value will only access
 
  /// inaccesible memory only (see Attribute::InaccessibleMemOnly).
 
  bool isKnownInaccessibleMemOnly() const {
 
    return isKnown(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
 
  }
 
 
 
  /// Return true if we assume that the underlying value will only access
 
  /// inaccesible memory only (see Attribute::InaccessibleMemOnly).
 
  bool isAssumedInaccessibleMemOnly() const {
 
    return isAssumed(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
 
  }
 
 
 
  /// Return true if we know that the underlying value will only access
 
  /// argument pointees (see Attribute::ArgMemOnly).
 
  bool isKnownArgMemOnly() const {
 
    return isKnown(inverseLocation(NO_ARGUMENT_MEM, true, true));
 
  }
 
 
 
  /// Return true if we assume that the underlying value will only access
 
  /// argument pointees (see Attribute::ArgMemOnly).
 
  bool isAssumedArgMemOnly() const {
 
    return isAssumed(inverseLocation(NO_ARGUMENT_MEM, true, true));
 
  }
 
 
 
  /// Return true if we know that the underlying value will only access
 
  /// inaccesible memory or argument pointees (see
 
  /// Attribute::InaccessibleOrArgMemOnly).
 
  bool isKnownInaccessibleOrArgMemOnly() const {
 
    return isKnown(
 
        inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
 
  }
 
 
 
  /// Return true if we assume that the underlying value will only access
 
  /// inaccesible memory or argument pointees (see
 
  /// Attribute::InaccessibleOrArgMemOnly).
 
  bool isAssumedInaccessibleOrArgMemOnly() const {
 
    return isAssumed(
 
        inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
 
  }
 
 
 
  /// Return true if the underlying value may access memory through arguement
 
  /// pointers of the associated function, if any.
 
  bool mayAccessArgMem() const { return !isAssumed(NO_ARGUMENT_MEM); }
 
 
 
  /// Return true if only the memory locations specififed by \p MLK are assumed
 
  /// to be accessed by the associated function.
 
  bool isAssumedSpecifiedMemOnly(MemoryLocationsKind MLK) const {
 
    return isAssumed(MLK);
 
  }
 
 
 
  /// Return the locations that are assumed to be not accessed by the associated
 
  /// function, if any.
 
  MemoryLocationsKind getAssumedNotAccessedLocation() const {
 
    return getAssumed();
 
  }
 
 
 
  /// Return the inverse of location \p Loc, thus for NO_XXX the return
 
  /// describes ONLY_XXX. The flags \p AndLocalMem and \p AndConstMem determine
 
  /// if local (=stack) and constant memory are allowed as well. Most of the
 
  /// time we do want them to be included, e.g., argmemonly allows accesses via
 
  /// argument pointers or local or constant memory accesses.
 
  static MemoryLocationsKind
 
  inverseLocation(MemoryLocationsKind Loc, bool AndLocalMem, bool AndConstMem) {
 
    return NO_LOCATIONS & ~(Loc | (AndLocalMem ? NO_LOCAL_MEM : 0) |
 
                            (AndConstMem ? NO_CONST_MEM : 0));
 
  };
 
 
 
  /// Return the locations encoded by \p MLK as a readable string.
 
  static std::string getMemoryLocationsAsStr(MemoryLocationsKind MLK);
 
 
 
  /// Simple enum to distinguish read/write/read-write accesses.
 
  enum AccessKind {
 
    NONE = 0,
 
    READ = 1 << 0,
 
    WRITE = 1 << 1,
 
    READ_WRITE = READ | WRITE,
 
  };
 
 
 
  /// Check \p Pred on all accesses to the memory kinds specified by \p MLK.
 
  ///
 
  /// This method will evaluate \p Pred on all accesses (access instruction +
 
  /// underlying accessed memory pointer) and it will return true if \p Pred
 
  /// holds every time.
 
  virtual bool checkForAllAccessesToMemoryKind(
 
      function_ref<bool(const Instruction *, const Value *, AccessKind,
 
                        MemoryLocationsKind)>
 
          Pred,
 
      MemoryLocationsKind MLK) const = 0;
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAMemoryLocation &createForPosition(const IRPosition &IRP,
 
                                             Attributor &A);
 
 
 
  /// See AbstractState::getAsStr().
 
  const std::string getAsStr() const override {
 
    return getMemoryLocationsAsStr(getAssumedNotAccessedLocation());
 
  }
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAMemoryLocation"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAMemoryLocation
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for range value analysis.
 
struct AAValueConstantRange
 
    : public StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t> {
 
  using Base = StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t>;
 
  AAValueConstantRange(const IRPosition &IRP, Attributor &A)
 
      : Base(IRP, IRP.getAssociatedType()->getIntegerBitWidth()) {}
 
 
 
  /// See AbstractAttribute::getState(...).
 
  IntegerRangeState &getState() override { return *this; }
 
  const IntegerRangeState &getState() const override { return *this; }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAValueConstantRange &createForPosition(const IRPosition &IRP,
 
                                                 Attributor &A);
 
 
 
  /// Return an assumed range for the associated value a program point \p CtxI.
 
  /// If \p I is nullptr, simply return an assumed range.
 
  virtual ConstantRange
 
  getAssumedConstantRange(Attributor &A,
 
                          const Instruction *CtxI = nullptr) const = 0;
 
 
 
  /// Return a known range for the associated value at a program point \p CtxI.
 
  /// If \p I is nullptr, simply return a known range.
 
  virtual ConstantRange
 
  getKnownConstantRange(Attributor &A,
 
                        const Instruction *CtxI = nullptr) const = 0;
 
 
 
  /// Return an assumed constant for the associated value a program point \p
 
  /// CtxI.
 
  std::optional<Constant *>
 
  getAssumedConstant(Attributor &A, const Instruction *CtxI = nullptr) const {
 
    ConstantRange RangeV = getAssumedConstantRange(A, CtxI);
 
    if (auto *C = RangeV.getSingleElement()) {
 
      Type *Ty = getAssociatedValue().getType();
 
      return cast_or_null<Constant>(
 
          AA::getWithType(*ConstantInt::get(Ty->getContext(), *C), *Ty));
 
    }
 
    if (RangeV.isEmptySet())
 
      return std::nullopt;
 
    return nullptr;
 
  }
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAValueConstantRange"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAValueConstantRange
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// A class for a set state.
 
/// The assumed boolean state indicates whether the corresponding set is full
 
/// set or not. If the assumed state is false, this is the worst state. The
 
/// worst state (invalid state) of set of potential values is when the set
 
/// contains every possible value (i.e. we cannot in any way limit the value
 
/// that the target position can take). That never happens naturally, we only
 
/// force it. As for the conditions under which we force it, see
 
/// AAPotentialConstantValues.
 
template <typename MemberTy> struct PotentialValuesState : AbstractState {
 
  using SetTy = SmallSetVector<MemberTy, 8>;
 
 
 
  PotentialValuesState() : IsValidState(true), UndefIsContained(false) {}
 
 
 
  PotentialValuesState(bool IsValid)
 
      : IsValidState(IsValid), UndefIsContained(false) {}
 
 
 
  /// See AbstractState::isValidState(...)
 
  bool isValidState() const override { return IsValidState.isValidState(); }
 
 
 
  /// See AbstractState::isAtFixpoint(...)
 
  bool isAtFixpoint() const override { return IsValidState.isAtFixpoint(); }
 
 
 
  /// See AbstractState::indicatePessimisticFixpoint(...)
 
  ChangeStatus indicatePessimisticFixpoint() override {
 
    return IsValidState.indicatePessimisticFixpoint();
 
  }
 
 
 
  /// See AbstractState::indicateOptimisticFixpoint(...)
 
  ChangeStatus indicateOptimisticFixpoint() override {
 
    return IsValidState.indicateOptimisticFixpoint();
 
  }
 
 
 
  /// Return the assumed state
 
  PotentialValuesState &getAssumed() { return *this; }
 
  const PotentialValuesState &getAssumed() const { return *this; }
 
 
 
  /// Return this set. We should check whether this set is valid or not by
 
  /// isValidState() before calling this function.
 
  const SetTy &getAssumedSet() const {
 
    assert(isValidState() && "This set shoud not be used when it is invalid!");
 
    return Set;
 
  }
 
 
 
  /// Returns whether this state contains an undef value or not.
 
  bool undefIsContained() const {
 
    assert(isValidState() && "This flag shoud not be used when it is invalid!");
 
    return UndefIsContained;
 
  }
 
 
 
  bool operator==(const PotentialValuesState &RHS) const {
 
    if (isValidState() != RHS.isValidState())
 
      return false;
 
    if (!isValidState() && !RHS.isValidState())
 
      return true;
 
    if (undefIsContained() != RHS.undefIsContained())
 
      return false;
 
    return Set == RHS.getAssumedSet();
 
  }
 
 
 
  /// Maximum number of potential values to be tracked.
 
  /// This is set by -attributor-max-potential-values command line option
 
  static unsigned MaxPotentialValues;
 
 
 
  /// Return empty set as the best state of potential values.
 
  static PotentialValuesState getBestState() {
 
    return PotentialValuesState(true);
 
  }
 
 
 
  static PotentialValuesState getBestState(const PotentialValuesState &PVS) {
 
    return getBestState();
 
  }
 
 
 
  /// Return full set as the worst state of potential values.
 
  static PotentialValuesState getWorstState() {
 
    return PotentialValuesState(false);
 
  }
 
 
 
  /// Union assumed set with the passed value.
 
  void unionAssumed(const MemberTy &C) { insert(C); }
 
 
 
  /// Union assumed set with assumed set of the passed state \p PVS.
 
  void unionAssumed(const PotentialValuesState &PVS) { unionWith(PVS); }
 
 
 
  /// Union assumed set with an undef value.
 
  void unionAssumedWithUndef() { unionWithUndef(); }
 
 
 
  /// "Clamp" this state with \p PVS.
 
  PotentialValuesState operator^=(const PotentialValuesState &PVS) {
 
    IsValidState ^= PVS.IsValidState;
 
    unionAssumed(PVS);
 
    return *this;
 
  }
 
 
 
  PotentialValuesState operator&=(const PotentialValuesState &PVS) {
 
    IsValidState &= PVS.IsValidState;
 
    unionAssumed(PVS);
 
    return *this;
 
  }
 
 
 
  bool contains(const MemberTy &V) const {
 
    return !isValidState() ? true : Set.contains(V);
 
  }
 
 
 
protected:
 
  SetTy &getAssumedSet() {
 
    assert(isValidState() && "This set shoud not be used when it is invalid!");
 
    return Set;
 
  }
 
 
 
private:
 
  /// Check the size of this set, and invalidate when the size is no
 
  /// less than \p MaxPotentialValues threshold.
 
  void checkAndInvalidate() {
 
    if (Set.size() >= MaxPotentialValues)
 
      indicatePessimisticFixpoint();
 
    else
 
      reduceUndefValue();
 
  }
 
 
 
  /// If this state contains both undef and not undef, we can reduce
 
  /// undef to the not undef value.
 
  void reduceUndefValue() { UndefIsContained = UndefIsContained & Set.empty(); }
 
 
 
  /// Insert an element into this set.
 
  void insert(const MemberTy &C) {
 
    if (!isValidState())
 
      return;
 
    Set.insert(C);
 
    checkAndInvalidate();
 
  }
 
 
 
  /// Take union with R.
 
  void unionWith(const PotentialValuesState &R) {
 
    /// If this is a full set, do nothing.
 
    if (!isValidState())
 
      return;
 
    /// If R is full set, change L to a full set.
 
    if (!R.isValidState()) {
 
      indicatePessimisticFixpoint();
 
      return;
 
    }
 
    for (const MemberTy &C : R.Set)
 
      Set.insert(C);
 
    UndefIsContained |= R.undefIsContained();
 
    checkAndInvalidate();
 
  }
 
 
 
  /// Take union with an undef value.
 
  void unionWithUndef() {
 
    UndefIsContained = true;
 
    reduceUndefValue();
 
  }
 
 
 
  /// Take intersection with R.
 
  void intersectWith(const PotentialValuesState &R) {
 
    /// If R is a full set, do nothing.
 
    if (!R.isValidState())
 
      return;
 
    /// If this is a full set, change this to R.
 
    if (!isValidState()) {
 
      *this = R;
 
      return;
 
    }
 
    SetTy IntersectSet;
 
    for (const MemberTy &C : Set) {
 
      if (R.Set.count(C))
 
        IntersectSet.insert(C);
 
    }
 
    Set = IntersectSet;
 
    UndefIsContained &= R.undefIsContained();
 
    reduceUndefValue();
 
  }
 
 
 
  /// A helper state which indicate whether this state is valid or not.
 
  BooleanState IsValidState;
 
 
 
  /// Container for potential values
 
  SetTy Set;
 
 
 
  /// Flag for undef value
 
  bool UndefIsContained;
 
};
 
 
 
using PotentialConstantIntValuesState = PotentialValuesState<APInt>;
 
using PotentialLLVMValuesState =
 
    PotentialValuesState<std::pair<AA::ValueAndContext, AA::ValueScope>>;
 
 
 
raw_ostream &operator<<(raw_ostream &OS,
 
                        const PotentialConstantIntValuesState &R);
 
raw_ostream &operator<<(raw_ostream &OS, const PotentialLLVMValuesState &R);
 
 
 
/// An abstract interface for potential values analysis.
 
///
 
/// This AA collects potential values for each IR position.
 
/// An assumed set of potential values is initialized with the empty set (the
 
/// best state) and it will grow monotonically as we find more potential values
 
/// for this position.
 
/// The set might be forced to the worst state, that is, to contain every
 
/// possible value for this position in 2 cases.
 
///   1. We surpassed the \p MaxPotentialValues threshold. This includes the
 
///      case that this position is affected (e.g. because of an operation) by a
 
///      Value that is in the worst state.
 
///   2. We tried to initialize on a Value that we cannot handle (e.g. an
 
///      operator we do not currently handle).
 
///
 
/// For non constant integers see AAPotentialValues.
 
struct AAPotentialConstantValues
 
    : public StateWrapper<PotentialConstantIntValuesState, AbstractAttribute> {
 
  using Base = StateWrapper<PotentialConstantIntValuesState, AbstractAttribute>;
 
  AAPotentialConstantValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// See AbstractAttribute::getState(...).
 
  PotentialConstantIntValuesState &getState() override { return *this; }
 
  const PotentialConstantIntValuesState &getState() const override {
 
    return *this;
 
  }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAPotentialConstantValues &createForPosition(const IRPosition &IRP,
 
                                                      Attributor &A);
 
 
 
  /// Return assumed constant for the associated value
 
  std::optional<Constant *>
 
  getAssumedConstant(Attributor &A, const Instruction *CtxI = nullptr) const {
 
    if (!isValidState())
 
      return nullptr;
 
    if (getAssumedSet().size() == 1) {
 
      Type *Ty = getAssociatedValue().getType();
 
      return cast_or_null<Constant>(AA::getWithType(
 
          *ConstantInt::get(Ty->getContext(), *(getAssumedSet().begin())),
 
          *Ty));
 
    }
 
    if (getAssumedSet().size() == 0) {
 
      if (undefIsContained())
 
        return UndefValue::get(getAssociatedValue().getType());
 
      return std::nullopt;
 
    }
 
 
 
    return nullptr;
 
  }
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override {
 
    return "AAPotentialConstantValues";
 
  }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAPotentialConstantValues
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
struct AAPotentialValues
 
    : public StateWrapper<PotentialLLVMValuesState, AbstractAttribute> {
 
  using Base = StateWrapper<PotentialLLVMValuesState, AbstractAttribute>;
 
  AAPotentialValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// See AbstractAttribute::getState(...).
 
  PotentialLLVMValuesState &getState() override { return *this; }
 
  const PotentialLLVMValuesState &getState() const override { return *this; }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAPotentialValues &createForPosition(const IRPosition &IRP,
 
                                              Attributor &A);
 
 
 
  /// Extract the single value in \p Values if any.
 
  static Value *getSingleValue(Attributor &A, const AbstractAttribute &AA,
 
                               const IRPosition &IRP,
 
                               SmallVectorImpl<AA::ValueAndContext> &Values);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAPotentialValues"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAPotentialValues
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
 
 
private:
 
  virtual bool
 
  getAssumedSimplifiedValues(Attributor &A,
 
                             SmallVectorImpl<AA::ValueAndContext> &Values,
 
                             AA::ValueScope) const = 0;
 
 
 
  friend struct Attributor;
 
};
 
 
 
/// An abstract interface for all noundef attributes.
 
struct AANoUndef
 
    : public IRAttribute<Attribute::NoUndef,
 
                         StateWrapper<BooleanState, AbstractAttribute>> {
 
  AANoUndef(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
 
 
 
  /// Return true if we assume that the underlying value is noundef.
 
  bool isAssumedNoUndef() const { return getAssumed(); }
 
 
 
  /// Return true if we know that underlying value is noundef.
 
  bool isKnownNoUndef() const { return getKnown(); }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AANoUndef &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AANoUndef"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AANoUndef
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
struct AACallGraphNode;
 
struct AACallEdges;
 
 
 
/// An Iterator for call edges, creates AACallEdges attributes in a lazy way.
 
/// This iterator becomes invalid if the underlying edge list changes.
 
/// So This shouldn't outlive a iteration of Attributor.
 
class AACallEdgeIterator
 
    : public iterator_adaptor_base<AACallEdgeIterator,
 
                                   SetVector<Function *>::iterator> {
 
  AACallEdgeIterator(Attributor &A, SetVector<Function *>::iterator Begin)
 
      : iterator_adaptor_base(Begin), A(A) {}
 
 
 
public:
 
  AACallGraphNode *operator*() const;
 
 
 
private:
 
  Attributor &A;
 
  friend AACallEdges;
 
  friend AttributorCallGraph;
 
};
 
 
 
struct AACallGraphNode {
 
  AACallGraphNode(Attributor &A) : A(A) {}
 
  virtual ~AACallGraphNode() = default;
 
 
 
  virtual AACallEdgeIterator optimisticEdgesBegin() const = 0;
 
  virtual AACallEdgeIterator optimisticEdgesEnd() const = 0;
 
 
 
  /// Iterator range for exploring the call graph.
 
  iterator_range<AACallEdgeIterator> optimisticEdgesRange() const {
 
    return iterator_range<AACallEdgeIterator>(optimisticEdgesBegin(),
 
                                              optimisticEdgesEnd());
 
  }
 
 
 
protected:
 
  /// Reference to Attributor needed for GraphTraits implementation.
 
  Attributor &A;
 
};
 
 
 
/// An abstract state for querying live call edges.
 
/// This interface uses the Attributor's optimistic liveness
 
/// information to compute the edges that are alive.
 
struct AACallEdges : public StateWrapper<BooleanState, AbstractAttribute>,
 
                     AACallGraphNode {
 
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
 
 
 
  AACallEdges(const IRPosition &IRP, Attributor &A)
 
      : Base(IRP), AACallGraphNode(A) {}
 
 
 
  /// Get the optimistic edges.
 
  virtual const SetVector<Function *> &getOptimisticEdges() const = 0;
 
 
 
  /// Is there any call with a unknown callee.
 
  virtual bool hasUnknownCallee() const = 0;
 
 
 
  /// Is there any call with a unknown callee, excluding any inline asm.
 
  virtual bool hasNonAsmUnknownCallee() const = 0;
 
 
 
  /// Iterator for exploring the call graph.
 
  AACallEdgeIterator optimisticEdgesBegin() const override {
 
    return AACallEdgeIterator(A, getOptimisticEdges().begin());
 
  }
 
 
 
  /// Iterator for exploring the call graph.
 
  AACallEdgeIterator optimisticEdgesEnd() const override {
 
    return AACallEdgeIterator(A, getOptimisticEdges().end());
 
  }
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AACallEdges &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AACallEdges"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AACallEdges.
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
// Synthetic root node for the Attributor's internal call graph.
 
struct AttributorCallGraph : public AACallGraphNode {
 
  AttributorCallGraph(Attributor &A) : AACallGraphNode(A) {}
 
  virtual ~AttributorCallGraph() = default;
 
 
 
  AACallEdgeIterator optimisticEdgesBegin() const override {
 
    return AACallEdgeIterator(A, A.Functions.begin());
 
  }
 
 
 
  AACallEdgeIterator optimisticEdgesEnd() const override {
 
    return AACallEdgeIterator(A, A.Functions.end());
 
  }
 
 
 
  /// Force populate the entire call graph.
 
  void populateAll() const {
 
    for (const AACallGraphNode *AA : optimisticEdgesRange()) {
 
      // Nothing else to do here.
 
      (void)AA;
 
    }
 
  }
 
 
 
  void print();
 
};
 
 
 
template <> struct GraphTraits<AACallGraphNode *> {
 
  using NodeRef = AACallGraphNode *;
 
  using ChildIteratorType = AACallEdgeIterator;
 
 
 
  static AACallEdgeIterator child_begin(AACallGraphNode *Node) {
 
    return Node->optimisticEdgesBegin();
 
  }
 
 
 
  static AACallEdgeIterator child_end(AACallGraphNode *Node) {
 
    return Node->optimisticEdgesEnd();
 
  }
 
};
 
 
 
template <>
 
struct GraphTraits<AttributorCallGraph *>
 
    : public GraphTraits<AACallGraphNode *> {
 
  using nodes_iterator = AACallEdgeIterator;
 
 
 
  static AACallGraphNode *getEntryNode(AttributorCallGraph *G) {
 
    return static_cast<AACallGraphNode *>(G);
 
  }
 
 
 
  static AACallEdgeIterator nodes_begin(const AttributorCallGraph *G) {
 
    return G->optimisticEdgesBegin();
 
  }
 
 
 
  static AACallEdgeIterator nodes_end(const AttributorCallGraph *G) {
 
    return G->optimisticEdgesEnd();
 
  }
 
};
 
 
 
template <>
 
struct DOTGraphTraits<AttributorCallGraph *> : public DefaultDOTGraphTraits {
 
  DOTGraphTraits(bool Simple = false) : DefaultDOTGraphTraits(Simple) {}
 
 
 
  std::string getNodeLabel(const AACallGraphNode *Node,
 
                           const AttributorCallGraph *Graph) {
 
    const AACallEdges *AACE = static_cast<const AACallEdges *>(Node);
 
    return AACE->getAssociatedFunction()->getName().str();
 
  }
 
 
 
  static bool isNodeHidden(const AACallGraphNode *Node,
 
                           const AttributorCallGraph *Graph) {
 
    // Hide the synth root.
 
    return static_cast<const AACallGraphNode *>(Graph) == Node;
 
  }
 
};
 
 
 
struct AAExecutionDomain
 
    : public StateWrapper<BooleanState, AbstractAttribute> {
 
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
 
  AAExecutionDomain(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// Summary about the execution domain of a block or instruction.
 
  struct ExecutionDomainTy {
 
    using BarriersSetTy = SmallPtrSet<CallBase *, 2>;
 
    using AssumesSetTy = SmallPtrSet<AssumeInst *, 4>;
 
 
 
    void addAssumeInst(Attributor &A, AssumeInst &AI) {
 
      EncounteredAssumes.insert(&AI);
 
    }
 
 
 
    void addAlignedBarrier(Attributor &A, CallBase &CB) {
 
      AlignedBarriers.insert(&CB);
 
    }
 
 
 
    void clearAssumeInstAndAlignedBarriers() {
 
      EncounteredAssumes.clear();
 
      AlignedBarriers.clear();
 
    }
 
 
 
    bool IsExecutedByInitialThreadOnly = true;
 
    bool IsReachedFromAlignedBarrierOnly = true;
 
    bool IsReachingAlignedBarrierOnly = true;
 
    bool EncounteredNonLocalSideEffect = false;
 
    BarriersSetTy AlignedBarriers;
 
    AssumesSetTy EncounteredAssumes;
 
  };
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAExecutionDomain &createForPosition(const IRPosition &IRP,
 
                                              Attributor &A);
 
 
 
  /// See AbstractAttribute::getName().
 
  const std::string getName() const override { return "AAExecutionDomain"; }
 
 
 
  /// See AbstractAttribute::getIdAddr().
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// Check if an instruction is executed only by the initial thread.
 
  bool isExecutedByInitialThreadOnly(const Instruction &I) const {
 
    return isExecutedByInitialThreadOnly(*I.getParent());
 
  }
 
 
 
  /// Check if a basic block is executed only by the initial thread.
 
  virtual bool isExecutedByInitialThreadOnly(const BasicBlock &) const = 0;
 
 
 
  /// Check if the instruction \p I is executed in an aligned region, that is,
 
  /// the synchronizing effects before and after \p I are both aligned barriers.
 
  /// This effectively means all threads execute \p I together.
 
  virtual bool isExecutedInAlignedRegion(Attributor &A,
 
                                         const Instruction &I) const = 0;
 
 
 
  virtual ExecutionDomainTy getExecutionDomain(const BasicBlock &) const = 0;
 
  virtual ExecutionDomainTy getExecutionDomain(const CallBase &) const = 0;
 
  virtual ExecutionDomainTy getFunctionExecutionDomain() const = 0;
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAExecutionDomain.
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract Attribute for computing reachability between functions.
 
struct AAInterFnReachability
 
    : public StateWrapper<BooleanState, AbstractAttribute> {
 
  using Base = StateWrapper<BooleanState, AbstractAttribute>;
 
 
 
  AAInterFnReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
 
 
 
  /// If the function represented by this possition can reach \p Fn.
 
  bool canReach(Attributor &A, const Function &Fn) const {
 
    Function *Scope = getAnchorScope();
 
    if (!Scope || Scope->isDeclaration())
 
      return true;
 
    return instructionCanReach(A, Scope->getEntryBlock().front(), Fn);
 
  }
 
 
 
  /// Can  \p Inst reach \p Fn.
 
  /// See also AA::isPotentiallyReachable.
 
  virtual bool instructionCanReach(
 
      Attributor &A, const Instruction &Inst, const Function &Fn,
 
      const AA::InstExclusionSetTy *ExclusionSet = nullptr,
 
      SmallPtrSet<const Function *, 16> *Visited = nullptr) const = 0;
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAInterFnReachability &createForPosition(const IRPosition &IRP,
 
                                                  Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAInterFnReachability"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is AACallEdges.
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract interface for struct information.
 
struct AAPointerInfo : public AbstractAttribute {
 
  AAPointerInfo(const IRPosition &IRP) : AbstractAttribute(IRP) {}
 
 
 
  enum AccessKind {
 
    // First two bits to distinguish may and must accesses.
 
    AK_MUST = 1 << 0,
 
    AK_MAY = 1 << 1,
 
 
 
    // Then two bits for read and write. These are not exclusive.
 
    AK_R = 1 << 2,
 
    AK_W = 1 << 3,
 
    AK_RW = AK_R | AK_W,
 
 
 
    // One special case for assumptions about memory content. These
 
    // are neither reads nor writes. They are however always modeled
 
    // as read to avoid using them for write removal.
 
    AK_ASSUMPTION = (1 << 4) | AK_MUST,
 
 
 
    // Helper for easy access.
 
    AK_MAY_READ = AK_MAY | AK_R,
 
    AK_MAY_WRITE = AK_MAY | AK_W,
 
    AK_MAY_READ_WRITE = AK_MAY | AK_R | AK_W,
 
    AK_MUST_READ = AK_MUST | AK_R,
 
    AK_MUST_WRITE = AK_MUST | AK_W,
 
    AK_MUST_READ_WRITE = AK_MUST | AK_R | AK_W,
 
  };
 
 
 
  /// A container for a list of ranges.
 
  struct RangeList {
 
    // The set of ranges rarely contains more than one element, and is unlikely
 
    // to contain more than say four elements. So we find the middle-ground with
 
    // a sorted vector. This avoids hard-coding a rarely used number like "four"
 
    // into every instance of a SmallSet.
 
    using RangeTy = AA::RangeTy;
 
    using VecTy = SmallVector<RangeTy>;
 
    using iterator = VecTy::iterator;
 
    using const_iterator = VecTy::const_iterator;
 
    VecTy Ranges;
 
 
 
    RangeList(const RangeTy &R) { Ranges.push_back(R); }
 
    RangeList(ArrayRef<int64_t> Offsets, int64_t Size) {
 
      Ranges.reserve(Offsets.size());
 
      for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
 
        assert(((i + 1 == e) || Offsets[i] < Offsets[i + 1]) &&
 
               "Expected strictly ascending offsets.");
 
        Ranges.emplace_back(Offsets[i], Size);
 
      }
 
    }
 
    RangeList() = default;
 
 
 
    iterator begin() { return Ranges.begin(); }
 
    iterator end() { return Ranges.end(); }
 
    const_iterator begin() const { return Ranges.begin(); }
 
    const_iterator end() const { return Ranges.end(); }
 
 
 
    // Helpers required for std::set_difference
 
    using value_type = RangeTy;
 
    void push_back(const RangeTy &R) {
 
      assert((Ranges.empty() || RangeTy::OffsetLessThan(Ranges.back(), R)) &&
 
             "Ensure the last element is the greatest.");
 
      Ranges.push_back(R);
 
    }
 
 
 
    /// Copy ranges from \p L that are not in \p R, into \p D.
 
    static void set_difference(const RangeList &L, const RangeList &R,
 
                               RangeList &D) {
 
      std::set_difference(L.begin(), L.end(), R.begin(), R.end(),
 
                          std::back_inserter(D), RangeTy::OffsetLessThan);
 
    }
 
 
 
    unsigned size() const { return Ranges.size(); }
 
 
 
    bool operator==(const RangeList &OI) const { return Ranges == OI.Ranges; }
 
 
 
    /// Merge the ranges in \p RHS into the current ranges.
 
    /// - Merging a list of  unknown ranges makes the current list unknown.
 
    /// - Ranges with the same offset are merged according to RangeTy::operator&
 
    /// \return true if the current RangeList changed.
 
    bool merge(const RangeList &RHS) {
 
      if (isUnknown())
 
        return false;
 
      if (RHS.isUnknown()) {
 
        setUnknown();
 
        return true;
 
      }
 
 
 
      if (Ranges.empty()) {
 
        Ranges = RHS.Ranges;
 
        return true;
 
      }
 
 
 
      bool Changed = false;
 
      auto LPos = Ranges.begin();
 
      for (auto &R : RHS.Ranges) {
 
        auto Result = insert(LPos, R);
 
        if (isUnknown())
 
          return true;
 
        LPos = Result.first;
 
        Changed |= Result.second;
 
      }
 
      return Changed;
 
    }
 
 
 
    /// Insert \p R at the given iterator \p Pos, and merge if necessary.
 
    ///
 
    /// This assumes that all ranges before \p Pos are OffsetLessThan \p R, and
 
    /// then maintains the sorted order for the suffix list.
 
    ///
 
    /// \return The place of insertion and true iff anything changed.
 
    std::pair<iterator, bool> insert(iterator Pos, const RangeTy &R) {
 
      if (isUnknown())
 
        return std::make_pair(Ranges.begin(), false);
 
      if (R.offsetOrSizeAreUnknown()) {
 
        return std::make_pair(setUnknown(), true);
 
      }
 
 
 
      // Maintain this as a sorted vector of unique entries.
 
      auto LB = std::lower_bound(Pos, Ranges.end(), R, RangeTy::OffsetLessThan);
 
      if (LB == Ranges.end() || LB->Offset != R.Offset)
 
        return std::make_pair(Ranges.insert(LB, R), true);
 
      bool Changed = *LB != R;
 
      *LB &= R;
 
      if (LB->offsetOrSizeAreUnknown())
 
        return std::make_pair(setUnknown(), true);
 
      return std::make_pair(LB, Changed);
 
    }
 
 
 
    /// Insert the given range \p R, maintaining sorted order.
 
    ///
 
    /// \return The place of insertion and true iff anything changed.
 
    std::pair<iterator, bool> insert(const RangeTy &R) {
 
      return insert(Ranges.begin(), R);
 
    }
 
 
 
    /// Add the increment \p Inc to the offset of every range.
 
    void addToAllOffsets(int64_t Inc) {
 
      assert(!isUnassigned() &&
 
             "Cannot increment if the offset is not yet computed!");
 
      if (isUnknown())
 
        return;
 
      for (auto &R : Ranges) {
 
        R.Offset += Inc;
 
      }
 
    }
 
 
 
    /// Return true iff there is exactly one range and it is known.
 
    bool isUnique() const {
 
      return Ranges.size() == 1 && !Ranges.front().offsetOrSizeAreUnknown();
 
    }
 
 
 
    /// Return the unique range, assuming it exists.
 
    const RangeTy &getUnique() const {
 
      assert(isUnique() && "No unique range to return!");
 
      return Ranges.front();
 
    }
 
 
 
    /// Return true iff the list contains an unknown range.
 
    bool isUnknown() const {
 
      if (isUnassigned())
 
        return false;
 
      if (Ranges.front().offsetOrSizeAreUnknown()) {
 
        assert(Ranges.size() == 1 && "Unknown is a singleton range.");
 
        return true;
 
      }
 
      return false;
 
    }
 
 
 
    /// Discard all ranges and insert a single unknown range.
 
    iterator setUnknown() {
 
      Ranges.clear();
 
      Ranges.push_back(RangeTy::getUnknown());
 
      return Ranges.begin();
 
    }
 
 
 
    /// Return true if no ranges have been inserted.
 
    bool isUnassigned() const { return Ranges.size() == 0; }
 
  };
 
 
 
  /// An access description.
 
  struct Access {
 
    Access(Instruction *I, int64_t Offset, int64_t Size,
 
           std::optional<Value *> Content, AccessKind Kind, Type *Ty)
 
        : LocalI(I), RemoteI(I), Content(Content), Ranges(Offset, Size),
 
          Kind(Kind), Ty(Ty) {
 
      verify();
 
    }
 
    Access(Instruction *LocalI, Instruction *RemoteI, const RangeList &Ranges,
 
           std::optional<Value *> Content, AccessKind K, Type *Ty)
 
        : LocalI(LocalI), RemoteI(RemoteI), Content(Content), Ranges(Ranges),
 
          Kind(K), Ty(Ty) {
 
      if (Ranges.size() > 1) {
 
        Kind = AccessKind(Kind | AK_MAY);
 
        Kind = AccessKind(Kind & ~AK_MUST);
 
      }
 
      verify();
 
    }
 
    Access(Instruction *LocalI, Instruction *RemoteI, int64_t Offset,
 
           int64_t Size, std::optional<Value *> Content, AccessKind Kind,
 
           Type *Ty)
 
        : LocalI(LocalI), RemoteI(RemoteI), Content(Content),
 
          Ranges(Offset, Size), Kind(Kind), Ty(Ty) {
 
      verify();
 
    }
 
    Access(const Access &Other) = default;
 
 
 
    Access &operator=(const Access &Other) = default;
 
    bool operator==(const Access &R) const {
 
      return LocalI == R.LocalI && RemoteI == R.RemoteI && Ranges == R.Ranges &&
 
             Content == R.Content && Kind == R.Kind;
 
    }
 
    bool operator!=(const Access &R) const { return !(*this == R); }
 
 
 
    Access &operator&=(const Access &R) {
 
      assert(RemoteI == R.RemoteI && "Expected same instruction!");
 
      assert(LocalI == R.LocalI && "Expected same instruction!");
 
 
 
      // Note that every Access object corresponds to a unique Value, and only
 
      // accesses to the same Value are merged. Hence we assume that all ranges
 
      // are the same size. If ranges can be different size, then the contents
 
      // must be dropped.
 
      Ranges.merge(R.Ranges);
 
      Content =
 
          AA::combineOptionalValuesInAAValueLatice(Content, R.Content, Ty);
 
 
 
      // Combine the access kind, which results in a bitwise union.
 
      // If there is more than one range, then this must be a MAY.
 
      // If we combine a may and a must access we clear the must bit.
 
      Kind = AccessKind(Kind | R.Kind);
 
      if ((Kind & AK_MAY) || Ranges.size() > 1) {
 
        Kind = AccessKind(Kind | AK_MAY);
 
        Kind = AccessKind(Kind & ~AK_MUST);
 
      }
 
      verify();
 
      return *this;
 
    }
 
 
 
    void verify() {
 
      assert(isMustAccess() + isMayAccess() == 1 &&
 
             "Expect must or may access, not both.");
 
      assert(isAssumption() + isWrite() <= 1 &&
 
             "Expect assumption access or write access, never both.");
 
      assert((isMayAccess() || Ranges.size() == 1) &&
 
             "Cannot be a must access if there are multiple ranges.");
 
    }
 
 
 
    /// Return the access kind.
 
    AccessKind getKind() const { return Kind; }
 
 
 
    /// Return true if this is a read access.
 
    bool isRead() const { return Kind & AK_R; }
 
 
 
    /// Return true if this is a write access.
 
    bool isWrite() const { return Kind & AK_W; }
 
 
 
    /// Return true if this is a write access.
 
    bool isWriteOrAssumption() const { return isWrite() || isAssumption(); }
 
 
 
    /// Return true if this is an assumption access.
 
    bool isAssumption() const { return Kind == AK_ASSUMPTION; }
 
 
 
    bool isMustAccess() const {
 
      bool MustAccess = Kind & AK_MUST;
 
      assert((!MustAccess || Ranges.size() < 2) &&
 
             "Cannot be a must access if there are multiple ranges.");
 
      return MustAccess;
 
    }
 
 
 
    bool isMayAccess() const {
 
      bool MayAccess = Kind & AK_MAY;
 
      assert((MayAccess || Ranges.size() < 2) &&
 
             "Cannot be a must access if there are multiple ranges.");
 
      return MayAccess;
 
    }
 
 
 
    /// Return the instruction that causes the access with respect to the local
 
    /// scope of the associated attribute.
 
    Instruction *getLocalInst() const { return LocalI; }
 
 
 
    /// Return the actual instruction that causes the access.
 
    Instruction *getRemoteInst() const { return RemoteI; }
 
 
 
    /// Return true if the value written is not known yet.
 
    bool isWrittenValueYetUndetermined() const { return !Content; }
 
 
 
    /// Return true if the value written cannot be determined at all.
 
    bool isWrittenValueUnknown() const {
 
      return Content.has_value() && !*Content;
 
    }
 
 
 
    /// Set the value written to nullptr, i.e., unknown.
 
    void setWrittenValueUnknown() { Content = nullptr; }
 
 
 
    /// Return the type associated with the access, if known.
 
    Type *getType() const { return Ty; }
 
 
 
    /// Return the value writen, if any.
 
    Value *getWrittenValue() const {
 
      assert(!isWrittenValueYetUndetermined() &&
 
             "Value needs to be determined before accessing it.");
 
      return *Content;
 
    }
 
 
 
    /// Return the written value which can be `llvm::null` if it is not yet
 
    /// determined.
 
    std::optional<Value *> getContent() const { return Content; }
 
 
 
    bool hasUniqueRange() const { return Ranges.isUnique(); }
 
    const AA::RangeTy &getUniqueRange() const { return Ranges.getUnique(); }
 
 
 
    /// Add a range accessed by this Access.
 
    ///
 
    /// If there are multiple ranges, then this is a "may access".
 
    void addRange(int64_t Offset, int64_t Size) {
 
      Ranges.insert({Offset, Size});
 
      if (!hasUniqueRange()) {
 
        Kind = AccessKind(Kind | AK_MAY);
 
        Kind = AccessKind(Kind & ~AK_MUST);
 
      }
 
    }
 
 
 
    const RangeList &getRanges() const { return Ranges; }
 
 
 
    using const_iterator = RangeList::const_iterator;
 
    const_iterator begin() const { return Ranges.begin(); }
 
    const_iterator end() const { return Ranges.end(); }
 
 
 
  private:
 
    /// The instruction responsible for the access with respect to the local
 
    /// scope of the associated attribute.
 
    Instruction *LocalI;
 
 
 
    /// The instruction responsible for the access.
 
    Instruction *RemoteI;
 
 
 
    /// The value written, if any. `llvm::none` means "not known yet", `nullptr`
 
    /// cannot be determined.
 
    std::optional<Value *> Content;
 
 
 
    /// Set of potential ranges accessed from the base pointer.
 
    RangeList Ranges;
 
 
 
    /// The access kind, e.g., READ, as bitset (could be more than one).
 
    AccessKind Kind;
 
 
 
    /// The type of the content, thus the type read/written, can be null if not
 
    /// available.
 
    Type *Ty;
 
  };
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAPointerInfo &createForPosition(const IRPosition &IRP, Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAPointerInfo"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// Call \p CB on all accesses that might interfere with \p Range and return
 
  /// true if all such accesses were known and the callback returned true for
 
  /// all of them, false otherwise. An access interferes with an offset-size
 
  /// pair if it might read or write that memory region.
 
  virtual bool forallInterferingAccesses(
 
      AA::RangeTy Range, function_ref<bool(const Access &, bool)> CB) const = 0;
 
 
 
  /// Call \p CB on all accesses that might interfere with \p I and
 
  /// return true if all such accesses were known and the callback returned true
 
  /// for all of them, false otherwise. In contrast to forallInterferingAccesses
 
  /// this function will perform reasoning to exclude write accesses that cannot
 
  /// affect the load even if they on the surface look as if they would. The
 
  /// flag \p HasBeenWrittenTo will be set to true if we know that \p I does not
 
  /// read the intial value of the underlying memory.
 
  virtual bool forallInterferingAccesses(
 
      Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
 
      function_ref<bool(const Access &, bool)> CB, bool &HasBeenWrittenTo,
 
      AA::RangeTy &Range) const = 0;
 
 
 
  /// This function should return true if the type of the \p AA is AAPointerInfo
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract attribute for getting assumption information.
 
struct AAAssumptionInfo
 
    : public StateWrapper<SetState<StringRef>, AbstractAttribute,
 
                          DenseSet<StringRef>> {
 
  using Base =
 
      StateWrapper<SetState<StringRef>, AbstractAttribute, DenseSet<StringRef>>;
 
 
 
  AAAssumptionInfo(const IRPosition &IRP, Attributor &A,
 
                   const DenseSet<StringRef> &Known)
 
      : Base(IRP, Known) {}
 
 
 
  /// Returns true if the assumption set contains the assumption \p Assumption.
 
  virtual bool hasAssumption(const StringRef Assumption) const = 0;
 
 
 
  /// Create an abstract attribute view for the position \p IRP.
 
  static AAAssumptionInfo &createForPosition(const IRPosition &IRP,
 
                                             Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAAssumptionInfo"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAAssumptionInfo
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
};
 
 
 
/// An abstract attribute for getting all assumption underlying objects.
 
struct AAUnderlyingObjects : AbstractAttribute {
 
  AAUnderlyingObjects(const IRPosition &IRP) : AbstractAttribute(IRP) {}
 
 
 
  /// Create an abstract attribute biew for the position \p IRP.
 
  static AAUnderlyingObjects &createForPosition(const IRPosition &IRP,
 
                                                Attributor &A);
 
 
 
  /// See AbstractAttribute::getName()
 
  const std::string getName() const override { return "AAUnderlyingObjects"; }
 
 
 
  /// See AbstractAttribute::getIdAddr()
 
  const char *getIdAddr() const override { return &ID; }
 
 
 
  /// This function should return true if the type of the \p AA is
 
  /// AAUnderlyingObjects.
 
  static bool classof(const AbstractAttribute *AA) {
 
    return (AA->getIdAddr() == &ID);
 
  }
 
 
 
  /// Unique ID (due to the unique address)
 
  static const char ID;
 
 
 
  /// Check \p Pred on all underlying objects in \p Scope collected so far.
 
  ///
 
  /// This method will evaluate \p Pred on all underlying objects in \p Scope
 
  /// collected so far and return true if \p Pred holds on all of them.
 
  virtual bool
 
  forallUnderlyingObjects(function_ref<bool(Value &)> Pred,
 
                          AA::ValueScope Scope = AA::Interprocedural) const = 0;
 
};
 
 
 
raw_ostream &operator<<(raw_ostream &, const AAPointerInfo::Access &);
 
 
 
/// Run options, used by the pass manager.
 
enum AttributorRunOption {
 
  NONE = 0,
 
  MODULE = 1 << 0,
 
  CGSCC = 1 << 1,
 
  ALL = MODULE | CGSCC
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H