Blame | Last modification | View Log | Download | RSS feed
//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===////// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.// See https://llvm.org/LICENSE.txt for license information.// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception////===----------------------------------------------------------------------===////// This file defines the target-independent interfaces which should be// implemented by each target which is using a TableGen based code generator.////===----------------------------------------------------------------------===//// Include all information about LLVM intrinsics.include "llvm/IR/Intrinsics.td"//===----------------------------------------------------------------------===//// Register file description - These classes are used to fill in the target// description classes.class HwMode<string FS> {// A string representing subtarget features that turn on this HW mode.// For example, "+feat1,-feat2" will indicate that the mode is active// when "feat1" is enabled and "feat2" is disabled at the same time.// Any other features are not checked.// When multiple modes are used, they should be mutually exclusive,// otherwise the results are unpredictable.string Features = FS;}// A special mode recognized by tablegen. This mode is considered active// when no other mode is active. For targets that do not use specific hw// modes, this is the only mode.def DefaultMode : HwMode<"">;// A class used to associate objects with HW modes. It is only intended to// be used as a base class, where the derived class should contain a member// "Objects", which is a list of the same length as the list of modes.// The n-th element on the Objects list will be associated with the n-th// element on the Modes list.class HwModeSelect<list<HwMode> Ms> {list<HwMode> Modes = Ms;}// A common class that implements a counterpart of ValueType, which is// dependent on a HW mode. This class inherits from ValueType itself,// which makes it possible to use objects of this class where ValueType// objects could be used. This is specifically applicable to selection// patterns.class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>: HwModeSelect<Ms>, ValueType<0, 0> {// The length of this list must be the same as the length of Ms.list<ValueType> Objects = Ts;}// A class representing the register size, spill size and spill alignment// in bits of a register.class RegInfo<int RS, int SS, int SA> {int RegSize = RS; // Register size in bits.int SpillSize = SS; // Spill slot size in bits.int SpillAlignment = SA; // Spill slot alignment in bits.}// The register size/alignment information, parameterized by a HW mode.class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>: HwModeSelect<Ms> {// The length of this list must be the same as the length of Ms.list<RegInfo> Objects = Ts;}// SubRegIndex - Use instances of SubRegIndex to identify subregisters.class SubRegIndex<int size, int offset = 0> {string Namespace = "";// Size - Size (in bits) of the sub-registers represented by this index.int Size = size;// Offset - Offset of the first bit that is part of this sub-register index.// Set it to -1 if the same index is used to represent sub-registers that can// be at different offsets (for example when using an index to access an// element in a register tuple).int Offset = offset;// ComposedOf - A list of two SubRegIndex instances, [A, B].// This indicates that this SubRegIndex is the result of composing A and B.// See ComposedSubRegIndex.list<SubRegIndex> ComposedOf = [];// CoveringSubRegIndices - A list of two or more sub-register indexes that// cover this sub-register.//// This field should normally be left blank as TableGen can infer it.//// TableGen automatically detects sub-registers that straddle the registers// in the SubRegs field of a Register definition. For example://// Q0 = dsub_0 -> D0, dsub_1 -> D1// Q1 = dsub_0 -> D2, dsub_1 -> D3// D1_D2 = dsub_0 -> D1, dsub_1 -> D2// QQ0 = qsub_0 -> Q0, qsub_1 -> Q1//// TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given// the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with// CoveringSubRegIndices = [dsub_1, dsub_2].list<SubRegIndex> CoveringSubRegIndices = [];}// ComposedSubRegIndex - A sub-register that is the result of composing A and B.// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>: SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,!eq(B.Offset, -1): -1,true: !add(A.Offset, B.Offset))> {// See SubRegIndex.let ComposedOf = [A, B];}// RegAltNameIndex - The alternate name set to use for register operands of// this register class when printing.class RegAltNameIndex {string Namespace = "";// A set to be used if the name for a register is not defined in this set.// This allows creating name sets with only a few alternative names.RegAltNameIndex FallbackRegAltNameIndex = ?;}def NoRegAltName : RegAltNameIndex;// Register - You should define one instance of this class for each register// in the target machine. String n will become the "name" of the register.class Register<string n, list<string> altNames = []> {string Namespace = "";string AsmName = n;list<string> AltNames = altNames;// Aliases - A list of registers that this register overlaps with. A read or// modification of this register can potentially read or modify the aliased// registers.list<Register> Aliases = [];// SubRegs - A list of registers that are parts of this register. Note these// are "immediate" sub-registers and the registers within the list do not// themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],// not [AX, AH, AL].list<Register> SubRegs = [];// SubRegIndices - For each register in SubRegs, specify the SubRegIndex used// to address it. Sub-sub-register indices are automatically inherited from// SubRegs.list<SubRegIndex> SubRegIndices = [];// RegAltNameIndices - The alternate name indices which are valid for this// register.list<RegAltNameIndex> RegAltNameIndices = [];// DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.// These values can be determined by locating the <target>.h file in the// directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The// order of these names correspond to the enumeration used by gcc. A value of// -1 indicates that the gcc number is undefined and -2 that register number// is invalid for this mode/flavour.list<int> DwarfNumbers = [];// CostPerUse - Additional cost of instructions using this register compared// to other registers in its class. The register allocator will try to// minimize the number of instructions using a register with a CostPerUse.// This is used by the ARC target, by the ARM Thumb and x86-64 targets, where// some registers require larger instruction encodings, by the RISC-V target,// where some registers preclude using some C instructions. By making it a// list, targets can have multiple cost models associated with each register// and can choose one specific cost model per Machine Function by overriding// TargetRegisterInfo::getRegisterCostTableIndex. Every target register will// finally have an equal number of cost values which is the max of costPerUse// values specified. Any mismatch in the cost values for a register will be// filled with zeros. Restricted the cost type to uint8_t in the// generated table. It will considerably reduce the table size.list<int> CostPerUse = [0];// CoveredBySubRegs - When this bit is set, the value of this register is// completely determined by the value of its sub-registers. For example, the// x86 register AX is covered by its sub-registers AL and AH, but EAX is not// covered by its sub-register AX.bit CoveredBySubRegs = false;// HWEncoding - The target specific hardware encoding for this register.bits<16> HWEncoding = 0;bit isArtificial = false;// isConstant - This register always holds a constant value (e.g. the zero// register in architectures such as MIPS)bit isConstant = false;}// RegisterWithSubRegs - This can be used to define instances of Register which// need to specify sub-registers.// List "subregs" specifies which registers are sub-registers to this one. This// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.// This allows the code generator to be careful not to put two values with// overlapping live ranges into registers which alias.class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {let SubRegs = subregs;}// DAGOperand - An empty base class that unifies RegisterClass's and other forms// of Operand's that are legal as type qualifiers in DAG patterns. This should// only ever be used for defining multiclasses that are polymorphic over both// RegisterClass's and other Operand's.class DAGOperand {string OperandNamespace = "MCOI";string DecoderMethod = "";}// RegisterClass - Now that all of the registers are defined, and aliases// between registers are defined, specify which registers belong to which// register classes. This also defines the default allocation order of// registers by register allocators.//class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,dag regList, RegAltNameIndex idx = NoRegAltName>: DAGOperand {string Namespace = namespace;// The register size/alignment information, parameterized by a HW mode.RegInfoByHwMode RegInfos;// RegType - Specify the list ValueType of the registers in this register// class. Note that all registers in a register class must have the same// ValueTypes. This is a list because some targets permit storing different// types in same register, for example vector values with 128-bit total size,// but different count/size of items, like SSE on x86.//list<ValueType> RegTypes = regTypes;// Size - Specify the spill size in bits of the registers. A default value of// zero lets tablegen pick an appropriate size.int Size = 0;// Alignment - Specify the alignment required of the registers when they are// stored or loaded to memory.//int Alignment = alignment;// CopyCost - This value is used to specify the cost of copying a value// between two registers in this register class. The default value is one// meaning it takes a single instruction to perform the copying. A negative// value means copying is extremely expensive or impossible.int CopyCost = 1;// MemberList - Specify which registers are in this class. If the// allocation_order_* method are not specified, this also defines the order of// allocation used by the register allocator.//dag MemberList = regList;// AltNameIndex - The alternate register name to use when printing operands// of this register class. Every register in the register class must have// a valid alternate name for the given index.RegAltNameIndex altNameIndex = idx;// isAllocatable - Specify that the register class can be used for virtual// registers and register allocation. Some register classes are only used to// model instruction operand constraints, and should have isAllocatable = 0.bit isAllocatable = true;// AltOrders - List of alternative allocation orders. The default order is// MemberList itself, and that is good enough for most targets since the// register allocators automatically remove reserved registers and move// callee-saved registers to the end.list<dag> AltOrders = [];// AltOrderSelect - The body of a function that selects the allocation order// to use in a given machine function. The code will be inserted in a// function like this://// static inline unsigned f(const MachineFunction &MF) { ... }//// The function should return 0 to select the default order defined by// MemberList, 1 to select the first AltOrders entry and so on.code AltOrderSelect = [{}];// Specify allocation priority for register allocators using a greedy// heuristic. Classes with higher priority values are assigned first. This is// useful as it is sometimes beneficial to assign registers to highly// constrained classes first. The value has to be in the range [0,31].int AllocationPriority = 0;// Force register class to use greedy's global heuristic for all// registers in this class. This should more aggressively try to// avoid spilling in pathological cases.bit GlobalPriority = false;// Generate register pressure set for this register class and any class// synthesized from it. Set to 0 to inhibit unneeded pressure sets.bit GeneratePressureSet = true;// Weight override for register pressure calculation. This is the value// TargetRegisterClass::getRegClassWeight() will return. The weight is in// units of pressure for this register class. If unset tablegen will// calculate a weight based on a number of register units in this register// class registers. The weight is per register.int Weight = ?;// The diagnostic type to present when referencing this operand in a match// failure error message. If this is empty, the default Match_InvalidOperand// diagnostic type will be used. If this is "<name>", a Match_<name> enum// value will be generated and used for this operand type. The target// assembly parser is responsible for converting this into a user-facing// diagnostic message.string DiagnosticType = "";// A diagnostic message to emit when an invalid value is provided for this// register class when it is being used an an assembly operand. If this is// non-empty, an anonymous diagnostic type enum value will be generated, and// the assembly matcher will provide a function to map from diagnostic types// to message strings.string DiagnosticString = "";// Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.bits<8> TSFlags = 0;// If set then consider this register class to be the base class for registers in// its MemberList. The base class for registers present in multiple base register// classes will be resolved in the order defined by this value, with lower values// taking precedence over higher ones. Ties are resolved by enumeration order.int BaseClassOrder = ?;}// The memberList in a RegisterClass is a dag of set operations. TableGen// evaluates these set operations and expand them into register lists. These// are the most common operation, see test/TableGen/SetTheory.td for more// examples of what is possible://// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a// register class, or a sub-expression. This is also the way to simply list// registers.//// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.//// (and GPR, CSR) - Set intersection. All registers from the first set that are// also in the second set.//// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of// numbered registers. Takes an optional 4th operand which is a stride to use// when generating the sequence.//// (shl GPR, 4) - Remove the first N elements.//// (trunc GPR, 4) - Truncate after the first N elements.//// (rotl GPR, 1) - Rotate N places to the left.//// (rotr GPR, 1) - Rotate N places to the right.//// (decimate GPR, 2) - Pick every N'th element, starting with the first.//// (interleave A, B, ...) - Interleave the elements from each argument list.//// All of these operators work on ordered sets, not lists. That means// duplicates are removed from sub-expressions.// Set operators. The rest is defined in TargetSelectionDAG.td.def sequence;def decimate;def interleave;// RegisterTuples - Automatically generate super-registers by forming tuples of// sub-registers. This is useful for modeling register sequence constraints// with pseudo-registers that are larger than the architectural registers.//// The sub-register lists are zipped together://// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;//// Generates the same registers as://// let SubRegIndices = [sube, subo] in {// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;// }//// The generated pseudo-registers inherit super-classes and fields from their// first sub-register. Most fields from the Register class are inferred, and// the AsmName and Dwarf numbers are cleared.//// RegisterTuples instances can be used in other set operations to form// register classes and so on. This is the only way of using the generated// registers.//// RegNames may be specified to supply asm names for the generated tuples.// If used must have the same size as the list of produced registers.class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,list<string> RegNames = []> {// SubRegs - N lists of registers to be zipped up. Super-registers are// synthesized from the first element of each SubRegs list, the second// element and so on.list<dag> SubRegs = Regs;// SubRegIndices - N SubRegIndex instances. This provides the names of the// sub-registers in the synthesized super-registers.list<SubRegIndex> SubRegIndices = Indices;// List of asm names for the generated tuple registers.list<string> RegAsmNames = RegNames;}// RegisterCategory - This class is a list of RegisterClasses that belong to a// general cateogry --- e.g. "general purpose" or "fixed" registers. This is// useful for identifying registers in a generic way instead of having// information about a specific target's registers.class RegisterCategory<list<RegisterClass> classes> {// Classes - A list of register classes that fall within the category.list<RegisterClass> Classes = classes;}//===----------------------------------------------------------------------===//// DwarfRegNum - This class provides a mapping of the llvm register enumeration// to the register numbering used by gcc and gdb. These values are used by a// debug information writer to describe where values may be located during// execution.class DwarfRegNum<list<int> Numbers> {// DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.// These values can be determined by locating the <target>.h file in the// directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The// order of these names correspond to the enumeration used by gcc. A value of// -1 indicates that the gcc number is undefined and -2 that register number// is invalid for this mode/flavour.list<int> DwarfNumbers = Numbers;}// DwarfRegAlias - This class declares that a given register uses the same dwarf// numbers as another one. This is useful for making it clear that the two// registers do have the same number. It also lets us build a mapping// from dwarf register number to llvm register.class DwarfRegAlias<Register reg> {Register DwarfAlias = reg;}//===----------------------------------------------------------------------===//// Pull in the common support for MCPredicate (portable scheduling predicates).//include "llvm/Target/TargetInstrPredicate.td"//===----------------------------------------------------------------------===//// Pull in the common support for scheduling//include "llvm/Target/TargetSchedule.td"class Predicate; // Forward defclass InstructionEncoding {// Size of encoded instruction.int Size;// The "namespace" in which this instruction exists, on targets like ARM// which multiple ISA namespaces exist.string DecoderNamespace = "";// List of predicates which will be turned into isel matching code.list<Predicate> Predicates = [];string DecoderMethod = "";// Is the instruction decoder method able to completely determine if the// given instruction is valid or not. If the TableGen definition of the// instruction specifies bitpattern A??B where A and B are static bits, the// hasCompleteDecoder flag says whether the decoder method fully handles the// ?? space, i.e. if it is a final arbiter for the instruction validity.// If not then the decoder attempts to continue decoding when the decoder// method fails.//// This allows to handle situations where the encoding is not fully// orthogonal. Example:// * InstA with bitpattern 0b0000????,// * InstB with bitpattern 0b000000?? but the associated decoder method// DecodeInstB() returns Fail when ?? is 0b00 or 0b11.//// The decoder tries to decode a bitpattern that matches both InstA and// InstB bitpatterns first as InstB (because it is the most specific// encoding). In the default case (hasCompleteDecoder = 1), when// DecodeInstB() returns Fail the bitpattern gets rejected. By setting// hasCompleteDecoder = 0 in InstB, the decoder is informed that// DecodeInstB() is not able to determine if all possible values of ?? are// valid or not. If DecodeInstB() returns Fail the decoder will attempt to// decode the bitpattern as InstA too.bit hasCompleteDecoder = true;}// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used// to encode and decode based on HwMode.class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>: HwModeSelect<Ms> {// The length of this list must be the same as the length of Ms.list<InstructionEncoding> Objects = Ts;}//===----------------------------------------------------------------------===//// Instruction set description - These classes correspond to the C++ classes in// the Target/TargetInstrInfo.h file.//class Instruction : InstructionEncoding {string Namespace = "";dag OutOperandList; // An dag containing the MI def operand list.dag InOperandList; // An dag containing the MI use operand list.string AsmString = ""; // The .s format to print the instruction with.// Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,// the Inst member of this Instruction is ignored.EncodingByHwMode EncodingInfos;// Pattern - Set to the DAG pattern for this instruction, if we know of one,// otherwise, uninitialized.list<dag> Pattern;// The follow state will eventually be inferred automatically from the// instruction pattern.list<Register> Uses = []; // Default to using no non-operand registerslist<Register> Defs = []; // Default to modifying no non-operand registers// Predicates - List of predicates which will be turned into isel matching// code.list<Predicate> Predicates = [];// Size - Size of encoded instruction, or zero if the size cannot be determined// from the opcode.int Size = 0;// Code size, for instruction selection.// FIXME: What does this actually mean?int CodeSize = 0;// Added complexity passed onto matching pattern.int AddedComplexity = 0;// Indicates if this is a pre-isel opcode that should be// legalized/regbankselected/selected.bit isPreISelOpcode = false;// These bits capture information about the high-level semantics of the// instruction.bit isReturn = false; // Is this instruction a return instruction?bit isBranch = false; // Is this instruction a branch instruction?bit isEHScopeReturn = false; // Does this instruction end an EH scope?bit isIndirectBranch = false; // Is this instruction an indirect branch?bit isCompare = false; // Is this instruction a comparison instruction?bit isMoveImm = false; // Is this instruction a move immediate instruction?bit isMoveReg = false; // Is this instruction a move register instruction?bit isBitcast = false; // Is this instruction a bitcast instruction?bit isSelect = false; // Is this instruction a select instruction?bit isBarrier = false; // Can control flow fall through this instruction?bit isCall = false; // Is this instruction a call instruction?bit isAdd = false; // Is this instruction an add instruction?bit isTrap = false; // Is this instruction a trap instruction?bit canFoldAsLoad = false; // Can this be folded as a simple memory operand?bit mayLoad = ?; // Is it possible for this inst to read memory?bit mayStore = ?; // Is it possible for this inst to write memory?bit mayRaiseFPException = false; // Can this raise a floating-point exception?bit isConvertibleToThreeAddress = false; // Can this 2-addr instruction promote?bit isCommutable = false; // Is this 3 operand instruction commutable?bit isTerminator = false; // Is this part of the terminator for a basic block?bit isReMaterializable = false; // Is this instruction re-materializable?bit isPredicable = false; // 1 means this instruction is predicable// even if it does not have any operand// tablegen can identify as a predicatebit isUnpredicable = false; // 1 means this instruction is not predicable// even if it _does_ have a predicate operandbit hasDelaySlot = false; // Does this instruction have an delay slot?bit usesCustomInserter = false; // Pseudo instr needing special help.bit hasPostISelHook = false; // To be *adjusted* after isel by target hook.bit hasCtrlDep = false; // Does this instruction r/w ctrl-flow chains?bit isNotDuplicable = false; // Is it unsafe to duplicate this instruction?bit isConvergent = false; // Is this instruction convergent?bit isAuthenticated = false; // Does this instruction authenticate a pointer?bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?bit isRegSequence = false; // Is this instruction a kind of reg sequence?// If so, make sure to override// TargetInstrInfo::getRegSequenceLikeInputs.bit isPseudo = false; // Is this instruction a pseudo-instruction?// If so, won't have encoding information for// the [MC]CodeEmitter stuff.bit isMeta = false; // Is this instruction a meta-instruction?// If so, won't produce any output in the form of// executable instructionsbit isExtractSubreg = false; // Is this instruction a kind of extract subreg?// If so, make sure to override// TargetInstrInfo::getExtractSubregLikeInputs.bit isInsertSubreg = false; // Is this instruction a kind of insert subreg?// If so, make sure to override// TargetInstrInfo::getInsertSubregLikeInputs.bit variadicOpsAreDefs = false; // Are variadic operands definitions?// Does the instruction have side effects that are not captured by any// operands of the instruction or other flags?bit hasSideEffects = ?;// Is this instruction a "real" instruction (with a distinct machine// encoding), or is it a pseudo instruction used for codegen modeling// purposes.// FIXME: For now this is distinct from isPseudo, above, as code-gen-only// instructions can (and often do) still have encoding information// associated with them. Once we've migrated all of them over to true// pseudo-instructions that are lowered to real instructions prior to// the printer/emitter, we can remove this attribute and just use isPseudo.//// The intended use is:// isPseudo: Does not have encoding information and should be expanded,// at the latest, during lowering to MCInst.//// isCodeGenOnly: Does have encoding information and can go through to the// CodeEmitter unchanged, but duplicates a canonical instruction// definition's encoding and should be ignored when constructing the// assembler match tables.bit isCodeGenOnly = false;// Is this instruction a pseudo instruction for use by the assembler parser.bit isAsmParserOnly = false;// This instruction is not expected to be queried for scheduling latencies// and therefore needs no scheduling information even for a complete// scheduling model.bit hasNoSchedulingInfo = false;InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.// Scheduling information from TargetSchedule.td.list<SchedReadWrite> SchedRW;string Constraints = ""; // OperandConstraint, e.g. $src = $dst./// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not/// be encoded into the output machineinstr.string DisableEncoding = "";string PostEncoderMethod = "";/// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.bits<64> TSFlags = 0;///@name Assembler Parser Support///@{string AsmMatchConverter = "";/// TwoOperandAliasConstraint - Enable TableGen to auto-generate a/// two-operand matcher inst-alias for a three operand instruction./// For example, the arm instruction "add r3, r3, r5" can be written/// as "add r3, r5". The constraint is of the same form as a tied-operand/// constraint. For example, "$Rn = $Rd".string TwoOperandAliasConstraint = "";/// Assembler variant name to use for this instruction. If specified then/// instruction will be presented only in MatchTable for this variant. If/// not specified then assembler variants will be determined based on/// AsmStringstring AsmVariantName = "";///@}/// UseNamedOperandTable - If set, the operand indices of this instruction/// can be queried via the getNamedOperandIdx() function which is generated/// by TableGen.bit UseNamedOperandTable = false;/// Should generate helper functions that help you to map a logical operand's/// index to the underlying MIOperand's index./// In most architectures logical operand indicies are equal to/// MIOperand indicies, but for some CISC architectures, a logical operand/// might be consist of multiple MIOperand (e.g. a logical operand that/// uses complex address mode).bit UseLogicalOperandMappings = false;/// Should FastISel ignore this instruction. For certain ISAs, they have/// instructions which map to the same ISD Opcode, value type operands and/// instruction selection predicates. FastISel cannot handle such cases, but/// SelectionDAG can.bit FastISelShouldIgnore = false;/// HasPositionOrder: Indicate tablegen to sort the instructions by record/// ID, so that instruction that is defined earlier can be sorted earlier/// in the assembly matching table.bit HasPositionOrder = false;}/// Defines a Pat match between compressed and uncompressed instruction./// The relationship and helper function generation are handled by/// CompressInstEmitter backend.class CompressPat<dag input, dag output, list<Predicate> predicates = []> {/// Uncompressed instruction description.dag Input = input;/// Compressed instruction description.dag Output = output;/// Predicates that must be true for this to match.list<Predicate> Predicates = predicates;/// Duplicate match when tied operand is just different.bit isCompressOnly = false;}/// Defines an additional encoding that disassembles to the given instruction/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets// to specify their size.class AdditionalEncoding<Instruction I> : InstructionEncoding {Instruction AliasOf = I;}/// PseudoInstExpansion - Expansion information for a pseudo-instruction./// Which instruction it expands to and how the operands map from the/// pseudo.class PseudoInstExpansion<dag Result> {dag ResultInst = Result; // The instruction to generate.bit isPseudo = true;}/// Predicates - These are extra conditionals which are turned into instruction/// selector matching code. Currently each predicate is just a string.class Predicate<string cond> {string CondString = cond;/// AssemblerMatcherPredicate - If this feature can be used by the assembler/// matcher, this is true. Targets should set this by inheriting their/// feature from the AssemblerPredicate class in addition to Predicate.bit AssemblerMatcherPredicate = false;/// AssemblerCondDag - Set of subtarget features being tested used/// as alternative condition string used for assembler matcher. Must be used/// with (all_of) to indicate that all features must be present, or (any_of)/// to indicate that at least one must be. The required lack of presence of/// a feature can be tested using a (not) node including the feature./// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0"./// "(all_of (not ModeThumb))" is translated to/// "(Bits & ModeThumb) == 0"./// "(all_of ModeThumb, FeatureThumb2)" is translated to/// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0"./// "(any_of ModeTumb, FeatureThumb2)" is translated to/// "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0"./// all_of and any_of cannot be combined in a single dag, instead multiple/// predicates can be placed onto Instruction definitions.dag AssemblerCondDag;/// PredicateName - User-level name to use for the predicate. Mainly for use/// in diagnostics such as missing feature errors in the asm matcher.string PredicateName = "";/// Setting this to '1' indicates that the predicate must be recomputed on/// every function change. Most predicates can leave this at '0'.////// Ignored by SelectionDAG, it always recomputes the predicate on every use.bit RecomputePerFunction = false;}/// NoHonorSignDependentRounding - This predicate is true if support for/// sign-dependent-rounding is not enabled.def NoHonorSignDependentRounding: Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;class Requires<list<Predicate> preds> {list<Predicate> Predicates = preds;}/// ops definition - This is just a simple marker used to identify the operand/// list for an instruction. outs and ins are identical both syntactically and/// semantically; they are used to define def operands and use operands to/// improve readability. This should be used like this:/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.def ops;def outs;def ins;/// variable_ops definition - Mark this instruction as taking a variable number/// of operands.def variable_ops;/// variable-length instruction encoding utilities./// The `ascend` operator should be used like this:/// (ascend 0b0010, 0b1101)/// Which represent a seqence of encoding fragments placing from LSB to MSB./// Thus, in this case the final encoding will be 0b1101_0010./// The arguments for `ascend` can either be `bits` or another DAG.def ascend;/// In addition, we can use `descend` to describe an encoding that places/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance:/// (descend 0b0010, 0b1101)/// This results in an encoding of 0b0010_1101.def descend;/// The `operand` operator should be used like this:/// (operand "$src", 4)/// Which represents a 4-bit encoding for an instruction operand named `$src`.def operand;/// Similar to `operand`, we can reference only part of the operand's encoding:/// (slice "$src", 6, 8)/// (slice "$src", 8, 6)/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand/// `$src`.def slice;/// You can use `encoder` or `decoder` to specify a custom encoder or decoder/// function for a specific `operand` or `slice` directive. For example:/// (operand "$src", 4, (encoder "encodeMyImm"))/// (slice "$src", 8, 6, (encoder "encodeMyReg"))/// (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm"))/// The ordering of `encoder` and `decoder` in the same `operand` or `slice`/// doesn't matter./// Note that currently we cannot assign different decoders in the same/// (instruction) operand.def encoder;def decoder;/// PointerLikeRegClass - Values that are designed to have pointer width are/// derived from this. TableGen treats the register class as having a symbolic/// type that it doesn't know, and resolves the actual regclass to use by using/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.class PointerLikeRegClass<int Kind> {int RegClassKind = Kind;}/// ptr_rc definition - Mark this operand as being a pointer value whose/// register class is resolved dynamically via a callback to TargetInstrInfo./// FIXME: We should probably change this to a class which contain a list of/// flags. But currently we have but one flag.def ptr_rc : PointerLikeRegClass<0>;/// unknown definition - Mark this operand as being of unknown type, causing/// it to be resolved by inference in the context it is used.class unknown_class;def unknown : unknown_class;/// AsmOperandClass - Representation for the kinds of operands which the target/// specific parser can create and the assembly matcher may need to distinguish.////// Operand classes are used to define the order in which instructions are/// matched, to ensure that the instruction which gets matched for any/// particular list of operands is deterministic.////// The target specific parser must be able to classify a parsed operand into a/// unique class which does not partially overlap with any other classes. It can/// match a subset of some other class, in which case the super class field/// should be defined.class AsmOperandClass {/// The name to use for this class, which should be usable as an enum value.string Name = ?;/// The super classes of this operand.list<AsmOperandClass> SuperClasses = [];/// The name of the method on the target specific operand to call to test/// whether the operand is an instance of this class. If not set, this will/// default to "isFoo", where Foo is the AsmOperandClass name. The method/// signature should be:/// bool isFoo() const;string PredicateMethod = ?;/// The name of the method on the target specific operand to call to add the/// target specific operand to an MCInst. If not set, this will default to/// "addFooOperands", where Foo is the AsmOperandClass name. The method/// signature should be:/// void addFooOperands(MCInst &Inst, unsigned N) const;string RenderMethod = ?;/// The name of the method on the target specific operand to call to custom/// handle the operand parsing. This is useful when the operands do not relate/// to immediates or registers and are very instruction specific (as flags to/// set in a processor register, coprocessor number, ...).string ParserMethod = ?;// The diagnostic type to present when referencing this operand in a// match failure error message. By default, use a generic "invalid operand"// diagnostic. The target AsmParser maps these codes to text.string DiagnosticType = "";/// A diagnostic message to emit when an invalid value is provided for this/// operand.string DiagnosticString = "";/// Set to 1 if this operand is optional and not always required. Typically,/// the AsmParser will emit an error when it finishes parsing an/// instruction if it hasn't matched all the operands yet. However, this/// error will be suppressed if all of the remaining unmatched operands are/// marked as IsOptional.////// Optional arguments must be at the end of the operand list.bit IsOptional = false;/// The name of the method on the target specific asm parser that returns the/// default operand for this optional operand. This method is only used if/// IsOptional == 1. If not set, this will default to "defaultFooOperands",/// where Foo is the AsmOperandClass name. The method signature should be:/// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;string DefaultMethod = ?;}def ImmAsmOperand : AsmOperandClass {let Name = "Imm";}/// Operand Types - These provide the built-in operand types that may be used/// by a target. Targets can optionally provide their own operand types as/// needed, though this should not be needed for RISC targets.class Operand<ValueType ty> : DAGOperand {ValueType Type = ty;string PrintMethod = "printOperand";string EncoderMethod = "";bit hasCompleteDecoder = true;string OperandType = "OPERAND_UNKNOWN";dag MIOperandInfo = (ops);// MCOperandPredicate - Optionally, a code fragment operating on// const MCOperand &MCOp, and returning a bool, to indicate if// the value of MCOp is valid for the specific subclass of Operandcode MCOperandPredicate;// ParserMatchClass - The "match class" that operands of this type fit// in. Match classes are used to define the order in which instructions are// match, to ensure that which instructions gets matched is deterministic.//// The target specific parser must be able to classify an parsed operand into// a unique class, which does not partially overlap with any other classes. It// can match a subset of some other class, in which case the AsmOperandClass// should declare the other operand as one of its super classes.AsmOperandClass ParserMatchClass = ImmAsmOperand;}class RegisterOperand<RegisterClass regclass, string pm = "printOperand">: DAGOperand {// RegClass - The register class of the operand.RegisterClass RegClass = regclass;// PrintMethod - The target method to call to print register operands of// this type. The method normally will just use an alt-name index to look// up the name to print. Default to the generic printOperand().string PrintMethod = pm;// EncoderMethod - The target method name to call to encode this register// operand.string EncoderMethod = "";// ParserMatchClass - The "match class" that operands of this type fit// in. Match classes are used to define the order in which instructions are// match, to ensure that which instructions gets matched is deterministic.//// The target specific parser must be able to classify an parsed operand into// a unique class, which does not partially overlap with any other classes. It// can match a subset of some other class, in which case the AsmOperandClass// should declare the other operand as one of its super classes.AsmOperandClass ParserMatchClass;string OperandType = "OPERAND_REGISTER";// When referenced in the result of a CodeGen pattern, GlobalISel will// normally copy the matched operand to the result. When this is set, it will// emit a special copy that will replace zero-immediates with the specified// zero-register.Register GIZeroRegister = ?;}let OperandType = "OPERAND_IMMEDIATE" in {def i1imm : Operand<i1>;def i8imm : Operand<i8>;def i16imm : Operand<i16>;def i32imm : Operand<i32>;def i64imm : Operand<i64>;def f32imm : Operand<f32>;def f64imm : Operand<f64>;}// Register operands for generic instructions don't have an MVT, but do have// constraints linking the operands (e.g. all operands of a G_ADD must// have the same LLT).class TypedOperand<string Ty> : Operand<untyped> {let OperandType = Ty;bit IsPointer = false;bit IsImmediate = false;}def type0 : TypedOperand<"OPERAND_GENERIC_0">;def type1 : TypedOperand<"OPERAND_GENERIC_1">;def type2 : TypedOperand<"OPERAND_GENERIC_2">;def type3 : TypedOperand<"OPERAND_GENERIC_3">;def type4 : TypedOperand<"OPERAND_GENERIC_4">;def type5 : TypedOperand<"OPERAND_GENERIC_5">;let IsPointer = true in {def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;}// untyped_imm is for operands where isImm() will be true. It currently has no// special behaviour and is only used for clarity.def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {let IsImmediate = true;}/// zero_reg definition - Special node to stand for the zero register.///def zero_reg;/// undef_tied_input - Special node to indicate an input register tied/// to an output which defaults to IMPLICIT_DEF.def undef_tied_input;/// All operands which the MC layer classifies as predicates should inherit from/// this class in some manner. This is already handled for the most commonly/// used PredicateOperand, but may be useful in other circumstances.class PredicateOp;/// OperandWithDefaultOps - This Operand class can be used as the parent class/// for an Operand that needs to be initialized with a default value if/// no value is supplied in a pattern. This class can be used to simplify the/// pattern definitions for instructions that have target specific flags/// encoded as immediate operands.class OperandWithDefaultOps<ValueType ty, dag defaultops>: Operand<ty> {dag DefaultOps = defaultops;}/// PredicateOperand - This can be used to define a predicate operand for an/// instruction. OpTypes specifies the MIOperandInfo for the operand, and/// AlwaysVal specifies the value of this predicate when set to "always/// execute".class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>: OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {let MIOperandInfo = OpTypes;}/// OptionalDefOperand - This is used to define a optional definition operand/// for an instruction. DefaultOps is the register the operand represents if/// none is supplied, e.g. zero_reg.class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>: OperandWithDefaultOps<ty, defaultops> {let MIOperandInfo = OpTypes;}// InstrInfo - This class should only be instantiated once to provide parameters// which are global to the target machine.//class InstrInfo {// Target can specify its instructions in either big or little-endian formats.// For instance, while both Sparc and PowerPC are big-endian platforms, the// Sparc manual specifies its instructions in the format [31..0] (big), while// PowerPC specifies them using the format [0..31] (little).bit isLittleEndianEncoding = false;// The instruction properties mayLoad, mayStore, and hasSideEffects are unset// by default, and TableGen will infer their value from the instruction// pattern when possible.//// Normally, TableGen will issue an error if it can't infer the value of a// property that hasn't been set explicitly. When guessInstructionProperties// is set, it will guess a safe value instead.//// This option is a temporary migration help. It will go away.bit guessInstructionProperties = true;// TableGen's instruction encoder generator has support for matching operands// to bit-field variables both by name and by position. Support for matching// by position is DEPRECATED, and WILL BE REMOVED. Positional matching is// confusing to use, and makes it very easy to accidentally write buggy// instruction definitions.//// In previous versions of LLVM, the ability to match operands by position was// enabled unconditionally. It is now controllable by this option -- and// disabled by default. The previous behavior can be restored by setting this// option to true.//// This option is temporary, and will go away once all in-tree targets have// migrated.//// TODO: clean up and remove these options.bit useDeprecatedPositionallyEncodedOperands = false;// If positional encoding rules are used for the encoder generator, they may// also need to be used by the decoder generator -- if so, enable this// variable.//// This option is a no-op unless useDeprecatedPositionallyEncodedOperands is// true.//// This option is temporary, and will go away once all in-tree targets have// migrated.bit decodePositionallyEncodedOperands = false;// When set, this indicates that there will be no overlap between those// operands that are matched by ordering (positional operands) and those// matched by name.//// This is a no-op unless useDeprecatedPositionallyEncodedOperands is true// (though it does modify the "would've used positional operand XXX" error.)//// This option is temporary, and will go away once all in-tree targets have// migrated.bit noNamedPositionallyEncodedOperands = false;}// Standard Pseudo Instructions.// This list must match TargetOpcodes.def.// Only these instructions are allowed in the TargetOpcode namespace.// Ensure mayLoad and mayStore have a default value, so as not to break// targets that set guessInstructionProperties=0. Any local definition of// mayLoad/mayStore takes precedence over these default values.class StandardPseudoInstruction : Instruction {let mayLoad = false;let mayStore = false;let isCodeGenOnly = true;let isPseudo = true;let hasNoSchedulingInfo = true;let Namespace = "TargetOpcode";}def PHI : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins variable_ops);let AsmString = "PHINODE";let hasSideEffects = false;}def INLINEASM : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "";let hasSideEffects = false; // Note side effect is encoded in an operand.}def INLINEASM_BR : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "";// Unlike INLINEASM, this is always treated as having side-effects.let hasSideEffects = true;// Despite potentially branching, this instruction is intentionally _not_// marked as a terminator or a branch.}def CFI_INSTRUCTION : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i32imm:$id);let AsmString = "";let hasCtrlDep = true;let hasSideEffects = false;let isNotDuplicable = true;let isMeta = true;}def EH_LABEL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i32imm:$id);let AsmString = "";let hasCtrlDep = true;let hasSideEffects = false;let isNotDuplicable = true;let isMeta = true;}def GC_LABEL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i32imm:$id);let AsmString = "";let hasCtrlDep = true;let hasSideEffects = false;let isNotDuplicable = true;let isMeta = true;}def ANNOTATION_LABEL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i32imm:$id);let AsmString = "";let hasCtrlDep = true;let hasSideEffects = false;let isNotDuplicable = true;}def KILL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "";let hasSideEffects = false;let isMeta = true;}def EXTRACT_SUBREG : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);let AsmString = "";let hasSideEffects = false;}def INSERT_SUBREG : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);let AsmString = "";let hasSideEffects = false;let Constraints = "$supersrc = $dst";}def IMPLICIT_DEF : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins);let AsmString = "";let hasSideEffects = false;let isReMaterializable = true;let isAsCheapAsAMove = true;let isMeta = true;}def SUBREG_TO_REG : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);let AsmString = "";let hasSideEffects = false;}def COPY_TO_REGCLASS : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins unknown:$src, i32imm:$regclass);let AsmString = "";let hasSideEffects = false;let isAsCheapAsAMove = true;}def DBG_VALUE : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "DBG_VALUE";let hasSideEffects = false;let isMeta = true;}def DBG_VALUE_LIST : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "DBG_VALUE_LIST";let hasSideEffects = 0;let isMeta = true;}def DBG_INSTR_REF : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "DBG_INSTR_REF";let hasSideEffects = false;let isMeta = true;}def DBG_PHI : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "DBG_PHI";let hasSideEffects = 0;let isMeta = true;}def DBG_LABEL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins unknown:$label);let AsmString = "DBG_LABEL";let hasSideEffects = false;let isMeta = true;}def REG_SEQUENCE : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins unknown:$supersrc, variable_ops);let AsmString = "";let hasSideEffects = false;let isAsCheapAsAMove = true;}def COPY : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins unknown:$src);let AsmString = "";let hasSideEffects = false;let isAsCheapAsAMove = true;let hasNoSchedulingInfo = false;}def BUNDLE : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "BUNDLE";let hasSideEffects = false;}def LIFETIME_START : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i32imm:$id);let AsmString = "LIFETIME_START";let hasSideEffects = false;let isMeta = true;}def LIFETIME_END : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i32imm:$id);let AsmString = "LIFETIME_END";let hasSideEffects = false;let isMeta = true;}def PSEUDO_PROBE : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);let AsmString = "PSEUDO_PROBE";let hasSideEffects = 1;let isMeta = true;}def ARITH_FENCE : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins unknown:$src);let AsmString = "";let hasSideEffects = false;let Constraints = "$src = $dst";let isMeta = true;}def STACKMAP : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);let hasSideEffects = true;let isCall = true;let mayLoad = true;let usesCustomInserter = true;}def PATCHPOINT : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,i32imm:$nargs, i32imm:$cc, variable_ops);let hasSideEffects = true;let isCall = true;let mayLoad = true;let usesCustomInserter = true;}def STATEPOINT : StandardPseudoInstruction {let OutOperandList = (outs variable_ops);let InOperandList = (ins variable_ops);let usesCustomInserter = true;let mayLoad = true;let mayStore = true;let hasSideEffects = true;let isCall = true;}def LOAD_STACK_GUARD : StandardPseudoInstruction {let OutOperandList = (outs ptr_rc:$dst);let InOperandList = (ins);let mayLoad = true;bit isReMaterializable = true;let hasSideEffects = false;bit isPseudo = true;}def PREALLOCATED_SETUP : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins i32imm:$a);let usesCustomInserter = true;let hasSideEffects = true;}def PREALLOCATED_ARG : StandardPseudoInstruction {let OutOperandList = (outs ptr_rc:$loc);let InOperandList = (ins i32imm:$a, i32imm:$b);let usesCustomInserter = true;let hasSideEffects = true;}def LOCAL_ESCAPE : StandardPseudoInstruction {// This instruction is really just a label. It has to be part of the chain so// that it doesn't get dropped from the DAG, but it produces nothing and has// no side effects.let OutOperandList = (outs);let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);let hasSideEffects = false;let hasCtrlDep = true;}def FAULTING_OP : StandardPseudoInstruction {let OutOperandList = (outs unknown:$dst);let InOperandList = (ins variable_ops);let usesCustomInserter = true;let hasSideEffects = true;let mayLoad = true;let mayStore = true;let isTerminator = true;let isBranch = true;}def PATCHABLE_OP : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let usesCustomInserter = true;let mayLoad = true;let mayStore = true;let hasSideEffects = true;}def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins);let AsmString = "# XRay Function Enter.";let usesCustomInserter = true;let hasSideEffects = true;}def PATCHABLE_RET : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "# XRay Function Patchable RET.";let usesCustomInserter = true;let hasSideEffects = true;let isTerminator = true;let isReturn = true;}def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins);let AsmString = "# XRay Function Exit.";let usesCustomInserter = true;let hasSideEffects = true;let isReturn = false; // Original return instruction will follow}def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "# XRay Tail Call Exit.";let usesCustomInserter = true;let hasSideEffects = true;let isReturn = true;}def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins ptr_rc:$event, unknown:$size);let AsmString = "# XRay Custom Event Log.";let usesCustomInserter = true;let isCall = true;let mayLoad = true;let mayStore = true;let hasSideEffects = true;}def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);let AsmString = "# XRay Typed Event Log.";let usesCustomInserter = true;let isCall = true;let mayLoad = true;let mayStore = true;let hasSideEffects = true;}def FENTRY_CALL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins);let AsmString = "# FEntry call";let usesCustomInserter = true;let isCall = true;let mayLoad = true;let mayStore = true;let hasSideEffects = true;}def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins variable_ops);let AsmString = "";let hasSideEffects = true;}def MEMBARRIER : StandardPseudoInstruction {let OutOperandList = (outs);let InOperandList = (ins);let AsmString = "";let hasSideEffects = true;let Size = 0;let isMeta = true;}// Generic opcodes used in GlobalISel.include "llvm/Target/GenericOpcodes.td"//===----------------------------------------------------------------------===//// AsmParser - This class can be implemented by targets that wish to implement// .s file parsing.//// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel// syntax on X86 for example).//class AsmParser {// AsmParserClassName - This specifies the suffix to use for the asmparser// class. Generated AsmParser classes are always prefixed with the target// name.string AsmParserClassName = "AsmParser";// AsmParserInstCleanup - If non-empty, this is the name of a custom member// function of the AsmParser class to call on every matched instruction.// This can be used to perform target specific instruction post-processing.string AsmParserInstCleanup = "";// ShouldEmitMatchRegisterName - Set to false if the target needs a hand// written register name matcherbit ShouldEmitMatchRegisterName = true;// Set to true if the target needs a generated 'alternative register name'// matcher.//// This generates a function which can be used to lookup registers from// their aliases. This function will fail when called on targets where// several registers share the same alias (i.e. not a 1:1 mapping).bit ShouldEmitMatchRegisterAltName = false;// Set to true if MatchRegisterName and MatchRegisterAltName functions// should be generated even if there are duplicate register names. The// target is responsible for coercing aliased registers as necessary// (e.g. in validateTargetOperandClass), and there are no guarantees about// which numeric register identifier will be returned in the case of// multiple matches.bit AllowDuplicateRegisterNames = false;// HasMnemonicFirst - Set to false if target instructions don't always// start with a mnemonic as the first token.bit HasMnemonicFirst = true;// ReportMultipleNearMisses -// When 0, the assembly matcher reports an error for one encoding or operand// that did not match the parsed instruction.// When 1, the assembly matcher returns a list of encodings that were close// to matching the parsed instruction, so to allow more detailed error// messages.bit ReportMultipleNearMisses = false;// OperandParserMethod - If non-empty, this is the name of a custom// member function of the AsmParser class to call for every instruction// operand to be parsed.string OperandParserMethod = "";// CallCustomParserForAllOperands - Set to true if the custom parser// method shall be called for all operands as opposed to only those// that have their own specified custom parsers.bit CallCustomParserForAllOperands = false;}def DefaultAsmParser : AsmParser;//===----------------------------------------------------------------------===//// AsmParserVariant - Subtargets can have multiple different assembly parsers// (e.g. AT&T vs Intel syntax on X86 for example). This class can be// implemented by targets to describe such variants.//class AsmParserVariant {// Variant - AsmParsers can be of multiple different variants. Variants are// used to support targets that need to parse multiple formats for the// assembly language.int Variant = 0;// Name - The AsmParser variant name (e.g., AT&T vs Intel).string Name = "";// CommentDelimiter - If given, the delimiter string used to recognize// comments which are hard coded in the .td assembler strings for individual// instructions.string CommentDelimiter = "";// RegisterPrefix - If given, the token prefix which indicates a register// token. This is used by the matcher to automatically recognize hard coded// register tokens as constrained registers, instead of tokens, for the// purposes of matching.string RegisterPrefix = "";// TokenizingCharacters - Characters that are standalone tokensstring TokenizingCharacters = "[]*!";// SeparatorCharacters - Characters that are not tokensstring SeparatorCharacters = " \t,";// BreakCharacters - Characters that start new identifiersstring BreakCharacters = "";}def DefaultAsmParserVariant : AsmParserVariant;// Operators for combining SubtargetFeatures in AssemblerPredicatesdef any_of;def all_of;/// AssemblerPredicate - This is a Predicate that can be used when the assembler/// matches instructions and aliases.class AssemblerPredicate<dag cond, string name = ""> {bit AssemblerMatcherPredicate = true;dag AssemblerCondDag = cond;string PredicateName = name;}/// TokenAlias - This class allows targets to define assembler token/// operand aliases. That is, a token literal operand which is equivalent/// to another, canonical, token literal. For example, ARM allows:/// vmov.u32 s4, #0 -> vmov.i32, #0/// 'u32' is a more specific designator for the 32-bit integer type specifier/// and is legal for any instruction which accepts 'i32' as a datatype suffix./// def : TokenAlias<".u32", ".i32">;////// This works by marking the match class of 'From' as a subclass of the/// match class of 'To'.class TokenAlias<string From, string To> {string FromToken = From;string ToToken = To;}/// MnemonicAlias - This class allows targets to define assembler mnemonic/// aliases. This should be used when all forms of one mnemonic are accepted/// with a different mnemonic. For example, X86 allows:/// sal %al, 1 -> shl %al, 1/// sal %ax, %cl -> shl %ax, %cl/// sal %eax, %cl -> shl %eax, %cl/// etc. Though "sal" is accepted with many forms, all of them are directly/// translated to a shl, so it can be handled with (in the case of X86, it/// actually has one for each suffix as well):/// def : MnemonicAlias<"sal", "shl">;////// Mnemonic aliases are mapped before any other translation in the match phase,/// and do allow Requires predicates, e.g.:////// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;////// Mnemonic aliases can also be constrained to specific variants, e.g.:////// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;////// If no variant (e.g., "att" or "intel") is specified then the alias is/// applied unconditionally.class MnemonicAlias<string From, string To, string VariantName = ""> {string FromMnemonic = From;string ToMnemonic = To;string AsmVariantName = VariantName;// Predicates - Predicates that must be true for this remapping to happen.list<Predicate> Predicates = [];}/// InstAlias - This defines an alternate assembly syntax that is allowed to/// match an instruction that has a different (more canonical) assembly/// representation.class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {string AsmString = Asm; // The .s format to match the instruction with.dag ResultInst = Result; // The MCInst to generate.// This determines which order the InstPrinter detects aliases for// printing. A larger value makes the alias more likely to be// emitted. The Instruction's own definition is notionally 0.5, so 0// disables printing and 1 enables it if there are no conflicting aliases.int EmitPriority = Emit;// Predicates - Predicates that must be true for this to match.list<Predicate> Predicates = [];// If the instruction specified in Result has defined an AsmMatchConverter// then setting this to 1 will cause the alias to use the AsmMatchConverter// function when converting the OperandVector into an MCInst instead of the// function that is generated by the dag Result.// Setting this to 0 will cause the alias to ignore the Result instruction's// defined AsmMatchConverter and instead use the function generated by the// dag Result.bit UseInstAsmMatchConverter = true;// Assembler variant name to use for this alias. If not specified then// assembler variants will be determined based on AsmStringstring AsmVariantName = VariantName;}//===----------------------------------------------------------------------===//// AsmWriter - This class can be implemented by targets that need to customize// the format of the .s file writer.//// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax// on X86 for example).//class AsmWriter {// AsmWriterClassName - This specifies the suffix to use for the asmwriter// class. Generated AsmWriter classes are always prefixed with the target// name.string AsmWriterClassName = "InstPrinter";// PassSubtarget - Determines whether MCSubtargetInfo should be passed to// the various print methods.// FIXME: Remove after all ports are updated.int PassSubtarget = 0;// Variant - AsmWriters can be of multiple different variants. Variants are// used to support targets that need to emit assembly code in ways that are// mostly the same for different targets, but have minor differences in// syntax. If the asmstring contains {|} characters in them, this integer// will specify which alternative to use. For example "{x|y|z}" with Variant// == 1, will expand to "y".int Variant = 0;}def DefaultAsmWriter : AsmWriter;//===----------------------------------------------------------------------===//// Target - This class contains the "global" target information//class Target {// InstructionSet - Instruction set description for this target.InstrInfo InstructionSet;// AssemblyParsers - The AsmParser instances available for this target.list<AsmParser> AssemblyParsers = [DefaultAsmParser];/// AssemblyParserVariants - The AsmParserVariant instances available for/// this target.list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];// AssemblyWriters - The AsmWriter instances available for this target.list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];// AllowRegisterRenaming - Controls whether this target allows// post-register-allocation renaming of registers. This is done by// setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1// for all opcodes if this flag is set to 0.int AllowRegisterRenaming = 0;}//===----------------------------------------------------------------------===//// SubtargetFeature - A characteristic of the chip set.//class SubtargetFeature<string n, string a, string v, string d,list<SubtargetFeature> i = []> {// Name - Feature name. Used by command line (-mattr=) to determine the// appropriate target chip.//string Name = n;// Attribute - Attribute to be set by feature.//string Attribute = a;// Value - Value the attribute to be set to by feature.//string Value = v;// Desc - Feature description. Used by command line (-mattr=) to display help// information.//string Desc = d;// Implies - Features that this feature implies are present. If one of those// features isn't set, then this one shouldn't be set either.//list<SubtargetFeature> Implies = i;}/// Specifies a Subtarget feature that this instruction is deprecated on.class Deprecated<SubtargetFeature dep> {SubtargetFeature DeprecatedFeatureMask = dep;}/// A custom predicate used to determine if an instruction is/// deprecated or not.class ComplexDeprecationPredicate<string dep> {string ComplexDeprecationPredicate = dep;}//===----------------------------------------------------------------------===//// Processor chip sets - These values represent each of the chip sets supported// by the scheduler. Each Processor definition requires corresponding// instruction itineraries.//class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,list<SubtargetFeature> tunef = []> {// Name - Chip set name. Used by command line (-mcpu=) to determine the// appropriate target chip.//string Name = n;// SchedModel - The machine model for scheduling and instruction cost.//SchedMachineModel SchedModel = NoSchedModel;// ProcItin - The scheduling information for the target processor.//ProcessorItineraries ProcItin = pi;// Features - list oflist<SubtargetFeature> Features = f;// TuneFeatures - list of features for tuning for this CPU. If the target// supports -mtune, this should contain the list of features used to make// microarchitectural optimization decisions for a given processor. While// Features should contain the architectural features for the processor.list<SubtargetFeature> TuneFeatures = tunef;}// ProcessorModel allows subtargets to specify the more general// SchedMachineModel instead if a ProcessorItinerary. Subtargets will// gradually move to this newer form.//// Although this class always passes NoItineraries to the Processor// class, the SchedMachineModel may still define valid Itineraries.class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,list<SubtargetFeature> tunef = []>: Processor<n, NoItineraries, f, tunef> {let SchedModel = m;}//===----------------------------------------------------------------------===//// InstrMapping - This class is used to create mapping tables to relate// instructions with each other based on the values specified in RowFields,// ColFields, KeyCol and ValueCols.//class InstrMapping {// FilterClass - Used to limit search space only to the instructions that// define the relationship modeled by this InstrMapping record.string FilterClass;// RowFields - List of fields/attributes that should be same for all the// instructions in a row of the relation table. Think of this as a set of// properties shared by all the instructions related by this relationship// model and is used to categorize instructions into subgroups. For instance,// if we want to define a relation that maps 'Add' instruction to its// predicated forms, we can define RowFields like this://// let RowFields = BaseOp// All add instruction predicated/non-predicated will have to set their BaseOp// to the same value.//// def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }// def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }// def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }list<string> RowFields = [];// List of fields/attributes that are same for all the instructions// in a column of the relation table.// Ex: let ColFields = 'predSense' -- It means that the columns are arranged// based on the 'predSense' values. All the instruction in a specific// column have the same value and it is fixed for the column according// to the values set in 'ValueCols'.list<string> ColFields = [];// Values for the fields/attributes listed in 'ColFields'.// Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction// that models this relation) should be non-predicated.// In the example above, 'Add' is the key instruction.list<string> KeyCol = [];// List of values for the fields/attributes listed in 'ColFields', one for// each column in the relation table.//// Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the// table. First column requires all the instructions to have predSense// set to 'true' and second column requires it to be 'false'.list<list<string> > ValueCols = [];}//===----------------------------------------------------------------------===//// Pull in the common support for calling conventions.//include "llvm/Target/TargetCallingConv.td"//===----------------------------------------------------------------------===//// Pull in the common support for DAG isel generation.//include "llvm/Target/TargetSelectionDAG.td"//===----------------------------------------------------------------------===//// Pull in the common support for Global ISel register bank info generation.//include "llvm/Target/GlobalISel/RegisterBank.td"//===----------------------------------------------------------------------===//// Pull in the common support for DAG isel generation.//include "llvm/Target/GlobalISel/Target.td"//===----------------------------------------------------------------------===//// Pull in the common support for the Global ISel DAG-based selector generation.//include "llvm/Target/GlobalISel/SelectionDAGCompat.td"//===----------------------------------------------------------------------===//// Pull in the common support for Pfm Counters generation.//include "llvm/Target/TargetPfmCounters.td"