//===-- llvm/TargetParser/Triple.h - Target triple helper class--*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGETPARSER_TRIPLE_H
#define LLVM_TARGETPARSER_TRIPLE_H
#include "llvm/ADT/Twine.h"
#include "llvm/Support/VersionTuple.h"
// Some system headers or GCC predefined macros conflict with identifiers in
// this file. Undefine them here.
#undef NetBSD
#undef mips
#undef sparc
namespace llvm {
/// Triple - Helper class for working with autoconf configuration names. For
/// historical reasons, we also call these 'triples' (they used to contain
/// exactly three fields).
///
/// Configuration names are strings in the canonical form:
/// ARCHITECTURE-VENDOR-OPERATING_SYSTEM
/// or
/// ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
///
/// This class is used for clients which want to support arbitrary
/// configuration names, but also want to implement certain special
/// behavior for particular configurations. This class isolates the mapping
/// from the components of the configuration name to well known IDs.
///
/// At its core the Triple class is designed to be a wrapper for a triple
/// string; the constructor does not change or normalize the triple string.
/// Clients that need to handle the non-canonical triples that users often
/// specify should use the normalize method.
///
/// See autoconf/config.guess for a glimpse into what configuration names
/// look like in practice.
class Triple {
public:
enum ArchType {
UnknownArch,
arm, // ARM (little endian): arm, armv.*, xscale
armeb, // ARM (big endian): armeb
aarch64, // AArch64 (little endian): aarch64
aarch64_be, // AArch64 (big endian): aarch64_be
aarch64_32, // AArch64 (little endian) ILP32: aarch64_32
arc, // ARC: Synopsys ARC
avr, // AVR: Atmel AVR microcontroller
bpfel, // eBPF or extended BPF or 64-bit BPF (little endian)
bpfeb, // eBPF or extended BPF or 64-bit BPF (big endian)
csky, // CSKY: csky
dxil, // DXIL 32-bit DirectX bytecode
hexagon, // Hexagon: hexagon
loongarch32, // LoongArch (32-bit): loongarch32
loongarch64, // LoongArch (64-bit): loongarch64
m68k, // M68k: Motorola 680x0 family
mips, // MIPS: mips, mipsallegrex, mipsr6
mipsel, // MIPSEL: mipsel, mipsallegrexe, mipsr6el
mips64, // MIPS64: mips64, mips64r6, mipsn32, mipsn32r6
mips64el, // MIPS64EL: mips64el, mips64r6el, mipsn32el, mipsn32r6el
msp430, // MSP430: msp430
ppc, // PPC: powerpc
ppcle, // PPCLE: powerpc (little endian)
ppc64, // PPC64: powerpc64, ppu
ppc64le, // PPC64LE: powerpc64le
r600, // R600: AMD GPUs HD2XXX - HD6XXX
amdgcn, // AMDGCN: AMD GCN GPUs
riscv32, // RISC-V (32-bit): riscv32
riscv64, // RISC-V (64-bit): riscv64
sparc, // Sparc: sparc
sparcv9, // Sparcv9: Sparcv9
sparcel, // Sparc: (endianness = little). NB: 'Sparcle' is a CPU variant
systemz, // SystemZ: s390x
tce, // TCE (http://tce.cs.tut.fi/): tce
tcele, // TCE little endian (http://tce.cs.tut.fi/): tcele
thumb, // Thumb (little endian): thumb, thumbv.*
thumbeb, // Thumb (big endian): thumbeb
x86, // X86: i[3-9]86
x86_64, // X86-64: amd64, x86_64
xcore, // XCore: xcore
xtensa, // Tensilica: Xtensa
nvptx, // NVPTX: 32-bit
nvptx64, // NVPTX: 64-bit
le32, // le32: generic little-endian 32-bit CPU (PNaCl)
le64, // le64: generic little-endian 64-bit CPU (PNaCl)
amdil, // AMDIL
amdil64, // AMDIL with 64-bit pointers
hsail, // AMD HSAIL
hsail64, // AMD HSAIL with 64-bit pointers
spir, // SPIR: standard portable IR for OpenCL 32-bit version
spir64, // SPIR: standard portable IR for OpenCL 64-bit version
spirv32, // SPIR-V with 32-bit pointers
spirv64, // SPIR-V with 64-bit pointers
kalimba, // Kalimba: generic kalimba
shave, // SHAVE: Movidius vector VLIW processors
lanai, // Lanai: Lanai 32-bit
wasm32, // WebAssembly with 32-bit pointers
wasm64, // WebAssembly with 64-bit pointers
renderscript32, // 32-bit RenderScript
renderscript64, // 64-bit RenderScript
ve, // NEC SX-Aurora Vector Engine
LastArchType = ve
};
enum SubArchType {
NoSubArch,
ARMSubArch_v9_4a,
ARMSubArch_v9_3a,
ARMSubArch_v9_2a,
ARMSubArch_v9_1a,
ARMSubArch_v9,
ARMSubArch_v8_9a,
ARMSubArch_v8_8a,
ARMSubArch_v8_7a,
ARMSubArch_v8_6a,
ARMSubArch_v8_5a,
ARMSubArch_v8_4a,
ARMSubArch_v8_3a,
ARMSubArch_v8_2a,
ARMSubArch_v8_1a,
ARMSubArch_v8,
ARMSubArch_v8r,
ARMSubArch_v8m_baseline,
ARMSubArch_v8m_mainline,
ARMSubArch_v8_1m_mainline,
ARMSubArch_v7,
ARMSubArch_v7em,
ARMSubArch_v7m,
ARMSubArch_v7s,
ARMSubArch_v7k,
ARMSubArch_v7ve,
ARMSubArch_v6,
ARMSubArch_v6m,
ARMSubArch_v6k,
ARMSubArch_v6t2,
ARMSubArch_v5,
ARMSubArch_v5te,
ARMSubArch_v4t,
AArch64SubArch_arm64e,
AArch64SubArch_arm64ec,
KalimbaSubArch_v3,
KalimbaSubArch_v4,
KalimbaSubArch_v5,
MipsSubArch_r6,
PPCSubArch_spe,
// SPIR-V sub-arch corresponds to its version.
SPIRVSubArch_v10,
SPIRVSubArch_v11,
SPIRVSubArch_v12,
SPIRVSubArch_v13,
SPIRVSubArch_v14,
SPIRVSubArch_v15,
};
enum VendorType {
UnknownVendor,
Apple,
PC,
SCEI,
Freescale,
IBM,
ImaginationTechnologies,
MipsTechnologies,
NVIDIA,
CSR,
Myriad,
AMD,
Mesa,
SUSE,
OpenEmbedded,
LastVendorType = OpenEmbedded
};
enum OSType {
UnknownOS,
Ananas,
CloudABI,
Darwin,
DragonFly,
FreeBSD,
Fuchsia,
IOS,
KFreeBSD,
Linux,
Lv2, // PS3
MacOSX,
NetBSD,
OpenBSD,
Solaris,
Win32,
ZOS,
Haiku,
Minix,
RTEMS,
NaCl, // Native Client
AIX,
CUDA, // NVIDIA CUDA
NVCL, // NVIDIA OpenCL
AMDHSA, // AMD HSA Runtime
PS4,
PS5,
ELFIAMCU,
TvOS, // Apple tvOS
WatchOS, // Apple watchOS
DriverKit, // Apple DriverKit
Mesa3D,
Contiki,
AMDPAL, // AMD PAL Runtime
HermitCore, // HermitCore Unikernel/Multikernel
Hurd, // GNU/Hurd
WASI, // Experimental WebAssembly OS
Emscripten,
ShaderModel, // DirectX ShaderModel
LastOSType = ShaderModel
};
enum EnvironmentType {
UnknownEnvironment,
GNU,
GNUABIN32,
GNUABI64,
GNUEABI,
GNUEABIHF,
GNUF32,
GNUF64,
GNUSF,
GNUX32,
GNUILP32,
CODE16,
EABI,
EABIHF,
Android,
Musl,
MuslEABI,
MuslEABIHF,
MuslX32,
MSVC,
Itanium,
Cygnus,
CoreCLR,
Simulator, // Simulator variants of other systems, e.g., Apple's iOS
MacABI, // Mac Catalyst variant of Apple's iOS deployment target.
// Shader Stages
// The order of these values matters, and must be kept in sync with the
// language options enum in Clang. The ordering is enforced in
// static_asserts in Triple.cpp and in Clang.
Pixel,
Vertex,
Geometry,
Hull,
Domain,
Compute,
Library,
RayGeneration,
Intersection,
AnyHit,
ClosestHit,
Miss,
Callable,
Mesh,
Amplification,
LastEnvironmentType = Amplification
};
enum ObjectFormatType {
UnknownObjectFormat,
COFF,
DXContainer,
ELF,
GOFF,
MachO,
SPIRV,
Wasm,
XCOFF,
};
private:
std::string Data;
/// The parsed arch type.
ArchType Arch{};
/// The parsed subarchitecture type.
SubArchType SubArch{};
/// The parsed vendor type.
VendorType Vendor{};
/// The parsed OS type.
OSType OS{};
/// The parsed Environment type.
EnvironmentType Environment{};
/// The object format type.
ObjectFormatType ObjectFormat{};
public:
/// @name Constructors
/// @{
/// Default constructor is the same as an empty string and leaves all
/// triple fields unknown.
Triple() = default;
explicit Triple(const Twine &Str);
Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr);
Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr,
const Twine &EnvironmentStr);
bool operator==(const Triple &Other) const {
return Arch == Other.Arch && SubArch == Other.SubArch &&
Vendor == Other.Vendor && OS == Other.OS &&
Environment == Other.Environment &&
ObjectFormat == Other.ObjectFormat;
}
bool operator!=(const Triple &Other) const {
return !(*this == Other);
}
/// @}
/// @name Normalization
/// @{
/// Turn an arbitrary machine specification into the canonical triple form (or
/// something sensible that the Triple class understands if nothing better can
/// reasonably be done). In particular, it handles the common case in which
/// otherwise valid components are in the wrong order.
static std::string normalize(StringRef Str);
/// Return the normalized form of this triple's string.
std::string normalize() const { return normalize(Data); }
/// @}
/// @name Typed Component Access
/// @{
/// Get the parsed architecture type of this triple.
ArchType getArch() const { return Arch; }
/// get the parsed subarchitecture type for this triple.
SubArchType getSubArch() const { return SubArch; }
/// Get the parsed vendor type of this triple.
VendorType getVendor() const { return Vendor; }
/// Get the parsed operating system type of this triple.
OSType getOS() const { return OS; }
/// Does this triple have the optional environment (fourth) component?
bool hasEnvironment() const {
return getEnvironmentName() != "";
}
/// Get the parsed environment type of this triple.
EnvironmentType getEnvironment() const { return Environment; }
/// Parse the version number from the OS name component of the
/// triple, if present.
///
/// For example, "fooos1.2.3" would return (1, 2, 3).
VersionTuple getEnvironmentVersion() const;
/// Get the object format for this triple.
ObjectFormatType getObjectFormat() const { return ObjectFormat; }
/// Parse the version number from the OS name component of the triple, if
/// present.
///
/// For example, "fooos1.2.3" would return (1, 2, 3).
VersionTuple getOSVersion() const;
/// Return just the major version number, this is specialized because it is a
/// common query.
unsigned getOSMajorVersion() const { return getOSVersion().getMajor(); }
/// Parse the version number as with getOSVersion and then translate generic
/// "darwin" versions to the corresponding OS X versions. This may also be
/// called with IOS triples but the OS X version number is just set to a
/// constant 10.4.0 in that case. Returns true if successful.
bool getMacOSXVersion(VersionTuple &Version) const;
/// Parse the version number as with getOSVersion. This should only be called
/// with IOS or generic triples.
VersionTuple getiOSVersion() const;
/// Parse the version number as with getOSVersion. This should only be called
/// with WatchOS or generic triples.
VersionTuple getWatchOSVersion() const;
/// Parse the version number as with getOSVersion.
VersionTuple getDriverKitVersion() const;
/// @}
/// @name Direct Component Access
/// @{
const std::string &str() const { return Data; }
const std::string &getTriple() const { return Data; }
/// Get the architecture (first) component of the triple.
StringRef getArchName() const;
/// Get the architecture name based on Kind and SubArch.
StringRef getArchName(ArchType Kind, SubArchType SubArch = NoSubArch) const;
/// Get the vendor (second) component of the triple.
StringRef getVendorName() const;
/// Get the operating system (third) component of the triple.
StringRef getOSName() const;
/// Get the optional environment (fourth) component of the triple, or "" if
/// empty.
StringRef getEnvironmentName() const;
/// Get the operating system and optional environment components as a single
/// string (separated by a '-' if the environment component is present).
StringRef getOSAndEnvironmentName() const;
/// @}
/// @name Convenience Predicates
/// @{
/// Test whether the architecture is 64-bit
///
/// Note that this tests for 64-bit pointer width, and nothing else. Note
/// that we intentionally expose only three predicates, 64-bit, 32-bit, and
/// 16-bit. The inner details of pointer width for particular architectures
/// is not summed up in the triple, and so only a coarse grained predicate
/// system is provided.
bool isArch64Bit() const;
/// Test whether the architecture is 32-bit
///
/// Note that this tests for 32-bit pointer width, and nothing else.
bool isArch32Bit() const;
/// Test whether the architecture is 16-bit
///
/// Note that this tests for 16-bit pointer width, and nothing else.
bool isArch16Bit() const;
/// Helper function for doing comparisons against version numbers included in
/// the target triple.
bool isOSVersionLT(unsigned Major, unsigned Minor = 0,
unsigned Micro = 0) const {
if (Minor == 0) {
return getOSVersion() < VersionTuple(Major);
}
if (Micro == 0) {
return getOSVersion() < VersionTuple(Major, Minor);
}
return getOSVersion() < VersionTuple(Major, Minor, Micro);
}
bool isOSVersionLT(const Triple &Other) const {
return getOSVersion() < Other.getOSVersion();
}
/// Comparison function for checking OS X version compatibility, which handles
/// supporting skewed version numbering schemes used by the "darwin" triples.
bool isMacOSXVersionLT(unsigned Major, unsigned Minor = 0,
unsigned Micro = 0) const;
/// Is this a Mac OS X triple. For legacy reasons, we support both "darwin"
/// and "osx" as OS X triples.
bool isMacOSX() const {
return getOS() == Triple::Darwin || getOS() == Triple::MacOSX;
}
/// Is this an iOS triple.
/// Note: This identifies tvOS as a variant of iOS. If that ever
/// changes, i.e., if the two operating systems diverge or their version
/// numbers get out of sync, that will need to be changed.
/// watchOS has completely different version numbers so it is not included.
bool isiOS() const {
return getOS() == Triple::IOS || isTvOS();
}
/// Is this an Apple tvOS triple.
bool isTvOS() const {
return getOS() == Triple::TvOS;
}
/// Is this an Apple watchOS triple.
bool isWatchOS() const {
return getOS() == Triple::WatchOS;
}
bool isWatchABI() const {
return getSubArch() == Triple::ARMSubArch_v7k;
}
/// Is this an Apple DriverKit triple.
bool isDriverKit() const { return getOS() == Triple::DriverKit; }
bool isOSzOS() const { return getOS() == Triple::ZOS; }
/// Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, or DriverKit).
bool isOSDarwin() const {
return isMacOSX() || isiOS() || isWatchOS() || isDriverKit();
}
bool isSimulatorEnvironment() const {
return getEnvironment() == Triple::Simulator;
}
bool isMacCatalystEnvironment() const {
return getEnvironment() == Triple::MacABI;
}
/// Returns true for targets that run on a macOS machine.
bool isTargetMachineMac() const {
return isMacOSX() || (isOSDarwin() && (isSimulatorEnvironment() ||
isMacCatalystEnvironment()));
}
bool isOSNetBSD() const {
return getOS() == Triple::NetBSD;
}
bool isOSOpenBSD() const {
return getOS() == Triple::OpenBSD;
}
bool isOSFreeBSD() const {
return getOS() == Triple::FreeBSD;
}
bool isOSFuchsia() const {
return getOS() == Triple::Fuchsia;
}
bool isOSDragonFly() const { return getOS() == Triple::DragonFly; }
bool isOSSolaris() const {
return getOS() == Triple::Solaris;
}
bool isOSIAMCU() const {
return getOS() == Triple::ELFIAMCU;
}
bool isOSUnknown() const { return getOS() == Triple::UnknownOS; }
bool isGNUEnvironment() const {
EnvironmentType Env = getEnvironment();
return Env == Triple::GNU || Env == Triple::GNUABIN32 ||
Env == Triple::GNUABI64 || Env == Triple::GNUEABI ||
Env == Triple::GNUEABIHF || Env == Triple::GNUF32 ||
Env == Triple::GNUF64 || Env == Triple::GNUSF ||
Env == Triple::GNUX32;
}
bool isOSContiki() const {
return getOS() == Triple::Contiki;
}
/// Tests whether the OS is Haiku.
bool isOSHaiku() const {
return getOS() == Triple::Haiku;
}
/// Tests whether the OS is Windows.
bool isOSWindows() const {
return getOS() == Triple::Win32;
}
/// Checks if the environment is MSVC.
bool isKnownWindowsMSVCEnvironment() const {
return isOSWindows() && getEnvironment() == Triple::MSVC;
}
/// Checks if the environment could be MSVC.
bool isWindowsMSVCEnvironment() const {
return isKnownWindowsMSVCEnvironment() ||
(isOSWindows() && getEnvironment() == Triple::UnknownEnvironment);
}
// Checks if we're using the Windows Arm64EC ABI.
bool isWindowsArm64EC() const {
return getArch() == Triple::aarch64 &&
getSubArch() == Triple::AArch64SubArch_arm64ec;
}
bool isWindowsCoreCLREnvironment() const {
return isOSWindows() && getEnvironment() == Triple::CoreCLR;
}
bool isWindowsItaniumEnvironment() const {
return isOSWindows() && getEnvironment() == Triple::Itanium;
}
bool isWindowsCygwinEnvironment() const {
return isOSWindows() && getEnvironment() == Triple::Cygnus;
}
bool isWindowsGNUEnvironment() const {
return isOSWindows() && getEnvironment() == Triple::GNU;
}
/// Tests for either Cygwin or MinGW OS
bool isOSCygMing() const {
return isWindowsCygwinEnvironment() || isWindowsGNUEnvironment();
}
/// Is this a "Windows" OS targeting a "MSVCRT.dll" environment.
bool isOSMSVCRT() const {
return isWindowsMSVCEnvironment() || isWindowsGNUEnvironment() ||
isWindowsItaniumEnvironment();
}
/// Tests whether the OS is NaCl (Native Client)
bool isOSNaCl() const {
return getOS() == Triple::NaCl;
}
/// Tests whether the OS is Linux.
bool isOSLinux() const {
return getOS() == Triple::Linux;
}
/// Tests whether the OS is kFreeBSD.
bool isOSKFreeBSD() const {
return getOS() == Triple::KFreeBSD;
}
/// Tests whether the OS is Hurd.
bool isOSHurd() const {
return getOS() == Triple::Hurd;
}
/// Tests whether the OS is WASI.
bool isOSWASI() const {
return getOS() == Triple::WASI;
}
/// Tests whether the OS is Emscripten.
bool isOSEmscripten() const {
return getOS() == Triple::Emscripten;
}
/// Tests whether the OS uses glibc.
bool isOSGlibc() const {
return (getOS() == Triple::Linux || getOS() == Triple::KFreeBSD ||
getOS() == Triple::Hurd) &&
!isAndroid();
}
/// Tests whether the OS is AIX.
bool isOSAIX() const {
return getOS() == Triple::AIX;
}
/// Tests whether the OS uses the ELF binary format.
bool isOSBinFormatELF() const {
return getObjectFormat() == Triple::ELF;
}
/// Tests whether the OS uses the COFF binary format.
bool isOSBinFormatCOFF() const {
return getObjectFormat() == Triple::COFF;
}
/// Tests whether the OS uses the GOFF binary format.
bool isOSBinFormatGOFF() const { return getObjectFormat() == Triple::GOFF; }
/// Tests whether the environment is MachO.
bool isOSBinFormatMachO() const {
return getObjectFormat() == Triple::MachO;
}
/// Tests whether the OS uses the Wasm binary format.
bool isOSBinFormatWasm() const {
return getObjectFormat() == Triple::Wasm;
}
/// Tests whether the OS uses the XCOFF binary format.
bool isOSBinFormatXCOFF() const {
return getObjectFormat() == Triple::XCOFF;
}
/// Tests whether the OS uses the DXContainer binary format.
bool isOSBinFormatDXContainer() const {
return getObjectFormat() == Triple::DXContainer;
}
/// Tests whether the target is the PS4 platform.
bool isPS4() const {
return getArch() == Triple::x86_64 &&
getVendor() == Triple::SCEI &&
getOS() == Triple::PS4;
}
/// Tests whether the target is the PS5 platform.
bool isPS5() const {
return getArch() == Triple::x86_64 &&
getVendor() == Triple::SCEI &&
getOS() == Triple::PS5;
}
/// Tests whether the target is the PS4 or PS5 platform.
bool isPS() const { return isPS4() || isPS5(); }
/// Tests whether the target is Android
bool isAndroid() const { return getEnvironment() == Triple::Android; }
bool isAndroidVersionLT(unsigned Major) const {
assert(isAndroid() && "Not an Android triple!");
VersionTuple Version = getEnvironmentVersion();
// 64-bit targets did not exist before API level 21 (Lollipop).
if (isArch64Bit() && Version.getMajor() < 21)
return VersionTuple(21) < VersionTuple(Major);
return Version < VersionTuple(Major);
}
/// Tests whether the environment is musl-libc
bool isMusl() const {
return getEnvironment() == Triple::Musl ||
getEnvironment() == Triple::MuslEABI ||
getEnvironment() == Triple::MuslEABIHF ||
getEnvironment() == Triple::MuslX32;
}
/// Tests whether the target is DXIL.
bool isDXIL() const {
return getArch() == Triple::dxil;
}
/// Tests whether the target is SPIR (32- or 64-bit).
bool isSPIR() const {
return getArch() == Triple::spir || getArch() == Triple::spir64;
}
/// Tests whether the target is SPIR-V (32/64-bit).
bool isSPIRV() const {
return getArch() == Triple::spirv32 || getArch() == Triple::spirv64;
}
/// Tests whether the target is NVPTX (32- or 64-bit).
bool isNVPTX() const {
return getArch() == Triple::nvptx || getArch() == Triple::nvptx64;
}
/// Tests whether the target is AMDGCN
bool isAMDGCN() const { return getArch() == Triple::amdgcn; }
bool isAMDGPU() const {
return getArch() == Triple::r600 || getArch() == Triple::amdgcn;
}
/// Tests whether the target is Thumb (little and big endian).
bool isThumb() const {
return getArch() == Triple::thumb || getArch() == Triple::thumbeb;
}
/// Tests whether the target is ARM (little and big endian).
bool isARM() const {
return getArch() == Triple::arm || getArch() == Triple::armeb;
}
/// Tests whether the target supports the EHABI exception
/// handling standard.
bool isTargetEHABICompatible() const {
return (isARM() || isThumb()) &&
(getEnvironment() == Triple::EABI ||
getEnvironment() == Triple::GNUEABI ||
getEnvironment() == Triple::MuslEABI ||
getEnvironment() == Triple::EABIHF ||
getEnvironment() == Triple::GNUEABIHF ||
getEnvironment() == Triple::MuslEABIHF || isAndroid()) &&
isOSBinFormatELF();
}
/// Tests whether the target is T32.
bool isArmT32() const {
switch (getSubArch()) {
case Triple::ARMSubArch_v8m_baseline:
case Triple::ARMSubArch_v7s:
case Triple::ARMSubArch_v7k:
case Triple::ARMSubArch_v7ve:
case Triple::ARMSubArch_v6:
case Triple::ARMSubArch_v6m:
case Triple::ARMSubArch_v6k:
case Triple::ARMSubArch_v6t2:
case Triple::ARMSubArch_v5:
case Triple::ARMSubArch_v5te:
case Triple::ARMSubArch_v4t:
return false;
default:
return true;
}
}
/// Tests whether the target is an M-class.
bool isArmMClass() const {
switch (getSubArch()) {
case Triple::ARMSubArch_v6m:
case Triple::ARMSubArch_v7m:
case Triple::ARMSubArch_v7em:
case Triple::ARMSubArch_v8m_mainline:
case Triple::ARMSubArch_v8m_baseline:
case Triple::ARMSubArch_v8_1m_mainline:
return true;
default:
return false;
}
}
/// Tests whether the target is AArch64 (little and big endian).
bool isAArch64() const {
return getArch() == Triple::aarch64 || getArch() == Triple::aarch64_be ||
getArch() == Triple::aarch64_32;
}
/// Tests whether the target is AArch64 and pointers are the size specified by
/// \p PointerWidth.
bool isAArch64(int PointerWidth) const {
assert(PointerWidth == 64 || PointerWidth == 32);
if (!isAArch64())
return false;
return getArch() == Triple::aarch64_32 ||
getEnvironment() == Triple::GNUILP32
? PointerWidth == 32
: PointerWidth == 64;
}
/// Tests whether the target is LoongArch (32- and 64-bit).
bool isLoongArch() const {
return getArch() == Triple::loongarch32 || getArch() == Triple::loongarch64;
}
/// Tests whether the target is MIPS 32-bit (little and big endian).
bool isMIPS32() const {
return getArch() == Triple::mips || getArch() == Triple::mipsel;
}
/// Tests whether the target is MIPS 64-bit (little and big endian).
bool isMIPS64() const {
return getArch() == Triple::mips64 || getArch() == Triple::mips64el;
}
/// Tests whether the target is MIPS (little and big endian, 32- or 64-bit).
bool isMIPS() const {
return isMIPS32() || isMIPS64();
}
/// Tests whether the target is PowerPC (32- or 64-bit LE or BE).
bool isPPC() const {
return getArch() == Triple::ppc || getArch() == Triple::ppc64 ||
getArch() == Triple::ppcle || getArch() == Triple::ppc64le;
}
/// Tests whether the target is 32-bit PowerPC (little and big endian).
bool isPPC32() const {
return getArch() == Triple::ppc || getArch() == Triple::ppcle;
}
/// Tests whether the target is 64-bit PowerPC (little and big endian).
bool isPPC64() const {
return getArch() == Triple::ppc64 || getArch() == Triple::ppc64le;
}
/// Tests whether the target 64-bit PowerPC big endian ABI is ELFv2.
bool isPPC64ELFv2ABI() const {
return (getArch() == Triple::ppc64 &&
((getOS() == Triple::FreeBSD &&
(getOSMajorVersion() >= 13 || getOSVersion().empty())) ||
getOS() == Triple::OpenBSD || isMusl()));
}
/// Tests whether the target is 32-bit RISC-V.
bool isRISCV32() const { return getArch() == Triple::riscv32; }
/// Tests whether the target is 64-bit RISC-V.
bool isRISCV64() const { return getArch() == Triple::riscv64; }
/// Tests whether the target is RISC-V (32- and 64-bit).
bool isRISCV() const { return isRISCV32() || isRISCV64(); }
/// Tests whether the target is 32-bit SPARC (little and big endian).
bool isSPARC32() const {
return getArch() == Triple::sparc || getArch() == Triple::sparcel;
}
/// Tests whether the target is 64-bit SPARC (big endian).
bool isSPARC64() const { return getArch() == Triple::sparcv9; }
/// Tests whether the target is SPARC.
bool isSPARC() const { return isSPARC32() || isSPARC64(); }
/// Tests whether the target is SystemZ.
bool isSystemZ() const {
return getArch() == Triple::systemz;
}
/// Tests whether the target is x86 (32- or 64-bit).
bool isX86() const {
return getArch() == Triple::x86 || getArch() == Triple::x86_64;
}
/// Tests whether the target is VE
bool isVE() const {
return getArch() == Triple::ve;
}
/// Tests whether the target is wasm (32- and 64-bit).
bool isWasm() const {
return getArch() == Triple::wasm32 || getArch() == Triple::wasm64;
}
// Tests whether the target is CSKY
bool isCSKY() const {
return getArch() == Triple::csky;
}
/// Tests whether the target is the Apple "arm64e" AArch64 subarch.
bool isArm64e() const {
return getArch() == Triple::aarch64 &&
getSubArch() == Triple::AArch64SubArch_arm64e;
}
/// Tests whether the target is X32.
bool isX32() const {
EnvironmentType Env = getEnvironment();
return Env == Triple::GNUX32 || Env == Triple::MuslX32;
}
/// Tests whether the target is eBPF.
bool isBPF() const {
return getArch() == Triple::bpfel || getArch() == Triple::bpfeb;
}
/// Tests whether the target supports comdat
bool supportsCOMDAT() const {
return !(isOSBinFormatMachO() || isOSBinFormatXCOFF() ||
isOSBinFormatDXContainer());
}
/// Tests whether the target uses emulated TLS as default.
bool hasDefaultEmulatedTLS() const {
return isAndroid() || isOSOpenBSD() || isWindowsCygwinEnvironment();
}
/// Tests whether the target uses -data-sections as default.
bool hasDefaultDataSections() const {
return isOSBinFormatXCOFF() || isWasm();
}
/// Tests if the environment supports dllimport/export annotations.
bool hasDLLImportExport() const { return isOSWindows() || isPS(); }
/// @}
/// @name Mutators
/// @{
/// Set the architecture (first) component of the triple to a known type.
void setArch(ArchType Kind, SubArchType SubArch = NoSubArch);
/// Set the vendor (second) component of the triple to a known type.
void setVendor(VendorType Kind);
/// Set the operating system (third) component of the triple to a known type.
void setOS(OSType Kind);
/// Set the environment (fourth) component of the triple to a known type.
void setEnvironment(EnvironmentType Kind);
/// Set the object file format.
void setObjectFormat(ObjectFormatType Kind);
/// Set all components to the new triple \p Str.
void setTriple(const Twine &Str);
/// Set the architecture (first) component of the triple by name.
void setArchName(StringRef Str);
/// Set the vendor (second) component of the triple by name.
void setVendorName(StringRef Str);
/// Set the operating system (third) component of the triple by name.
void setOSName(StringRef Str);
/// Set the optional environment (fourth) component of the triple by name.
void setEnvironmentName(StringRef Str);
/// Set the operating system and optional environment components with a single
/// string.
void setOSAndEnvironmentName(StringRef Str);
/// @}
/// @name Helpers to build variants of a particular triple.
/// @{
/// Form a triple with a 32-bit variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a 32-bit architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple get32BitArchVariant() const;
/// Form a triple with a 64-bit variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a 64-bit architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple get64BitArchVariant() const;
/// Form a triple with a big endian variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a big endian architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple getBigEndianArchVariant() const;
/// Form a triple with a little endian variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a little endian architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple getLittleEndianArchVariant() const;
/// Tests whether the target triple is little endian.
///
/// \returns true if the triple is little endian, false otherwise.
bool isLittleEndian() const;
/// Test whether target triples are compatible.
bool isCompatibleWith(const Triple &Other) const;
/// Merge target triples.
std::string merge(const Triple &Other) const;
/// Some platforms have different minimum supported OS versions that
/// varies by the architecture specified in the triple. This function
/// returns the minimum supported OS version for this triple if one an exists,
/// or an invalid version tuple if this triple doesn't have one.
VersionTuple getMinimumSupportedOSVersion() const;
/// @}
/// @name Static helpers for IDs.
/// @{
/// Get the canonical name for the \p Kind architecture.
static StringRef getArchTypeName(ArchType Kind);
/// Get the "prefix" canonical name for the \p Kind architecture. This is the
/// prefix used by the architecture specific builtins, and is suitable for
/// passing to \see Intrinsic::getIntrinsicForClangBuiltin().
///
/// \return - The architecture prefix, or 0 if none is defined.
static StringRef getArchTypePrefix(ArchType Kind);
/// Get the canonical name for the \p Kind vendor.
static StringRef getVendorTypeName(VendorType Kind);
/// Get the canonical name for the \p Kind operating system.
static StringRef getOSTypeName(OSType Kind);
/// Get the canonical name for the \p Kind environment.
static StringRef getEnvironmentTypeName(EnvironmentType Kind);
/// @}
/// @name Static helpers for converting alternate architecture names.
/// @{
/// The canonical type for the given LLVM architecture name (e.g., "x86").
static ArchType getArchTypeForLLVMName(StringRef Str);
/// @}
/// Returns a canonicalized OS version number for the specified OS.
static VersionTuple getCanonicalVersionForOS(OSType OSKind,
const VersionTuple &Version);
};
} // End llvm namespace
#endif