//===-- llvm/TargetParser/Triple.h - Target triple helper class--*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TARGETPARSER_TRIPLE_H
 
#define LLVM_TARGETPARSER_TRIPLE_H
 
 
 
#include "llvm/ADT/Twine.h"
 
#include "llvm/Support/VersionTuple.h"
 
 
 
// Some system headers or GCC predefined macros conflict with identifiers in
 
// this file.  Undefine them here.
 
#undef NetBSD
 
#undef mips
 
#undef sparc
 
 
 
namespace llvm {
 
 
 
/// Triple - Helper class for working with autoconf configuration names. For
 
/// historical reasons, we also call these 'triples' (they used to contain
 
/// exactly three fields).
 
///
 
/// Configuration names are strings in the canonical form:
 
///   ARCHITECTURE-VENDOR-OPERATING_SYSTEM
 
/// or
 
///   ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
 
///
 
/// This class is used for clients which want to support arbitrary
 
/// configuration names, but also want to implement certain special
 
/// behavior for particular configurations. This class isolates the mapping
 
/// from the components of the configuration name to well known IDs.
 
///
 
/// At its core the Triple class is designed to be a wrapper for a triple
 
/// string; the constructor does not change or normalize the triple string.
 
/// Clients that need to handle the non-canonical triples that users often
 
/// specify should use the normalize method.
 
///
 
/// See autoconf/config.guess for a glimpse into what configuration names
 
/// look like in practice.
 
class Triple {
 
public:
 
  enum ArchType {
 
    UnknownArch,
 
 
 
    arm,            // ARM (little endian): arm, armv.*, xscale
 
    armeb,          // ARM (big endian): armeb
 
    aarch64,        // AArch64 (little endian): aarch64
 
    aarch64_be,     // AArch64 (big endian): aarch64_be
 
    aarch64_32,     // AArch64 (little endian) ILP32: aarch64_32
 
    arc,            // ARC: Synopsys ARC
 
    avr,            // AVR: Atmel AVR microcontroller
 
    bpfel,          // eBPF or extended BPF or 64-bit BPF (little endian)
 
    bpfeb,          // eBPF or extended BPF or 64-bit BPF (big endian)
 
    csky,           // CSKY: csky
 
    dxil,           // DXIL 32-bit DirectX bytecode
 
    hexagon,        // Hexagon: hexagon
 
    loongarch32,    // LoongArch (32-bit): loongarch32
 
    loongarch64,    // LoongArch (64-bit): loongarch64
 
    m68k,           // M68k: Motorola 680x0 family
 
    mips,           // MIPS: mips, mipsallegrex, mipsr6
 
    mipsel,         // MIPSEL: mipsel, mipsallegrexe, mipsr6el
 
    mips64,         // MIPS64: mips64, mips64r6, mipsn32, mipsn32r6
 
    mips64el,       // MIPS64EL: mips64el, mips64r6el, mipsn32el, mipsn32r6el
 
    msp430,         // MSP430: msp430
 
    ppc,            // PPC: powerpc
 
    ppcle,          // PPCLE: powerpc (little endian)
 
    ppc64,          // PPC64: powerpc64, ppu
 
    ppc64le,        // PPC64LE: powerpc64le
 
    r600,           // R600: AMD GPUs HD2XXX - HD6XXX
 
    amdgcn,         // AMDGCN: AMD GCN GPUs
 
    riscv32,        // RISC-V (32-bit): riscv32
 
    riscv64,        // RISC-V (64-bit): riscv64
 
    sparc,          // Sparc: sparc
 
    sparcv9,        // Sparcv9: Sparcv9
 
    sparcel,        // Sparc: (endianness = little). NB: 'Sparcle' is a CPU variant
 
    systemz,        // SystemZ: s390x
 
    tce,            // TCE (http://tce.cs.tut.fi/): tce
 
    tcele,          // TCE little endian (http://tce.cs.tut.fi/): tcele
 
    thumb,          // Thumb (little endian): thumb, thumbv.*
 
    thumbeb,        // Thumb (big endian): thumbeb
 
    x86,            // X86: i[3-9]86
 
    x86_64,         // X86-64: amd64, x86_64
 
    xcore,          // XCore: xcore
 
    xtensa,         // Tensilica: Xtensa
 
    nvptx,          // NVPTX: 32-bit
 
    nvptx64,        // NVPTX: 64-bit
 
    le32,           // le32: generic little-endian 32-bit CPU (PNaCl)
 
    le64,           // le64: generic little-endian 64-bit CPU (PNaCl)
 
    amdil,          // AMDIL
 
    amdil64,        // AMDIL with 64-bit pointers
 
    hsail,          // AMD HSAIL
 
    hsail64,        // AMD HSAIL with 64-bit pointers
 
    spir,           // SPIR: standard portable IR for OpenCL 32-bit version
 
    spir64,         // SPIR: standard portable IR for OpenCL 64-bit version
 
    spirv32,        // SPIR-V with 32-bit pointers
 
    spirv64,        // SPIR-V with 64-bit pointers
 
    kalimba,        // Kalimba: generic kalimba
 
    shave,          // SHAVE: Movidius vector VLIW processors
 
    lanai,          // Lanai: Lanai 32-bit
 
    wasm32,         // WebAssembly with 32-bit pointers
 
    wasm64,         // WebAssembly with 64-bit pointers
 
    renderscript32, // 32-bit RenderScript
 
    renderscript64, // 64-bit RenderScript
 
    ve,             // NEC SX-Aurora Vector Engine
 
    LastArchType = ve
 
  };
 
  enum SubArchType {
 
    NoSubArch,
 
 
 
    ARMSubArch_v9_4a,
 
    ARMSubArch_v9_3a,
 
    ARMSubArch_v9_2a,
 
    ARMSubArch_v9_1a,
 
    ARMSubArch_v9,
 
    ARMSubArch_v8_9a,
 
    ARMSubArch_v8_8a,
 
    ARMSubArch_v8_7a,
 
    ARMSubArch_v8_6a,
 
    ARMSubArch_v8_5a,
 
    ARMSubArch_v8_4a,
 
    ARMSubArch_v8_3a,
 
    ARMSubArch_v8_2a,
 
    ARMSubArch_v8_1a,
 
    ARMSubArch_v8,
 
    ARMSubArch_v8r,
 
    ARMSubArch_v8m_baseline,
 
    ARMSubArch_v8m_mainline,
 
    ARMSubArch_v8_1m_mainline,
 
    ARMSubArch_v7,
 
    ARMSubArch_v7em,
 
    ARMSubArch_v7m,
 
    ARMSubArch_v7s,
 
    ARMSubArch_v7k,
 
    ARMSubArch_v7ve,
 
    ARMSubArch_v6,
 
    ARMSubArch_v6m,
 
    ARMSubArch_v6k,
 
    ARMSubArch_v6t2,
 
    ARMSubArch_v5,
 
    ARMSubArch_v5te,
 
    ARMSubArch_v4t,
 
 
 
    AArch64SubArch_arm64e,
 
    AArch64SubArch_arm64ec,
 
 
 
    KalimbaSubArch_v3,
 
    KalimbaSubArch_v4,
 
    KalimbaSubArch_v5,
 
 
 
    MipsSubArch_r6,
 
 
 
    PPCSubArch_spe,
 
 
 
    // SPIR-V sub-arch corresponds to its version.
 
    SPIRVSubArch_v10,
 
    SPIRVSubArch_v11,
 
    SPIRVSubArch_v12,
 
    SPIRVSubArch_v13,
 
    SPIRVSubArch_v14,
 
    SPIRVSubArch_v15,
 
  };
 
  enum VendorType {
 
    UnknownVendor,
 
 
 
    Apple,
 
    PC,
 
    SCEI,
 
    Freescale,
 
    IBM,
 
    ImaginationTechnologies,
 
    MipsTechnologies,
 
    NVIDIA,
 
    CSR,
 
    Myriad,
 
    AMD,
 
    Mesa,
 
    SUSE,
 
    OpenEmbedded,
 
    LastVendorType = OpenEmbedded
 
  };
 
  enum OSType {
 
    UnknownOS,
 
 
 
    Ananas,
 
    CloudABI,
 
    Darwin,
 
    DragonFly,
 
    FreeBSD,
 
    Fuchsia,
 
    IOS,
 
    KFreeBSD,
 
    Linux,
 
    Lv2,        // PS3
 
    MacOSX,
 
    NetBSD,
 
    OpenBSD,
 
    Solaris,
 
    Win32,
 
    ZOS,
 
    Haiku,
 
    Minix,
 
    RTEMS,
 
    NaCl,       // Native Client
 
    AIX,
 
    CUDA,       // NVIDIA CUDA
 
    NVCL,       // NVIDIA OpenCL
 
    AMDHSA,     // AMD HSA Runtime
 
    PS4,
 
    PS5,
 
    ELFIAMCU,
 
    TvOS,       // Apple tvOS
 
    WatchOS,    // Apple watchOS
 
    DriverKit,  // Apple DriverKit
 
    Mesa3D,
 
    Contiki,
 
    AMDPAL,     // AMD PAL Runtime
 
    HermitCore, // HermitCore Unikernel/Multikernel
 
    Hurd,       // GNU/Hurd
 
    WASI,       // Experimental WebAssembly OS
 
    Emscripten,
 
    ShaderModel, // DirectX ShaderModel
 
    LastOSType = ShaderModel
 
  };
 
  enum EnvironmentType {
 
    UnknownEnvironment,
 
 
 
    GNU,
 
    GNUABIN32,
 
    GNUABI64,
 
    GNUEABI,
 
    GNUEABIHF,
 
    GNUF32,
 
    GNUF64,
 
    GNUSF,
 
    GNUX32,
 
    GNUILP32,
 
    CODE16,
 
    EABI,
 
    EABIHF,
 
    Android,
 
    Musl,
 
    MuslEABI,
 
    MuslEABIHF,
 
    MuslX32,
 
 
 
    MSVC,
 
    Itanium,
 
    Cygnus,
 
    CoreCLR,
 
    Simulator, // Simulator variants of other systems, e.g., Apple's iOS
 
    MacABI, // Mac Catalyst variant of Apple's iOS deployment target.
 
 
 
    // Shader Stages
 
    // The order of these values matters, and must be kept in sync with the
 
    // language options enum in Clang. The ordering is enforced in
 
    // static_asserts in Triple.cpp and in Clang.
 
    Pixel,
 
    Vertex,
 
    Geometry,
 
    Hull,
 
    Domain,
 
    Compute,
 
    Library,
 
    RayGeneration,
 
    Intersection,
 
    AnyHit,
 
    ClosestHit,
 
    Miss,
 
    Callable,
 
    Mesh,
 
    Amplification,
 
 
 
    LastEnvironmentType = Amplification
 
  };
 
  enum ObjectFormatType {
 
    UnknownObjectFormat,
 
 
 
    COFF,
 
    DXContainer,
 
    ELF,
 
    GOFF,
 
    MachO,
 
    SPIRV,
 
    Wasm,
 
    XCOFF,
 
  };
 
 
 
private:
 
  std::string Data;
 
 
 
  /// The parsed arch type.
 
  ArchType Arch{};
 
 
 
  /// The parsed subarchitecture type.
 
  SubArchType SubArch{};
 
 
 
  /// The parsed vendor type.
 
  VendorType Vendor{};
 
 
 
  /// The parsed OS type.
 
  OSType OS{};
 
 
 
  /// The parsed Environment type.
 
  EnvironmentType Environment{};
 
 
 
  /// The object format type.
 
  ObjectFormatType ObjectFormat{};
 
 
 
public:
 
  /// @name Constructors
 
  /// @{
 
 
 
  /// Default constructor is the same as an empty string and leaves all
 
  /// triple fields unknown.
 
  Triple() = default;
 
 
 
  explicit Triple(const Twine &Str);
 
  Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr);
 
  Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr,
 
         const Twine &EnvironmentStr);
 
 
 
  bool operator==(const Triple &Other) const {
 
    return Arch == Other.Arch && SubArch == Other.SubArch &&
 
           Vendor == Other.Vendor && OS == Other.OS &&
 
           Environment == Other.Environment &&
 
           ObjectFormat == Other.ObjectFormat;
 
  }
 
 
 
  bool operator!=(const Triple &Other) const {
 
    return !(*this == Other);
 
  }
 
 
 
  /// @}
 
  /// @name Normalization
 
  /// @{
 
 
 
  /// Turn an arbitrary machine specification into the canonical triple form (or
 
  /// something sensible that the Triple class understands if nothing better can
 
  /// reasonably be done).  In particular, it handles the common case in which
 
  /// otherwise valid components are in the wrong order.
 
  static std::string normalize(StringRef Str);
 
 
 
  /// Return the normalized form of this triple's string.
 
  std::string normalize() const { return normalize(Data); }
 
 
 
  /// @}
 
  /// @name Typed Component Access
 
  /// @{
 
 
 
  /// Get the parsed architecture type of this triple.
 
  ArchType getArch() const { return Arch; }
 
 
 
  /// get the parsed subarchitecture type for this triple.
 
  SubArchType getSubArch() const { return SubArch; }
 
 
 
  /// Get the parsed vendor type of this triple.
 
  VendorType getVendor() const { return Vendor; }
 
 
 
  /// Get the parsed operating system type of this triple.
 
  OSType getOS() const { return OS; }
 
 
 
  /// Does this triple have the optional environment (fourth) component?
 
  bool hasEnvironment() const {
 
    return getEnvironmentName() != "";
 
  }
 
 
 
  /// Get the parsed environment type of this triple.
 
  EnvironmentType getEnvironment() const { return Environment; }
 
 
 
  /// Parse the version number from the OS name component of the
 
  /// triple, if present.
 
  ///
 
  /// For example, "fooos1.2.3" would return (1, 2, 3).
 
  VersionTuple getEnvironmentVersion() const;
 
 
 
  /// Get the object format for this triple.
 
  ObjectFormatType getObjectFormat() const { return ObjectFormat; }
 
 
 
  /// Parse the version number from the OS name component of the triple, if
 
  /// present.
 
  ///
 
  /// For example, "fooos1.2.3" would return (1, 2, 3).
 
  VersionTuple getOSVersion() const;
 
 
 
  /// Return just the major version number, this is specialized because it is a
 
  /// common query.
 
  unsigned getOSMajorVersion() const { return getOSVersion().getMajor(); }
 
 
 
  /// Parse the version number as with getOSVersion and then translate generic
 
  /// "darwin" versions to the corresponding OS X versions.  This may also be
 
  /// called with IOS triples but the OS X version number is just set to a
 
  /// constant 10.4.0 in that case.  Returns true if successful.
 
  bool getMacOSXVersion(VersionTuple &Version) const;
 
 
 
  /// Parse the version number as with getOSVersion.  This should only be called
 
  /// with IOS or generic triples.
 
  VersionTuple getiOSVersion() const;
 
 
 
  /// Parse the version number as with getOSVersion.  This should only be called
 
  /// with WatchOS or generic triples.
 
  VersionTuple getWatchOSVersion() const;
 
 
 
  /// Parse the version number as with getOSVersion.
 
  VersionTuple getDriverKitVersion() const;
 
 
 
  /// @}
 
  /// @name Direct Component Access
 
  /// @{
 
 
 
  const std::string &str() const { return Data; }
 
 
 
  const std::string &getTriple() const { return Data; }
 
 
 
  /// Get the architecture (first) component of the triple.
 
  StringRef getArchName() const;
 
 
 
  /// Get the architecture name based on Kind and SubArch.
 
  StringRef getArchName(ArchType Kind, SubArchType SubArch = NoSubArch) const;
 
 
 
  /// Get the vendor (second) component of the triple.
 
  StringRef getVendorName() const;
 
 
 
  /// Get the operating system (third) component of the triple.
 
  StringRef getOSName() const;
 
 
 
  /// Get the optional environment (fourth) component of the triple, or "" if
 
  /// empty.
 
  StringRef getEnvironmentName() const;
 
 
 
  /// Get the operating system and optional environment components as a single
 
  /// string (separated by a '-' if the environment component is present).
 
  StringRef getOSAndEnvironmentName() const;
 
 
 
  /// @}
 
  /// @name Convenience Predicates
 
  /// @{
 
 
 
  /// Test whether the architecture is 64-bit
 
  ///
 
  /// Note that this tests for 64-bit pointer width, and nothing else. Note
 
  /// that we intentionally expose only three predicates, 64-bit, 32-bit, and
 
  /// 16-bit. The inner details of pointer width for particular architectures
 
  /// is not summed up in the triple, and so only a coarse grained predicate
 
  /// system is provided.
 
  bool isArch64Bit() const;
 
 
 
  /// Test whether the architecture is 32-bit
 
  ///
 
  /// Note that this tests for 32-bit pointer width, and nothing else.
 
  bool isArch32Bit() const;
 
 
 
  /// Test whether the architecture is 16-bit
 
  ///
 
  /// Note that this tests for 16-bit pointer width, and nothing else.
 
  bool isArch16Bit() const;
 
 
 
  /// Helper function for doing comparisons against version numbers included in
 
  /// the target triple.
 
  bool isOSVersionLT(unsigned Major, unsigned Minor = 0,
 
                     unsigned Micro = 0) const {
 
    if (Minor == 0) {
 
      return getOSVersion() < VersionTuple(Major);
 
    }
 
    if (Micro == 0) {
 
      return getOSVersion() < VersionTuple(Major, Minor);
 
    }
 
    return getOSVersion() < VersionTuple(Major, Minor, Micro);
 
  }
 
 
 
  bool isOSVersionLT(const Triple &Other) const {
 
    return getOSVersion() < Other.getOSVersion();
 
  }
 
 
 
  /// Comparison function for checking OS X version compatibility, which handles
 
  /// supporting skewed version numbering schemes used by the "darwin" triples.
 
  bool isMacOSXVersionLT(unsigned Major, unsigned Minor = 0,
 
                         unsigned Micro = 0) const;
 
 
 
  /// Is this a Mac OS X triple. For legacy reasons, we support both "darwin"
 
  /// and "osx" as OS X triples.
 
  bool isMacOSX() const {
 
    return getOS() == Triple::Darwin || getOS() == Triple::MacOSX;
 
  }
 
 
 
  /// Is this an iOS triple.
 
  /// Note: This identifies tvOS as a variant of iOS. If that ever
 
  /// changes, i.e., if the two operating systems diverge or their version
 
  /// numbers get out of sync, that will need to be changed.
 
  /// watchOS has completely different version numbers so it is not included.
 
  bool isiOS() const {
 
    return getOS() == Triple::IOS || isTvOS();
 
  }
 
 
 
  /// Is this an Apple tvOS triple.
 
  bool isTvOS() const {
 
    return getOS() == Triple::TvOS;
 
  }
 
 
 
  /// Is this an Apple watchOS triple.
 
  bool isWatchOS() const {
 
    return getOS() == Triple::WatchOS;
 
  }
 
 
 
  bool isWatchABI() const {
 
    return getSubArch() == Triple::ARMSubArch_v7k;
 
  }
 
 
 
  /// Is this an Apple DriverKit triple.
 
  bool isDriverKit() const { return getOS() == Triple::DriverKit; }
 
 
 
  bool isOSzOS() const { return getOS() == Triple::ZOS; }
 
 
 
  /// Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, or DriverKit).
 
  bool isOSDarwin() const {
 
    return isMacOSX() || isiOS() || isWatchOS() || isDriverKit();
 
  }
 
 
 
  bool isSimulatorEnvironment() const {
 
    return getEnvironment() == Triple::Simulator;
 
  }
 
 
 
  bool isMacCatalystEnvironment() const {
 
    return getEnvironment() == Triple::MacABI;
 
  }
 
 
 
  /// Returns true for targets that run on a macOS machine.
 
  bool isTargetMachineMac() const {
 
    return isMacOSX() || (isOSDarwin() && (isSimulatorEnvironment() ||
 
                                           isMacCatalystEnvironment()));
 
  }
 
 
 
  bool isOSNetBSD() const {
 
    return getOS() == Triple::NetBSD;
 
  }
 
 
 
  bool isOSOpenBSD() const {
 
    return getOS() == Triple::OpenBSD;
 
  }
 
 
 
  bool isOSFreeBSD() const {
 
    return getOS() == Triple::FreeBSD;
 
  }
 
 
 
  bool isOSFuchsia() const {
 
    return getOS() == Triple::Fuchsia;
 
  }
 
 
 
  bool isOSDragonFly() const { return getOS() == Triple::DragonFly; }
 
 
 
  bool isOSSolaris() const {
 
    return getOS() == Triple::Solaris;
 
  }
 
 
 
  bool isOSIAMCU() const {
 
    return getOS() == Triple::ELFIAMCU;
 
  }
 
 
 
  bool isOSUnknown() const { return getOS() == Triple::UnknownOS; }
 
 
 
  bool isGNUEnvironment() const {
 
    EnvironmentType Env = getEnvironment();
 
    return Env == Triple::GNU || Env == Triple::GNUABIN32 ||
 
           Env == Triple::GNUABI64 || Env == Triple::GNUEABI ||
 
           Env == Triple::GNUEABIHF || Env == Triple::GNUF32 ||
 
           Env == Triple::GNUF64 || Env == Triple::GNUSF ||
 
           Env == Triple::GNUX32;
 
  }
 
 
 
  bool isOSContiki() const {
 
    return getOS() == Triple::Contiki;
 
  }
 
 
 
  /// Tests whether the OS is Haiku.
 
  bool isOSHaiku() const {
 
    return getOS() == Triple::Haiku;
 
  }
 
 
 
  /// Tests whether the OS is Windows.
 
  bool isOSWindows() const {
 
    return getOS() == Triple::Win32;
 
  }
 
 
 
  /// Checks if the environment is MSVC.
 
  bool isKnownWindowsMSVCEnvironment() const {
 
    return isOSWindows() && getEnvironment() == Triple::MSVC;
 
  }
 
 
 
  /// Checks if the environment could be MSVC.
 
  bool isWindowsMSVCEnvironment() const {
 
    return isKnownWindowsMSVCEnvironment() ||
 
           (isOSWindows() && getEnvironment() == Triple::UnknownEnvironment);
 
  }
 
 
 
  // Checks if we're using the Windows Arm64EC ABI.
 
  bool isWindowsArm64EC() const {
 
    return getArch() == Triple::aarch64 &&
 
           getSubArch() == Triple::AArch64SubArch_arm64ec;
 
  }
 
 
 
  bool isWindowsCoreCLREnvironment() const {
 
    return isOSWindows() && getEnvironment() == Triple::CoreCLR;
 
  }
 
 
 
  bool isWindowsItaniumEnvironment() const {
 
    return isOSWindows() && getEnvironment() == Triple::Itanium;
 
  }
 
 
 
  bool isWindowsCygwinEnvironment() const {
 
    return isOSWindows() && getEnvironment() == Triple::Cygnus;
 
  }
 
 
 
  bool isWindowsGNUEnvironment() const {
 
    return isOSWindows() && getEnvironment() == Triple::GNU;
 
  }
 
 
 
  /// Tests for either Cygwin or MinGW OS
 
  bool isOSCygMing() const {
 
    return isWindowsCygwinEnvironment() || isWindowsGNUEnvironment();
 
  }
 
 
 
  /// Is this a "Windows" OS targeting a "MSVCRT.dll" environment.
 
  bool isOSMSVCRT() const {
 
    return isWindowsMSVCEnvironment() || isWindowsGNUEnvironment() ||
 
           isWindowsItaniumEnvironment();
 
  }
 
 
 
  /// Tests whether the OS is NaCl (Native Client)
 
  bool isOSNaCl() const {
 
    return getOS() == Triple::NaCl;
 
  }
 
 
 
  /// Tests whether the OS is Linux.
 
  bool isOSLinux() const {
 
    return getOS() == Triple::Linux;
 
  }
 
 
 
  /// Tests whether the OS is kFreeBSD.
 
  bool isOSKFreeBSD() const {
 
    return getOS() == Triple::KFreeBSD;
 
  }
 
 
 
  /// Tests whether the OS is Hurd.
 
  bool isOSHurd() const {
 
    return getOS() == Triple::Hurd;
 
  }
 
 
 
  /// Tests whether the OS is WASI.
 
  bool isOSWASI() const {
 
    return getOS() == Triple::WASI;
 
  }
 
 
 
  /// Tests whether the OS is Emscripten.
 
  bool isOSEmscripten() const {
 
    return getOS() == Triple::Emscripten;
 
  }
 
 
 
  /// Tests whether the OS uses glibc.
 
  bool isOSGlibc() const {
 
    return (getOS() == Triple::Linux || getOS() == Triple::KFreeBSD ||
 
            getOS() == Triple::Hurd) &&
 
           !isAndroid();
 
  }
 
 
 
  /// Tests whether the OS is AIX.
 
  bool isOSAIX() const {
 
    return getOS() == Triple::AIX;
 
  }
 
 
 
  /// Tests whether the OS uses the ELF binary format.
 
  bool isOSBinFormatELF() const {
 
    return getObjectFormat() == Triple::ELF;
 
  }
 
 
 
  /// Tests whether the OS uses the COFF binary format.
 
  bool isOSBinFormatCOFF() const {
 
    return getObjectFormat() == Triple::COFF;
 
  }
 
 
 
  /// Tests whether the OS uses the GOFF binary format.
 
  bool isOSBinFormatGOFF() const { return getObjectFormat() == Triple::GOFF; }
 
 
 
  /// Tests whether the environment is MachO.
 
  bool isOSBinFormatMachO() const {
 
    return getObjectFormat() == Triple::MachO;
 
  }
 
 
 
  /// Tests whether the OS uses the Wasm binary format.
 
  bool isOSBinFormatWasm() const {
 
    return getObjectFormat() == Triple::Wasm;
 
  }
 
 
 
  /// Tests whether the OS uses the XCOFF binary format.
 
  bool isOSBinFormatXCOFF() const {
 
    return getObjectFormat() == Triple::XCOFF;
 
  }
 
 
 
  /// Tests whether the OS uses the DXContainer binary format.
 
  bool isOSBinFormatDXContainer() const {
 
    return getObjectFormat() == Triple::DXContainer;
 
  }
 
 
 
  /// Tests whether the target is the PS4 platform.
 
  bool isPS4() const {
 
    return getArch() == Triple::x86_64 &&
 
           getVendor() == Triple::SCEI &&
 
           getOS() == Triple::PS4;
 
  }
 
 
 
  /// Tests whether the target is the PS5 platform.
 
  bool isPS5() const {
 
    return getArch() == Triple::x86_64 &&
 
      getVendor() == Triple::SCEI &&
 
      getOS() == Triple::PS5;
 
  }
 
 
 
  /// Tests whether the target is the PS4 or PS5 platform.
 
  bool isPS() const { return isPS4() || isPS5(); }
 
 
 
  /// Tests whether the target is Android
 
  bool isAndroid() const { return getEnvironment() == Triple::Android; }
 
 
 
  bool isAndroidVersionLT(unsigned Major) const {
 
    assert(isAndroid() && "Not an Android triple!");
 
 
 
    VersionTuple Version = getEnvironmentVersion();
 
 
 
    // 64-bit targets did not exist before API level 21 (Lollipop).
 
    if (isArch64Bit() && Version.getMajor() < 21)
 
      return VersionTuple(21) < VersionTuple(Major);
 
 
 
    return Version < VersionTuple(Major);
 
  }
 
 
 
  /// Tests whether the environment is musl-libc
 
  bool isMusl() const {
 
    return getEnvironment() == Triple::Musl ||
 
           getEnvironment() == Triple::MuslEABI ||
 
           getEnvironment() == Triple::MuslEABIHF ||
 
           getEnvironment() == Triple::MuslX32;
 
  }
 
 
 
  /// Tests whether the target is DXIL.
 
  bool isDXIL() const {
 
    return getArch() == Triple::dxil;
 
  }
 
 
 
  /// Tests whether the target is SPIR (32- or 64-bit).
 
  bool isSPIR() const {
 
    return getArch() == Triple::spir || getArch() == Triple::spir64;
 
  }
 
 
 
  /// Tests whether the target is SPIR-V (32/64-bit).
 
  bool isSPIRV() const {
 
    return getArch() == Triple::spirv32 || getArch() == Triple::spirv64;
 
  }
 
 
 
  /// Tests whether the target is NVPTX (32- or 64-bit).
 
  bool isNVPTX() const {
 
    return getArch() == Triple::nvptx || getArch() == Triple::nvptx64;
 
  }
 
 
 
  /// Tests whether the target is AMDGCN
 
  bool isAMDGCN() const { return getArch() == Triple::amdgcn; }
 
 
 
  bool isAMDGPU() const {
 
    return getArch() == Triple::r600 || getArch() == Triple::amdgcn;
 
  }
 
 
 
  /// Tests whether the target is Thumb (little and big endian).
 
  bool isThumb() const {
 
    return getArch() == Triple::thumb || getArch() == Triple::thumbeb;
 
  }
 
 
 
  /// Tests whether the target is ARM (little and big endian).
 
  bool isARM() const {
 
    return getArch() == Triple::arm || getArch() == Triple::armeb;
 
  }
 
 
 
  /// Tests whether the target supports the EHABI exception
 
  /// handling standard.
 
  bool isTargetEHABICompatible() const {
 
    return (isARM() || isThumb()) &&
 
           (getEnvironment() == Triple::EABI ||
 
            getEnvironment() == Triple::GNUEABI ||
 
            getEnvironment() == Triple::MuslEABI ||
 
            getEnvironment() == Triple::EABIHF ||
 
            getEnvironment() == Triple::GNUEABIHF ||
 
            getEnvironment() == Triple::MuslEABIHF || isAndroid()) &&
 
           isOSBinFormatELF();
 
  }
 
 
 
  /// Tests whether the target is T32.
 
  bool isArmT32() const {
 
    switch (getSubArch()) {
 
    case Triple::ARMSubArch_v8m_baseline:
 
    case Triple::ARMSubArch_v7s:
 
    case Triple::ARMSubArch_v7k:
 
    case Triple::ARMSubArch_v7ve:
 
    case Triple::ARMSubArch_v6:
 
    case Triple::ARMSubArch_v6m:
 
    case Triple::ARMSubArch_v6k:
 
    case Triple::ARMSubArch_v6t2:
 
    case Triple::ARMSubArch_v5:
 
    case Triple::ARMSubArch_v5te:
 
    case Triple::ARMSubArch_v4t:
 
      return false;
 
    default:
 
      return true;
 
    }
 
  }
 
 
 
  /// Tests whether the target is an M-class.
 
  bool isArmMClass() const {
 
    switch (getSubArch()) {
 
    case Triple::ARMSubArch_v6m:
 
    case Triple::ARMSubArch_v7m:
 
    case Triple::ARMSubArch_v7em:
 
    case Triple::ARMSubArch_v8m_mainline:
 
    case Triple::ARMSubArch_v8m_baseline:
 
    case Triple::ARMSubArch_v8_1m_mainline:
 
      return true;
 
    default:
 
      return false;
 
    }
 
  }
 
 
 
  /// Tests whether the target is AArch64 (little and big endian).
 
  bool isAArch64() const {
 
    return getArch() == Triple::aarch64 || getArch() == Triple::aarch64_be ||
 
           getArch() == Triple::aarch64_32;
 
  }
 
 
 
  /// Tests whether the target is AArch64 and pointers are the size specified by
 
  /// \p PointerWidth.
 
  bool isAArch64(int PointerWidth) const {
 
    assert(PointerWidth == 64 || PointerWidth == 32);
 
    if (!isAArch64())
 
      return false;
 
    return getArch() == Triple::aarch64_32 ||
 
                   getEnvironment() == Triple::GNUILP32
 
               ? PointerWidth == 32
 
               : PointerWidth == 64;
 
  }
 
 
 
  /// Tests whether the target is LoongArch (32- and 64-bit).
 
  bool isLoongArch() const {
 
    return getArch() == Triple::loongarch32 || getArch() == Triple::loongarch64;
 
  }
 
 
 
  /// Tests whether the target is MIPS 32-bit (little and big endian).
 
  bool isMIPS32() const {
 
    return getArch() == Triple::mips || getArch() == Triple::mipsel;
 
  }
 
 
 
  /// Tests whether the target is MIPS 64-bit (little and big endian).
 
  bool isMIPS64() const {
 
    return getArch() == Triple::mips64 || getArch() == Triple::mips64el;
 
  }
 
 
 
  /// Tests whether the target is MIPS (little and big endian, 32- or 64-bit).
 
  bool isMIPS() const {
 
    return isMIPS32() || isMIPS64();
 
  }
 
 
 
  /// Tests whether the target is PowerPC (32- or 64-bit LE or BE).
 
  bool isPPC() const {
 
    return getArch() == Triple::ppc || getArch() == Triple::ppc64 ||
 
           getArch() == Triple::ppcle || getArch() == Triple::ppc64le;
 
  }
 
 
 
  /// Tests whether the target is 32-bit PowerPC (little and big endian).
 
  bool isPPC32() const {
 
    return getArch() == Triple::ppc || getArch() == Triple::ppcle;
 
  }
 
 
 
  /// Tests whether the target is 64-bit PowerPC (little and big endian).
 
  bool isPPC64() const {
 
    return getArch() == Triple::ppc64 || getArch() == Triple::ppc64le;
 
  }
 
 
 
  /// Tests whether the target 64-bit PowerPC big endian ABI is ELFv2.
 
  bool isPPC64ELFv2ABI() const {
 
    return (getArch() == Triple::ppc64 &&
 
            ((getOS() == Triple::FreeBSD &&
 
            (getOSMajorVersion() >= 13 || getOSVersion().empty())) ||
 
            getOS() == Triple::OpenBSD || isMusl()));
 
  }
 
 
 
  /// Tests whether the target is 32-bit RISC-V.
 
  bool isRISCV32() const { return getArch() == Triple::riscv32; }
 
 
 
  /// Tests whether the target is 64-bit RISC-V.
 
  bool isRISCV64() const { return getArch() == Triple::riscv64; }
 
 
 
  /// Tests whether the target is RISC-V (32- and 64-bit).
 
  bool isRISCV() const { return isRISCV32() || isRISCV64(); }
 
 
 
  /// Tests whether the target is 32-bit SPARC (little and big endian).
 
  bool isSPARC32() const {
 
    return getArch() == Triple::sparc || getArch() == Triple::sparcel;
 
  }
 
 
 
  /// Tests whether the target is 64-bit SPARC (big endian).
 
  bool isSPARC64() const { return getArch() == Triple::sparcv9; }
 
 
 
  /// Tests whether the target is SPARC.
 
  bool isSPARC() const { return isSPARC32() || isSPARC64(); }
 
 
 
  /// Tests whether the target is SystemZ.
 
  bool isSystemZ() const {
 
    return getArch() == Triple::systemz;
 
  }
 
 
 
  /// Tests whether the target is x86 (32- or 64-bit).
 
  bool isX86() const {
 
    return getArch() == Triple::x86 || getArch() == Triple::x86_64;
 
  }
 
 
 
  /// Tests whether the target is VE
 
  bool isVE() const {
 
    return getArch() == Triple::ve;
 
  }
 
 
 
  /// Tests whether the target is wasm (32- and 64-bit).
 
  bool isWasm() const {
 
    return getArch() == Triple::wasm32 || getArch() == Triple::wasm64;
 
  }
 
 
 
  // Tests whether the target is CSKY
 
  bool isCSKY() const {
 
    return getArch() == Triple::csky;
 
  }
 
 
 
  /// Tests whether the target is the Apple "arm64e" AArch64 subarch.
 
  bool isArm64e() const {
 
    return getArch() == Triple::aarch64 &&
 
           getSubArch() == Triple::AArch64SubArch_arm64e;
 
  }
 
 
 
  /// Tests whether the target is X32.
 
  bool isX32() const {
 
    EnvironmentType Env = getEnvironment();
 
    return Env == Triple::GNUX32 || Env == Triple::MuslX32;
 
  }
 
 
 
  /// Tests whether the target is eBPF.
 
  bool isBPF() const {
 
    return getArch() == Triple::bpfel || getArch() == Triple::bpfeb;
 
  }
 
 
 
  /// Tests whether the target supports comdat
 
  bool supportsCOMDAT() const {
 
    return !(isOSBinFormatMachO() || isOSBinFormatXCOFF() ||
 
             isOSBinFormatDXContainer());
 
  }
 
 
 
  /// Tests whether the target uses emulated TLS as default.
 
  bool hasDefaultEmulatedTLS() const {
 
    return isAndroid() || isOSOpenBSD() || isWindowsCygwinEnvironment();
 
  }
 
 
 
  /// Tests whether the target uses -data-sections as default.
 
  bool hasDefaultDataSections() const {
 
    return isOSBinFormatXCOFF() || isWasm();
 
  }
 
 
 
  /// Tests if the environment supports dllimport/export annotations.
 
  bool hasDLLImportExport() const { return isOSWindows() || isPS(); }
 
 
 
  /// @}
 
  /// @name Mutators
 
  /// @{
 
 
 
  /// Set the architecture (first) component of the triple to a known type.
 
  void setArch(ArchType Kind, SubArchType SubArch = NoSubArch);
 
 
 
  /// Set the vendor (second) component of the triple to a known type.
 
  void setVendor(VendorType Kind);
 
 
 
  /// Set the operating system (third) component of the triple to a known type.
 
  void setOS(OSType Kind);
 
 
 
  /// Set the environment (fourth) component of the triple to a known type.
 
  void setEnvironment(EnvironmentType Kind);
 
 
 
  /// Set the object file format.
 
  void setObjectFormat(ObjectFormatType Kind);
 
 
 
  /// Set all components to the new triple \p Str.
 
  void setTriple(const Twine &Str);
 
 
 
  /// Set the architecture (first) component of the triple by name.
 
  void setArchName(StringRef Str);
 
 
 
  /// Set the vendor (second) component of the triple by name.
 
  void setVendorName(StringRef Str);
 
 
 
  /// Set the operating system (third) component of the triple by name.
 
  void setOSName(StringRef Str);
 
 
 
  /// Set the optional environment (fourth) component of the triple by name.
 
  void setEnvironmentName(StringRef Str);
 
 
 
  /// Set the operating system and optional environment components with a single
 
  /// string.
 
  void setOSAndEnvironmentName(StringRef Str);
 
 
 
  /// @}
 
  /// @name Helpers to build variants of a particular triple.
 
  /// @{
 
 
 
  /// Form a triple with a 32-bit variant of the current architecture.
 
  ///
 
  /// This can be used to move across "families" of architectures where useful.
 
  ///
 
  /// \returns A new triple with a 32-bit architecture or an unknown
 
  ///          architecture if no such variant can be found.
 
  llvm::Triple get32BitArchVariant() const;
 
 
 
  /// Form a triple with a 64-bit variant of the current architecture.
 
  ///
 
  /// This can be used to move across "families" of architectures where useful.
 
  ///
 
  /// \returns A new triple with a 64-bit architecture or an unknown
 
  ///          architecture if no such variant can be found.
 
  llvm::Triple get64BitArchVariant() const;
 
 
 
  /// Form a triple with a big endian variant of the current architecture.
 
  ///
 
  /// This can be used to move across "families" of architectures where useful.
 
  ///
 
  /// \returns A new triple with a big endian architecture or an unknown
 
  ///          architecture if no such variant can be found.
 
  llvm::Triple getBigEndianArchVariant() const;
 
 
 
  /// Form a triple with a little endian variant of the current architecture.
 
  ///
 
  /// This can be used to move across "families" of architectures where useful.
 
  ///
 
  /// \returns A new triple with a little endian architecture or an unknown
 
  ///          architecture if no such variant can be found.
 
  llvm::Triple getLittleEndianArchVariant() const;
 
 
 
  /// Tests whether the target triple is little endian.
 
  ///
 
  /// \returns true if the triple is little endian, false otherwise.
 
  bool isLittleEndian() const;
 
 
 
  /// Test whether target triples are compatible.
 
  bool isCompatibleWith(const Triple &Other) const;
 
 
 
  /// Merge target triples.
 
  std::string merge(const Triple &Other) const;
 
 
 
  /// Some platforms have different minimum supported OS versions that
 
  /// varies by the architecture specified in the triple. This function
 
  /// returns the minimum supported OS version for this triple if one an exists,
 
  /// or an invalid version tuple if this triple doesn't have one.
 
  VersionTuple getMinimumSupportedOSVersion() const;
 
 
 
  /// @}
 
  /// @name Static helpers for IDs.
 
  /// @{
 
 
 
  /// Get the canonical name for the \p Kind architecture.
 
  static StringRef getArchTypeName(ArchType Kind);
 
 
 
  /// Get the "prefix" canonical name for the \p Kind architecture. This is the
 
  /// prefix used by the architecture specific builtins, and is suitable for
 
  /// passing to \see Intrinsic::getIntrinsicForClangBuiltin().
 
  ///
 
  /// \return - The architecture prefix, or 0 if none is defined.
 
  static StringRef getArchTypePrefix(ArchType Kind);
 
 
 
  /// Get the canonical name for the \p Kind vendor.
 
  static StringRef getVendorTypeName(VendorType Kind);
 
 
 
  /// Get the canonical name for the \p Kind operating system.
 
  static StringRef getOSTypeName(OSType Kind);
 
 
 
  /// Get the canonical name for the \p Kind environment.
 
  static StringRef getEnvironmentTypeName(EnvironmentType Kind);
 
 
 
  /// @}
 
  /// @name Static helpers for converting alternate architecture names.
 
  /// @{
 
 
 
  /// The canonical type for the given LLVM architecture name (e.g., "x86").
 
  static ArchType getArchTypeForLLVMName(StringRef Str);
 
 
 
  /// @}
 
 
 
  /// Returns a canonicalized OS version number for the specified OS.
 
  static VersionTuple getCanonicalVersionForOS(OSType OSKind,
 
                                               const VersionTuple &Version);
 
};
 
 
 
} // End llvm namespace
 
 
 
 
 
#endif