//===- llvm/TableGen/Record.h - Classes for Table Records -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the main TableGen data structures, including the TableGen
// types, values, and high-level data structures.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TABLEGEN_RECORD_H
#define LLVM_TABLEGEN_RECORD_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/TrailingObjects.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
namespace detail {
struct RecordKeeperImpl;
} // namespace detail
class ListRecTy;
class Record;
class RecordKeeper;
class RecordVal;
class Resolver;
class StringInit;
class TypedInit;
//===----------------------------------------------------------------------===//
// Type Classes
//===----------------------------------------------------------------------===//
class RecTy {
public:
/// Subclass discriminator (for dyn_cast<> et al.)
enum RecTyKind {
BitRecTyKind,
BitsRecTyKind,
IntRecTyKind,
StringRecTyKind,
ListRecTyKind,
DagRecTyKind,
RecordRecTyKind
};
private:
RecTyKind Kind;
/// The RecordKeeper that uniqued this Type.
RecordKeeper &RK;
/// ListRecTy of the list that has elements of this type.
ListRecTy *ListTy = nullptr;
public:
RecTy(RecTyKind K, RecordKeeper &RK) : Kind(K), RK(RK) {}
virtual ~RecTy() = default;
RecTyKind getRecTyKind() const { return Kind; }
/// Return the RecordKeeper that uniqued this Type.
RecordKeeper &getRecordKeeper() const { return RK; }
virtual std::string getAsString() const = 0;
void print(raw_ostream &OS) const { OS << getAsString(); }
void dump() const;
/// Return true if all values of 'this' type can be converted to the specified
/// type.
virtual bool typeIsConvertibleTo(const RecTy *RHS) const;
/// Return true if 'this' type is equal to or a subtype of RHS. For example,
/// a bit set is not an int, but they are convertible.
virtual bool typeIsA(const RecTy *RHS) const;
/// Returns the type representing list<thistype>.
ListRecTy *getListTy();
};
inline raw_ostream &operator<<(raw_ostream &OS, const RecTy &Ty) {
Ty.print(OS);
return OS;
}
/// 'bit' - Represent a single bit
class BitRecTy : public RecTy {
friend detail::RecordKeeperImpl;
BitRecTy(RecordKeeper &RK) : RecTy(BitRecTyKind, RK) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == BitRecTyKind;
}
static BitRecTy *get(RecordKeeper &RK);
std::string getAsString() const override { return "bit"; }
bool typeIsConvertibleTo(const RecTy *RHS) const override;
};
/// 'bits<n>' - Represent a fixed number of bits
class BitsRecTy : public RecTy {
unsigned Size;
explicit BitsRecTy(RecordKeeper &RK, unsigned Sz)
: RecTy(BitsRecTyKind, RK), Size(Sz) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == BitsRecTyKind;
}
static BitsRecTy *get(RecordKeeper &RK, unsigned Sz);
unsigned getNumBits() const { return Size; }
std::string getAsString() const override;
bool typeIsConvertibleTo(const RecTy *RHS) const override;
bool typeIsA(const RecTy *RHS) const override;
};
/// 'int' - Represent an integer value of no particular size
class IntRecTy : public RecTy {
friend detail::RecordKeeperImpl;
IntRecTy(RecordKeeper &RK) : RecTy(IntRecTyKind, RK) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == IntRecTyKind;
}
static IntRecTy *get(RecordKeeper &RK);
std::string getAsString() const override { return "int"; }
bool typeIsConvertibleTo(const RecTy *RHS) const override;
};
/// 'string' - Represent an string value
class StringRecTy : public RecTy {
friend detail::RecordKeeperImpl;
StringRecTy(RecordKeeper &RK) : RecTy(StringRecTyKind, RK) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == StringRecTyKind;
}
static StringRecTy *get(RecordKeeper &RK);
std::string getAsString() const override;
bool typeIsConvertibleTo(const RecTy *RHS) const override;
};
/// 'list<Ty>' - Represent a list of element values, all of which must be of
/// the specified type. The type is stored in ElementTy.
class ListRecTy : public RecTy {
friend ListRecTy *RecTy::getListTy();
RecTy *ElementTy;
explicit ListRecTy(RecTy *T)
: RecTy(ListRecTyKind, T->getRecordKeeper()), ElementTy(T) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == ListRecTyKind;
}
static ListRecTy *get(RecTy *T) { return T->getListTy(); }
RecTy *getElementType() const { return ElementTy; }
std::string getAsString() const override;
bool typeIsConvertibleTo(const RecTy *RHS) const override;
bool typeIsA(const RecTy *RHS) const override;
};
/// 'dag' - Represent a dag fragment
class DagRecTy : public RecTy {
friend detail::RecordKeeperImpl;
DagRecTy(RecordKeeper &RK) : RecTy(DagRecTyKind, RK) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == DagRecTyKind;
}
static DagRecTy *get(RecordKeeper &RK);
std::string getAsString() const override;
};
/// '[classname]' - Type of record values that have zero or more superclasses.
///
/// The list of superclasses is non-redundant, i.e. only contains classes that
/// are not the superclass of some other listed class.
class RecordRecTy final : public RecTy, public FoldingSetNode,
public TrailingObjects<RecordRecTy, Record *> {
friend class Record;
friend detail::RecordKeeperImpl;
unsigned NumClasses;
explicit RecordRecTy(RecordKeeper &RK, unsigned Num)
: RecTy(RecordRecTyKind, RK), NumClasses(Num) {}
public:
RecordRecTy(const RecordRecTy &) = delete;
RecordRecTy &operator=(const RecordRecTy &) = delete;
// Do not use sized deallocation due to trailing objects.
void operator delete(void *p) { ::operator delete(p); }
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == RecordRecTyKind;
}
/// Get the record type with the given non-redundant list of superclasses.
static RecordRecTy *get(RecordKeeper &RK, ArrayRef<Record *> Classes);
static RecordRecTy *get(Record *Class);
void Profile(FoldingSetNodeID &ID) const;
ArrayRef<Record *> getClasses() const {
return ArrayRef(getTrailingObjects<Record *>(), NumClasses);
}
using const_record_iterator = Record * const *;
const_record_iterator classes_begin() const { return getClasses().begin(); }
const_record_iterator classes_end() const { return getClasses().end(); }
std::string getAsString() const override;
bool isSubClassOf(Record *Class) const;
bool typeIsConvertibleTo(const RecTy *RHS) const override;
bool typeIsA(const RecTy *RHS) const override;
};
/// Find a common type that T1 and T2 convert to.
/// Return 0 if no such type exists.
RecTy *resolveTypes(RecTy *T1, RecTy *T2);
//===----------------------------------------------------------------------===//
// Initializer Classes
//===----------------------------------------------------------------------===//
class Init {
protected:
/// Discriminator enum (for isa<>, dyn_cast<>, et al.)
///
/// This enum is laid out by a preorder traversal of the inheritance
/// hierarchy, and does not contain an entry for abstract classes, as per
/// the recommendation in docs/HowToSetUpLLVMStyleRTTI.rst.
///
/// We also explicitly include "first" and "last" values for each
/// interior node of the inheritance tree, to make it easier to read the
/// corresponding classof().
///
/// We could pack these a bit tighter by not having the IK_FirstXXXInit
/// and IK_LastXXXInit be their own values, but that would degrade
/// readability for really no benefit.
enum InitKind : uint8_t {
IK_First, // unused; silence a spurious warning
IK_FirstTypedInit,
IK_BitInit,
IK_BitsInit,
IK_DagInit,
IK_DefInit,
IK_FieldInit,
IK_IntInit,
IK_ListInit,
IK_FirstOpInit,
IK_BinOpInit,
IK_TernOpInit,
IK_UnOpInit,
IK_LastOpInit,
IK_CondOpInit,
IK_FoldOpInit,
IK_IsAOpInit,
IK_ExistsOpInit,
IK_AnonymousNameInit,
IK_StringInit,
IK_VarInit,
IK_VarListElementInit,
IK_VarBitInit,
IK_VarDefInit,
IK_LastTypedInit,
IK_UnsetInit
};
private:
const InitKind Kind;
protected:
uint8_t Opc; // Used by UnOpInit, BinOpInit, and TernOpInit
private:
virtual void anchor();
public:
/// Get the kind (type) of the value.
InitKind getKind() const { return Kind; }
/// Get the record keeper that initialized this Init.
RecordKeeper &getRecordKeeper() const;
protected:
explicit Init(InitKind K, uint8_t Opc = 0) : Kind(K), Opc(Opc) {}
public:
Init(const Init &) = delete;
Init &operator=(const Init &) = delete;
virtual ~Init() = default;
/// Is this a complete value with no unset (uninitialized) subvalues?
virtual bool isComplete() const { return true; }
/// Is this a concrete and fully resolved value without any references or
/// stuck operations? Unset values are concrete.
virtual bool isConcrete() const { return false; }
/// Print this value.
void print(raw_ostream &OS) const { OS << getAsString(); }
/// Convert this value to a literal form.
virtual std::string getAsString() const = 0;
/// Convert this value to a literal form,
/// without adding quotes around a string.
virtual std::string getAsUnquotedString() const { return getAsString(); }
/// Debugging method that may be called through a debugger; just
/// invokes print on stderr.
void dump() const;
/// If this value is convertible to type \p Ty, return a value whose
/// type is \p Ty, generating a !cast operation if required.
/// Otherwise, return null.
virtual Init *getCastTo(RecTy *Ty) const = 0;
/// Convert to a value whose type is \p Ty, or return null if this
/// is not possible. This can happen if the value's type is convertible
/// to \p Ty, but there are unresolved references.
virtual Init *convertInitializerTo(RecTy *Ty) const = 0;
/// This function is used to implement the bit range
/// selection operator. Given a value, it selects the specified bits,
/// returning them as a new \p Init of type \p bits. If it is not legal
/// to use the bit selection operator on this value, null is returned.
virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
return nullptr;
}
/// This function is used to implement the list slice
/// selection operator. Given a value, it selects the specified list
/// elements, returning them as a new \p Init of type \p list. If it
/// is not legal to use the slice operator, null is returned.
virtual Init *convertInitListSlice(ArrayRef<unsigned> Elements) const {
return nullptr;
}
/// This function is used to implement the FieldInit class.
/// Implementors of this method should return the type of the named
/// field if they are of type record.
virtual RecTy *getFieldType(StringInit *FieldName) const {
return nullptr;
}
/// This function is used by classes that refer to other
/// variables which may not be defined at the time the expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
virtual Init *resolveReferences(Resolver &R) const {
return const_cast<Init *>(this);
}
/// Get the \p Init value of the specified bit.
virtual Init *getBit(unsigned Bit) const = 0;
};
inline raw_ostream &operator<<(raw_ostream &OS, const Init &I) {
I.print(OS); return OS;
}
/// This is the common superclass of types that have a specific,
/// explicit type, stored in ValueTy.
class TypedInit : public Init {
RecTy *ValueTy;
protected:
explicit TypedInit(InitKind K, RecTy *T, uint8_t Opc = 0)
: Init(K, Opc), ValueTy(T) {}
public:
TypedInit(const TypedInit &) = delete;
TypedInit &operator=(const TypedInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() >= IK_FirstTypedInit &&
I->getKind() <= IK_LastTypedInit;
}
/// Get the type of the Init as a RecTy.
RecTy *getType() const { return ValueTy; }
/// Get the record keeper that initialized this Init.
RecordKeeper &getRecordKeeper() const { return ValueTy->getRecordKeeper(); }
Init *getCastTo(RecTy *Ty) const override;
Init *convertInitializerTo(RecTy *Ty) const override;
Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
/// This method is used to implement the FieldInit class.
/// Implementors of this method should return the type of the named field if
/// they are of type record.
RecTy *getFieldType(StringInit *FieldName) const override;
};
/// '?' - Represents an uninitialized value.
class UnsetInit : public Init {
friend detail::RecordKeeperImpl;
/// The record keeper that initialized this Init.
RecordKeeper &RK;
UnsetInit(RecordKeeper &RK) : Init(IK_UnsetInit), RK(RK) {}
public:
UnsetInit(const UnsetInit &) = delete;
UnsetInit &operator=(const UnsetInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_UnsetInit;
}
/// Get the singleton unset Init.
static UnsetInit *get(RecordKeeper &RK);
/// Get the record keeper that initialized this Init.
RecordKeeper &getRecordKeeper() const { return RK; }
Init *getCastTo(RecTy *Ty) const override;
Init *convertInitializerTo(RecTy *Ty) const override;
Init *getBit(unsigned Bit) const override {
return const_cast<UnsetInit*>(this);
}
/// Is this a complete value with no unset (uninitialized) subvalues?
bool isComplete() const override { return false; }
bool isConcrete() const override { return true; }
/// Get the string representation of the Init.
std::string getAsString() const override { return "?"; }
};
/// 'true'/'false' - Represent a concrete initializer for a bit.
class BitInit final : public TypedInit {
friend detail::RecordKeeperImpl;
bool Value;
explicit BitInit(bool V, RecTy *T) : TypedInit(IK_BitInit, T), Value(V) {}
public:
BitInit(const BitInit &) = delete;
BitInit &operator=(BitInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_BitInit;
}
static BitInit *get(RecordKeeper &RK, bool V);
bool getValue() const { return Value; }
Init *convertInitializerTo(RecTy *Ty) const override;
Init *getBit(unsigned Bit) const override {
assert(Bit < 1 && "Bit index out of range!");
return const_cast<BitInit*>(this);
}
bool isConcrete() const override { return true; }
std::string getAsString() const override { return Value ? "1" : "0"; }
};
/// '{ a, b, c }' - Represents an initializer for a BitsRecTy value.
/// It contains a vector of bits, whose size is determined by the type.
class BitsInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<BitsInit, Init *> {
unsigned NumBits;
BitsInit(RecordKeeper &RK, unsigned N)
: TypedInit(IK_BitsInit, BitsRecTy::get(RK, N)), NumBits(N) {}
public:
BitsInit(const BitsInit &) = delete;
BitsInit &operator=(const BitsInit &) = delete;
// Do not use sized deallocation due to trailing objects.
void operator delete(void *p) { ::operator delete(p); }
static bool classof(const Init *I) {
return I->getKind() == IK_BitsInit;
}
static BitsInit *get(RecordKeeper &RK, ArrayRef<Init *> Range);
void Profile(FoldingSetNodeID &ID) const;
unsigned getNumBits() const { return NumBits; }
Init *convertInitializerTo(RecTy *Ty) const override;
Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
bool isComplete() const override {
for (unsigned i = 0; i != getNumBits(); ++i)
if (!getBit(i)->isComplete()) return false;
return true;
}
bool allInComplete() const {
for (unsigned i = 0; i != getNumBits(); ++i)
if (getBit(i)->isComplete()) return false;
return true;
}
bool isConcrete() const override;
std::string getAsString() const override;
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override {
assert(Bit < NumBits && "Bit index out of range!");
return getTrailingObjects<Init *>()[Bit];
}
};
/// '7' - Represent an initialization by a literal integer value.
class IntInit : public TypedInit {
int64_t Value;
explicit IntInit(RecordKeeper &RK, int64_t V)
: TypedInit(IK_IntInit, IntRecTy::get(RK)), Value(V) {}
public:
IntInit(const IntInit &) = delete;
IntInit &operator=(const IntInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_IntInit;
}
static IntInit *get(RecordKeeper &RK, int64_t V);
int64_t getValue() const { return Value; }
Init *convertInitializerTo(RecTy *Ty) const override;
Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
bool isConcrete() const override { return true; }
std::string getAsString() const override;
Init *getBit(unsigned Bit) const override {
return BitInit::get(getRecordKeeper(), (Value & (1ULL << Bit)) != 0);
}
};
/// "anonymous_n" - Represent an anonymous record name
class AnonymousNameInit : public TypedInit {
unsigned Value;
explicit AnonymousNameInit(RecordKeeper &RK, unsigned V)
: TypedInit(IK_AnonymousNameInit, StringRecTy::get(RK)), Value(V) {}
public:
AnonymousNameInit(const AnonymousNameInit &) = delete;
AnonymousNameInit &operator=(const AnonymousNameInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_AnonymousNameInit;
}
static AnonymousNameInit *get(RecordKeeper &RK, unsigned);
unsigned getValue() const { return Value; }
StringInit *getNameInit() const;
std::string getAsString() const override;
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off string");
}
};
/// "foo" - Represent an initialization by a string value.
class StringInit : public TypedInit {
public:
enum StringFormat {
SF_String, // Format as "text"
SF_Code, // Format as [{text}]
};
private:
StringRef Value;
StringFormat Format;
explicit StringInit(RecordKeeper &RK, StringRef V, StringFormat Fmt)
: TypedInit(IK_StringInit, StringRecTy::get(RK)), Value(V), Format(Fmt) {}
public:
StringInit(const StringInit &) = delete;
StringInit &operator=(const StringInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_StringInit;
}
static StringInit *get(RecordKeeper &RK, StringRef,
StringFormat Fmt = SF_String);
static StringFormat determineFormat(StringFormat Fmt1, StringFormat Fmt2) {
return (Fmt1 == SF_Code || Fmt2 == SF_Code) ? SF_Code : SF_String;
}
StringRef getValue() const { return Value; }
StringFormat getFormat() const { return Format; }
bool hasCodeFormat() const { return Format == SF_Code; }
Init *convertInitializerTo(RecTy *Ty) const override;
bool isConcrete() const override { return true; }
std::string getAsString() const override {
if (Format == SF_String)
return "\"" + Value.str() + "\"";
else
return "[{" + Value.str() + "}]";
}
std::string getAsUnquotedString() const override {
return std::string(Value);
}
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off string");
}
};
/// [AL, AH, CL] - Represent a list of defs
///
class ListInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<ListInit, Init *> {
unsigned NumValues;
public:
using const_iterator = Init *const *;
private:
explicit ListInit(unsigned N, RecTy *EltTy)
: TypedInit(IK_ListInit, ListRecTy::get(EltTy)), NumValues(N) {}
public:
ListInit(const ListInit &) = delete;
ListInit &operator=(const ListInit &) = delete;
// Do not use sized deallocation due to trailing objects.
void operator delete(void *p) { ::operator delete(p); }
static bool classof(const Init *I) {
return I->getKind() == IK_ListInit;
}
static ListInit *get(ArrayRef<Init *> Range, RecTy *EltTy);
void Profile(FoldingSetNodeID &ID) const;
Init *getElement(unsigned i) const {
assert(i < NumValues && "List element index out of range!");
return getTrailingObjects<Init *>()[i];
}
RecTy *getElementType() const {
return cast<ListRecTy>(getType())->getElementType();
}
Record *getElementAsRecord(unsigned i) const;
Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
Init *convertInitializerTo(RecTy *Ty) const override;
/// This method is used by classes that refer to other
/// variables which may not be defined at the time they expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
Init *resolveReferences(Resolver &R) const override;
bool isComplete() const override;
bool isConcrete() const override;
std::string getAsString() const override;
ArrayRef<Init*> getValues() const {
return ArrayRef(getTrailingObjects<Init *>(), NumValues);
}
const_iterator begin() const { return getTrailingObjects<Init *>(); }
const_iterator end () const { return begin() + NumValues; }
size_t size () const { return NumValues; }
bool empty() const { return NumValues == 0; }
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off list");
}
};
/// Base class for operators
///
class OpInit : public TypedInit {
protected:
explicit OpInit(InitKind K, RecTy *Type, uint8_t Opc)
: TypedInit(K, Type, Opc) {}
public:
OpInit(const OpInit &) = delete;
OpInit &operator=(OpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() >= IK_FirstOpInit &&
I->getKind() <= IK_LastOpInit;
}
// Clone - Clone this operator, replacing arguments with the new list
virtual OpInit *clone(ArrayRef<Init *> Operands) const = 0;
virtual unsigned getNumOperands() const = 0;
virtual Init *getOperand(unsigned i) const = 0;
Init *getBit(unsigned Bit) const override;
};
/// !op (X) - Transform an init.
///
class UnOpInit : public OpInit, public FoldingSetNode {
public:
enum UnaryOp : uint8_t { CAST, NOT, HEAD, TAIL, SIZE, EMPTY, GETDAGOP, LOG2 };
private:
Init *LHS;
UnOpInit(UnaryOp opc, Init *lhs, RecTy *Type)
: OpInit(IK_UnOpInit, Type, opc), LHS(lhs) {}
public:
UnOpInit(const UnOpInit &) = delete;
UnOpInit &operator=(const UnOpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_UnOpInit;
}
static UnOpInit *get(UnaryOp opc, Init *lhs, RecTy *Type);
void Profile(FoldingSetNodeID &ID) const;
// Clone - Clone this operator, replacing arguments with the new list
OpInit *clone(ArrayRef<Init *> Operands) const override {
assert(Operands.size() == 1 &&
"Wrong number of operands for unary operation");
return UnOpInit::get(getOpcode(), *Operands.begin(), getType());
}
unsigned getNumOperands() const override { return 1; }
Init *getOperand(unsigned i) const override {
assert(i == 0 && "Invalid operand id for unary operator");
return getOperand();
}
UnaryOp getOpcode() const { return (UnaryOp)Opc; }
Init *getOperand() const { return LHS; }
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec, bool IsFinal = false) const;
Init *resolveReferences(Resolver &R) const override;
std::string getAsString() const override;
};
/// !op (X, Y) - Combine two inits.
class BinOpInit : public OpInit, public FoldingSetNode {
public:
enum BinaryOp : uint8_t {
ADD,
SUB,
MUL,
DIV,
AND,
OR,
XOR,
SHL,
SRA,
SRL,
LISTCONCAT,
LISTSPLAT,
LISTREMOVE,
STRCONCAT,
INTERLEAVE,
CONCAT,
EQ,
NE,
LE,
LT,
GE,
GT,
SETDAGOP
};
private:
Init *LHS, *RHS;
BinOpInit(BinaryOp opc, Init *lhs, Init *rhs, RecTy *Type) :
OpInit(IK_BinOpInit, Type, opc), LHS(lhs), RHS(rhs) {}
public:
BinOpInit(const BinOpInit &) = delete;
BinOpInit &operator=(const BinOpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_BinOpInit;
}
static BinOpInit *get(BinaryOp opc, Init *lhs, Init *rhs,
RecTy *Type);
static Init *getStrConcat(Init *lhs, Init *rhs);
static Init *getListConcat(TypedInit *lhs, Init *rhs);
void Profile(FoldingSetNodeID &ID) const;
// Clone - Clone this operator, replacing arguments with the new list
OpInit *clone(ArrayRef<Init *> Operands) const override {
assert(Operands.size() == 2 &&
"Wrong number of operands for binary operation");
return BinOpInit::get(getOpcode(), Operands[0], Operands[1], getType());
}
unsigned getNumOperands() const override { return 2; }
Init *getOperand(unsigned i) const override {
switch (i) {
default: llvm_unreachable("Invalid operand id for binary operator");
case 0: return getLHS();
case 1: return getRHS();
}
}
BinaryOp getOpcode() const { return (BinaryOp)Opc; }
Init *getLHS() const { return LHS; }
Init *getRHS() const { return RHS; }
std::optional<bool> CompareInit(unsigned Opc, Init *LHS, Init *RHS) const;
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec) const;
Init *resolveReferences(Resolver &R) const override;
std::string getAsString() const override;
};
/// !op (X, Y, Z) - Combine two inits.
class TernOpInit : public OpInit, public FoldingSetNode {
public:
enum TernaryOp : uint8_t { SUBST, FOREACH, FILTER, IF, DAG, SUBSTR, FIND };
private:
Init *LHS, *MHS, *RHS;
TernOpInit(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs,
RecTy *Type) :
OpInit(IK_TernOpInit, Type, opc), LHS(lhs), MHS(mhs), RHS(rhs) {}
public:
TernOpInit(const TernOpInit &) = delete;
TernOpInit &operator=(const TernOpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_TernOpInit;
}
static TernOpInit *get(TernaryOp opc, Init *lhs,
Init *mhs, Init *rhs,
RecTy *Type);
void Profile(FoldingSetNodeID &ID) const;
// Clone - Clone this operator, replacing arguments with the new list
OpInit *clone(ArrayRef<Init *> Operands) const override {
assert(Operands.size() == 3 &&
"Wrong number of operands for ternary operation");
return TernOpInit::get(getOpcode(), Operands[0], Operands[1], Operands[2],
getType());
}
unsigned getNumOperands() const override { return 3; }
Init *getOperand(unsigned i) const override {
switch (i) {
default: llvm_unreachable("Invalid operand id for ternary operator");
case 0: return getLHS();
case 1: return getMHS();
case 2: return getRHS();
}
}
TernaryOp getOpcode() const { return (TernaryOp)Opc; }
Init *getLHS() const { return LHS; }
Init *getMHS() const { return MHS; }
Init *getRHS() const { return RHS; }
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec) const;
bool isComplete() const override {
return LHS->isComplete() && MHS->isComplete() && RHS->isComplete();
}
Init *resolveReferences(Resolver &R) const override;
std::string getAsString() const override;
};
/// !cond(condition_1: value1, ... , condition_n: value)
/// Selects the first value for which condition is true.
/// Otherwise reports an error.
class CondOpInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<CondOpInit, Init *> {
unsigned NumConds;
RecTy *ValType;
CondOpInit(unsigned NC, RecTy *Type)
: TypedInit(IK_CondOpInit, Type),
NumConds(NC), ValType(Type) {}
size_t numTrailingObjects(OverloadToken<Init *>) const {
return 2*NumConds;
}
public:
CondOpInit(const CondOpInit &) = delete;
CondOpInit &operator=(const CondOpInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_CondOpInit;
}
static CondOpInit *get(ArrayRef<Init*> C, ArrayRef<Init*> V,
RecTy *Type);
void Profile(FoldingSetNodeID &ID) const;
RecTy *getValType() const { return ValType; }
unsigned getNumConds() const { return NumConds; }
Init *getCond(unsigned Num) const {
assert(Num < NumConds && "Condition number out of range!");
return getTrailingObjects<Init *>()[Num];
}
Init *getVal(unsigned Num) const {
assert(Num < NumConds && "Val number out of range!");
return getTrailingObjects<Init *>()[Num+NumConds];
}
ArrayRef<Init *> getConds() const {
return ArrayRef(getTrailingObjects<Init *>(), NumConds);
}
ArrayRef<Init *> getVals() const {
return ArrayRef(getTrailingObjects<Init *>() + NumConds, NumConds);
}
Init *Fold(Record *CurRec) const;
Init *resolveReferences(Resolver &R) const override;
bool isConcrete() const override;
bool isComplete() const override;
std::string getAsString() const override;
using const_case_iterator = SmallVectorImpl<Init*>::const_iterator;
using const_val_iterator = SmallVectorImpl<Init*>::const_iterator;
inline const_case_iterator arg_begin() const { return getConds().begin(); }
inline const_case_iterator arg_end () const { return getConds().end(); }
inline size_t case_size () const { return NumConds; }
inline bool case_empty() const { return NumConds == 0; }
inline const_val_iterator name_begin() const { return getVals().begin();}
inline const_val_iterator name_end () const { return getVals().end(); }
inline size_t val_size () const { return NumConds; }
inline bool val_empty() const { return NumConds == 0; }
Init *getBit(unsigned Bit) const override;
};
/// !foldl (a, b, expr, start, lst) - Fold over a list.
class FoldOpInit : public TypedInit, public FoldingSetNode {
private:
Init *Start;
Init *List;
Init *A;
Init *B;
Init *Expr;
FoldOpInit(Init *Start, Init *List, Init *A, Init *B, Init *Expr, RecTy *Type)
: TypedInit(IK_FoldOpInit, Type), Start(Start), List(List), A(A), B(B),
Expr(Expr) {}
public:
FoldOpInit(const FoldOpInit &) = delete;
FoldOpInit &operator=(const FoldOpInit &) = delete;
static bool classof(const Init *I) { return I->getKind() == IK_FoldOpInit; }
static FoldOpInit *get(Init *Start, Init *List, Init *A, Init *B, Init *Expr,
RecTy *Type);
void Profile(FoldingSetNodeID &ID) const;
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec) const;
bool isComplete() const override { return false; }
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
std::string getAsString() const override;
};
/// !isa<type>(expr) - Dynamically determine the type of an expression.
class IsAOpInit : public TypedInit, public FoldingSetNode {
private:
RecTy *CheckType;
Init *Expr;
IsAOpInit(RecTy *CheckType, Init *Expr)
: TypedInit(IK_IsAOpInit, IntRecTy::get(CheckType->getRecordKeeper())),
CheckType(CheckType), Expr(Expr) {}
public:
IsAOpInit(const IsAOpInit &) = delete;
IsAOpInit &operator=(const IsAOpInit &) = delete;
static bool classof(const Init *I) { return I->getKind() == IK_IsAOpInit; }
static IsAOpInit *get(RecTy *CheckType, Init *Expr);
void Profile(FoldingSetNodeID &ID) const;
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold() const;
bool isComplete() const override { return false; }
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
std::string getAsString() const override;
};
/// !exists<type>(expr) - Dynamically determine if a record of `type` named
/// `expr` exists.
class ExistsOpInit : public TypedInit, public FoldingSetNode {
private:
RecTy *CheckType;
Init *Expr;
ExistsOpInit(RecTy *CheckType, Init *Expr)
: TypedInit(IK_ExistsOpInit, IntRecTy::get(CheckType->getRecordKeeper())),
CheckType(CheckType), Expr(Expr) {}
public:
ExistsOpInit(const ExistsOpInit &) = delete;
ExistsOpInit &operator=(const ExistsOpInit &) = delete;
static bool classof(const Init *I) { return I->getKind() == IK_ExistsOpInit; }
static ExistsOpInit *get(RecTy *CheckType, Init *Expr);
void Profile(FoldingSetNodeID &ID) const;
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
Init *Fold(Record *CurRec, bool IsFinal = false) const;
bool isComplete() const override { return false; }
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
std::string getAsString() const override;
};
/// 'Opcode' - Represent a reference to an entire variable object.
class VarInit : public TypedInit {
Init *VarName;
explicit VarInit(Init *VN, RecTy *T)
: TypedInit(IK_VarInit, T), VarName(VN) {}
public:
VarInit(const VarInit &) = delete;
VarInit &operator=(const VarInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_VarInit;
}
static VarInit *get(StringRef VN, RecTy *T);
static VarInit *get(Init *VN, RecTy *T);
StringRef getName() const;
Init *getNameInit() const { return VarName; }
std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
/// This method is used by classes that refer to other
/// variables which may not be defined at the time they expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
std::string getAsString() const override { return std::string(getName()); }
};
/// Opcode{0} - Represent access to one bit of a variable or field.
class VarBitInit final : public TypedInit {
TypedInit *TI;
unsigned Bit;
VarBitInit(TypedInit *T, unsigned B)
: TypedInit(IK_VarBitInit, BitRecTy::get(T->getRecordKeeper())), TI(T),
Bit(B) {
assert(T->getType() &&
(isa<IntRecTy>(T->getType()) ||
(isa<BitsRecTy>(T->getType()) &&
cast<BitsRecTy>(T->getType())->getNumBits() > B)) &&
"Illegal VarBitInit expression!");
}
public:
VarBitInit(const VarBitInit &) = delete;
VarBitInit &operator=(const VarBitInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_VarBitInit;
}
static VarBitInit *get(TypedInit *T, unsigned B);
Init *getBitVar() const { return TI; }
unsigned getBitNum() const { return Bit; }
std::string getAsString() const override;
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned B) const override {
assert(B < 1 && "Bit index out of range!");
return const_cast<VarBitInit*>(this);
}
};
/// List[4] - Represent access to one element of a var or
/// field.
class VarListElementInit : public TypedInit {
TypedInit *TI;
unsigned Element;
VarListElementInit(TypedInit *T, unsigned E)
: TypedInit(IK_VarListElementInit,
cast<ListRecTy>(T->getType())->getElementType()),
TI(T), Element(E) {
assert(T->getType() && isa<ListRecTy>(T->getType()) &&
"Illegal VarBitInit expression!");
}
public:
VarListElementInit(const VarListElementInit &) = delete;
VarListElementInit &operator=(const VarListElementInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_VarListElementInit;
}
static VarListElementInit *get(TypedInit *T, unsigned E);
TypedInit *getVariable() const { return TI; }
unsigned getElementNum() const { return Element; }
std::string getAsString() const override;
Init *resolveReferences(Resolver &R) const override;
Init *getBit(unsigned Bit) const override;
};
/// AL - Represent a reference to a 'def' in the description
class DefInit : public TypedInit {
friend class Record;
Record *Def;
explicit DefInit(Record *D);
public:
DefInit(const DefInit &) = delete;
DefInit &operator=(const DefInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_DefInit;
}
static DefInit *get(Record*);
Init *convertInitializerTo(RecTy *Ty) const override;
Record *getDef() const { return Def; }
//virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits);
RecTy *getFieldType(StringInit *FieldName) const override;
bool isConcrete() const override { return true; }
std::string getAsString() const override;
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off def");
}
};
/// classname<targs...> - Represent an uninstantiated anonymous class
/// instantiation.
class VarDefInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<VarDefInit, Init *> {
Record *Class;
DefInit *Def = nullptr; // after instantiation
unsigned NumArgs;
explicit VarDefInit(Record *Class, unsigned N);
DefInit *instantiate();
public:
VarDefInit(const VarDefInit &) = delete;
VarDefInit &operator=(const VarDefInit &) = delete;
// Do not use sized deallocation due to trailing objects.
void operator delete(void *p) { ::operator delete(p); }
static bool classof(const Init *I) {
return I->getKind() == IK_VarDefInit;
}
static VarDefInit *get(Record *Class, ArrayRef<Init *> Args);
void Profile(FoldingSetNodeID &ID) const;
Init *resolveReferences(Resolver &R) const override;
Init *Fold() const;
std::string getAsString() const override;
Init *getArg(unsigned i) const {
assert(i < NumArgs && "Argument index out of range!");
return getTrailingObjects<Init *>()[i];
}
using const_iterator = Init *const *;
const_iterator args_begin() const { return getTrailingObjects<Init *>(); }
const_iterator args_end () const { return args_begin() + NumArgs; }
size_t args_size () const { return NumArgs; }
bool args_empty() const { return NumArgs == 0; }
ArrayRef<Init *> args() const { return ArrayRef(args_begin(), NumArgs); }
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off anonymous def");
}
};
/// X.Y - Represent a reference to a subfield of a variable
class FieldInit : public TypedInit {
Init *Rec; // Record we are referring to
StringInit *FieldName; // Field we are accessing
FieldInit(Init *R, StringInit *FN)
: TypedInit(IK_FieldInit, R->getFieldType(FN)), Rec(R), FieldName(FN) {
#ifndef NDEBUG
if (!getType()) {
llvm::errs() << "In Record = " << Rec->getAsString()
<< ", got FieldName = " << *FieldName
<< " with non-record type!\n";
llvm_unreachable("FieldInit with non-record type!");
}
#endif
}
public:
FieldInit(const FieldInit &) = delete;
FieldInit &operator=(const FieldInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_FieldInit;
}
static FieldInit *get(Init *R, StringInit *FN);
Init *getRecord() const { return Rec; }
StringInit *getFieldName() const { return FieldName; }
Init *getBit(unsigned Bit) const override;
Init *resolveReferences(Resolver &R) const override;
Init *Fold(Record *CurRec) const;
bool isConcrete() const override;
std::string getAsString() const override {
return Rec->getAsString() + "." + FieldName->getValue().str();
}
};
/// (v a, b) - Represent a DAG tree value. DAG inits are required
/// to have at least one value then a (possibly empty) list of arguments. Each
/// argument can have a name associated with it.
class DagInit final : public TypedInit, public FoldingSetNode,
public TrailingObjects<DagInit, Init *, StringInit *> {
friend TrailingObjects;
Init *Val;
StringInit *ValName;
unsigned NumArgs;
unsigned NumArgNames;
DagInit(Init *V, StringInit *VN, unsigned NumArgs, unsigned NumArgNames)
: TypedInit(IK_DagInit, DagRecTy::get(V->getRecordKeeper())), Val(V),
ValName(VN), NumArgs(NumArgs), NumArgNames(NumArgNames) {}
size_t numTrailingObjects(OverloadToken<Init *>) const { return NumArgs; }
public:
DagInit(const DagInit &) = delete;
DagInit &operator=(const DagInit &) = delete;
static bool classof(const Init *I) {
return I->getKind() == IK_DagInit;
}
static DagInit *get(Init *V, StringInit *VN, ArrayRef<Init *> ArgRange,
ArrayRef<StringInit*> NameRange);
static DagInit *get(Init *V, StringInit *VN,
ArrayRef<std::pair<Init*, StringInit*>> Args);
void Profile(FoldingSetNodeID &ID) const;
Init *getOperator() const { return Val; }
Record *getOperatorAsDef(ArrayRef<SMLoc> Loc) const;
StringInit *getName() const { return ValName; }
StringRef getNameStr() const {
return ValName ? ValName->getValue() : StringRef();
}
unsigned getNumArgs() const { return NumArgs; }
Init *getArg(unsigned Num) const {
assert(Num < NumArgs && "Arg number out of range!");
return getTrailingObjects<Init *>()[Num];
}
StringInit *getArgName(unsigned Num) const {
assert(Num < NumArgNames && "Arg number out of range!");
return getTrailingObjects<StringInit *>()[Num];
}
StringRef getArgNameStr(unsigned Num) const {
StringInit *Init = getArgName(Num);
return Init ? Init->getValue() : StringRef();
}
ArrayRef<Init *> getArgs() const {
return ArrayRef(getTrailingObjects<Init *>(), NumArgs);
}
ArrayRef<StringInit *> getArgNames() const {
return ArrayRef(getTrailingObjects<StringInit *>(), NumArgNames);
}
Init *resolveReferences(Resolver &R) const override;
bool isConcrete() const override;
std::string getAsString() const override;
using const_arg_iterator = SmallVectorImpl<Init*>::const_iterator;
using const_name_iterator = SmallVectorImpl<StringInit*>::const_iterator;
inline const_arg_iterator arg_begin() const { return getArgs().begin(); }
inline const_arg_iterator arg_end () const { return getArgs().end(); }
inline size_t arg_size () const { return NumArgs; }
inline bool arg_empty() const { return NumArgs == 0; }
inline const_name_iterator name_begin() const { return getArgNames().begin();}
inline const_name_iterator name_end () const { return getArgNames().end(); }
inline size_t name_size () const { return NumArgNames; }
inline bool name_empty() const { return NumArgNames == 0; }
Init *getBit(unsigned Bit) const override {
llvm_unreachable("Illegal bit reference off dag");
}
};
//===----------------------------------------------------------------------===//
// High-Level Classes
//===----------------------------------------------------------------------===//
/// This class represents a field in a record, including its name, type,
/// value, and source location.
class RecordVal {
friend class Record;
public:
enum FieldKind {
FK_Normal, // A normal record field.
FK_NonconcreteOK, // A field that can be nonconcrete ('field' keyword).
FK_TemplateArg, // A template argument.
};
private:
Init *Name;
SMLoc Loc; // Source location of definition of name.
PointerIntPair<RecTy *, 2, FieldKind> TyAndKind;
Init *Value;
bool IsUsed = false;
/// Reference locations to this record value.
SmallVector<SMRange> ReferenceLocs;
public:
RecordVal(Init *N, RecTy *T, FieldKind K);
RecordVal(Init *N, SMLoc Loc, RecTy *T, FieldKind K);
/// Get the record keeper used to unique this value.
RecordKeeper &getRecordKeeper() const { return Name->getRecordKeeper(); }
/// Get the name of the field as a StringRef.
StringRef getName() const;
/// Get the name of the field as an Init.
Init *getNameInit() const { return Name; }
/// Get the name of the field as a std::string.
std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
/// Get the source location of the point where the field was defined.
const SMLoc &getLoc() const { return Loc; }
/// Is this a field where nonconcrete values are okay?
bool isNonconcreteOK() const {
return TyAndKind.getInt() == FK_NonconcreteOK;
}
/// Is this a template argument?
bool isTemplateArg() const {
return TyAndKind.getInt() == FK_TemplateArg;
}
/// Get the type of the field value as a RecTy.
RecTy *getType() const { return TyAndKind.getPointer(); }
/// Get the type of the field for printing purposes.
std::string getPrintType() const;
/// Get the value of the field as an Init.
Init *getValue() const { return Value; }
/// Set the value of the field from an Init.
bool setValue(Init *V);
/// Set the value and source location of the field.
bool setValue(Init *V, SMLoc NewLoc);
/// Add a reference to this record value.
void addReferenceLoc(SMRange Loc) { ReferenceLocs.push_back(Loc); }
/// Return the references of this record value.
ArrayRef<SMRange> getReferenceLocs() const { return ReferenceLocs; }
/// Whether this value is used. Useful for reporting warnings, for example
/// when a template argument is unused.
void setUsed(bool Used) { IsUsed = Used; }
bool isUsed() const { return IsUsed; }
void dump() const;
/// Print the value to an output stream, possibly with a semicolon.
void print(raw_ostream &OS, bool PrintSem = true) const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const RecordVal &RV) {
RV.print(OS << " ");
return OS;
}
class Record {
public:
struct AssertionInfo {
SMLoc Loc;
Init *Condition;
Init *Message;
// User-defined constructor to support std::make_unique(). It can be
// removed in C++20 when braced initialization is supported.
AssertionInfo(SMLoc Loc, Init *Condition, Init *Message)
: Loc(Loc), Condition(Condition), Message(Message) {}
};
private:
Init *Name;
// Location where record was instantiated, followed by the location of
// multiclass prototypes used, and finally by the locations of references to
// this record.
SmallVector<SMLoc, 4> Locs;
SmallVector<SMLoc, 0> ForwardDeclarationLocs;
SmallVector<SMRange, 0> ReferenceLocs;
SmallVector<Init *, 0> TemplateArgs;
SmallVector<RecordVal, 0> Values;
SmallVector<AssertionInfo, 0> Assertions;
// All superclasses in the inheritance forest in post-order (yes, it
// must be a forest; diamond-shaped inheritance is not allowed).
SmallVector<std::pair<Record *, SMRange>, 0> SuperClasses;
// Tracks Record instances. Not owned by Record.
RecordKeeper &TrackedRecords;
// The DefInit corresponding to this record.
DefInit *CorrespondingDefInit = nullptr;
// Unique record ID.
unsigned ID;
bool IsAnonymous;
bool IsClass;
void checkName();
public:
// Constructs a record.
explicit Record(Init *N, ArrayRef<SMLoc> locs, RecordKeeper &records,
bool Anonymous = false, bool Class = false)
: Name(N), Locs(locs.begin(), locs.end()), TrackedRecords(records),
ID(getNewUID(N->getRecordKeeper())), IsAnonymous(Anonymous),
IsClass(Class) {
checkName();
}
explicit Record(StringRef N, ArrayRef<SMLoc> locs, RecordKeeper &records,
bool Class = false)
: Record(StringInit::get(records, N), locs, records, false, Class) {}
// When copy-constructing a Record, we must still guarantee a globally unique
// ID number. Don't copy CorrespondingDefInit either, since it's owned by the
// original record. All other fields can be copied normally.
Record(const Record &O)
: Name(O.Name), Locs(O.Locs), TemplateArgs(O.TemplateArgs),
Values(O.Values), Assertions(O.Assertions),
SuperClasses(O.SuperClasses), TrackedRecords(O.TrackedRecords),
ID(getNewUID(O.getRecords())), IsAnonymous(O.IsAnonymous),
IsClass(O.IsClass) {}
static unsigned getNewUID(RecordKeeper &RK);
unsigned getID() const { return ID; }
StringRef getName() const { return cast<StringInit>(Name)->getValue(); }
Init *getNameInit() const {
return Name;
}
std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
void setName(Init *Name); // Also updates RecordKeeper.
ArrayRef<SMLoc> getLoc() const { return Locs; }
void appendLoc(SMLoc Loc) { Locs.push_back(Loc); }
ArrayRef<SMLoc> getForwardDeclarationLocs() const {
return ForwardDeclarationLocs;
}
/// Add a reference to this record value.
void appendReferenceLoc(SMRange Loc) { ReferenceLocs.push_back(Loc); }
/// Return the references of this record value.
ArrayRef<SMRange> getReferenceLocs() const { return ReferenceLocs; }
// Update a class location when encountering a (re-)definition.
void updateClassLoc(SMLoc Loc);
// Make the type that this record should have based on its superclasses.
RecordRecTy *getType();
/// get the corresponding DefInit.
DefInit *getDefInit();
bool isClass() const { return IsClass; }
ArrayRef<Init *> getTemplateArgs() const {
return TemplateArgs;
}
ArrayRef<RecordVal> getValues() const { return Values; }
ArrayRef<AssertionInfo> getAssertions() const { return Assertions; }
ArrayRef<std::pair<Record *, SMRange>> getSuperClasses() const {
return SuperClasses;
}
/// Determine whether this record has the specified direct superclass.
bool hasDirectSuperClass(const Record *SuperClass) const;
/// Append the direct superclasses of this record to Classes.
void getDirectSuperClasses(SmallVectorImpl<Record *> &Classes) const;
bool isTemplateArg(Init *Name) const {
return llvm::is_contained(TemplateArgs, Name);
}
const RecordVal *getValue(const Init *Name) const {
for (const RecordVal &Val : Values)
if (Val.Name == Name) return &Val;
return nullptr;
}
const RecordVal *getValue(StringRef Name) const {
return getValue(StringInit::get(getRecords(), Name));
}
RecordVal *getValue(const Init *Name) {
return const_cast<RecordVal *>(static_cast<const Record *>(this)->getValue(Name));
}
RecordVal *getValue(StringRef Name) {
return const_cast<RecordVal *>(static_cast<const Record *>(this)->getValue(Name));
}
void addTemplateArg(Init *Name) {
assert(!isTemplateArg(Name) && "Template arg already defined!");
TemplateArgs.push_back(Name);
}
void addValue(const RecordVal &RV) {
assert(getValue(RV.getNameInit()) == nullptr && "Value already added!");
Values.push_back(RV);
}
void removeValue(Init *Name) {
for (unsigned i = 0, e = Values.size(); i != e; ++i)
if (Values[i].getNameInit() == Name) {
Values.erase(Values.begin()+i);
return;
}
llvm_unreachable("Cannot remove an entry that does not exist!");
}
void removeValue(StringRef Name) {
removeValue(StringInit::get(getRecords(), Name));
}
void addAssertion(SMLoc Loc, Init *Condition, Init *Message) {
Assertions.push_back(AssertionInfo(Loc, Condition, Message));
}
void appendAssertions(const Record *Rec) {
Assertions.append(Rec->Assertions);
}
void checkRecordAssertions();
void checkUnusedTemplateArgs();
bool isSubClassOf(const Record *R) const {
for (const auto &SCPair : SuperClasses)
if (SCPair.first == R)
return true;
return false;
}
bool isSubClassOf(StringRef Name) const {
for (const auto &SCPair : SuperClasses) {
if (const auto *SI = dyn_cast<StringInit>(SCPair.first->getNameInit())) {
if (SI->getValue() == Name)
return true;
} else if (SCPair.first->getNameInitAsString() == Name) {
return true;
}
}
return false;
}
void addSuperClass(Record *R, SMRange Range) {
assert(!CorrespondingDefInit &&
"changing type of record after it has been referenced");
assert(!isSubClassOf(R) && "Already subclassing record!");
SuperClasses.push_back(std::make_pair(R, Range));
}
/// If there are any field references that refer to fields that have been
/// filled in, we can propagate the values now.
///
/// This is a final resolve: any error messages, e.g. due to undefined !cast
/// references, are generated now.
void resolveReferences(Init *NewName = nullptr);
/// Apply the resolver to the name of the record as well as to the
/// initializers of all fields of the record except SkipVal.
///
/// The resolver should not resolve any of the fields itself, to avoid
/// recursion / infinite loops.
void resolveReferences(Resolver &R, const RecordVal *SkipVal = nullptr);
RecordKeeper &getRecords() const {
return TrackedRecords;
}
bool isAnonymous() const {
return IsAnonymous;
}
void dump() const;
//===--------------------------------------------------------------------===//
// High-level methods useful to tablegen back-ends
//
/// Return the source location for the named field.
SMLoc getFieldLoc(StringRef FieldName) const;
/// Return the initializer for a value with the specified name, or throw an
/// exception if the field does not exist.
Init *getValueInit(StringRef FieldName) const;
/// Return true if the named field is unset.
bool isValueUnset(StringRef FieldName) const {
return isa<UnsetInit>(getValueInit(FieldName));
}
/// This method looks up the specified field and returns its value as a
/// string, throwing an exception if the field does not exist or if the value
/// is not a string.
StringRef getValueAsString(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a
/// string, throwing an exception if the value is not a string and
/// llvm::Optional() if the field does not exist.
std::optional<StringRef> getValueAsOptionalString(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a
/// BitsInit, throwing an exception if the field does not exist or if the
/// value is not the right type.
BitsInit *getValueAsBitsInit(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a
/// ListInit, throwing an exception if the field does not exist or if the
/// value is not the right type.
ListInit *getValueAsListInit(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a
/// vector of records, throwing an exception if the field does not exist or
/// if the value is not the right type.
std::vector<Record*> getValueAsListOfDefs(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a
/// vector of integers, throwing an exception if the field does not exist or
/// if the value is not the right type.
std::vector<int64_t> getValueAsListOfInts(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a
/// vector of strings, throwing an exception if the field does not exist or
/// if the value is not the right type.
std::vector<StringRef> getValueAsListOfStrings(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a
/// Record, throwing an exception if the field does not exist or if the value
/// is not the right type.
Record *getValueAsDef(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a
/// Record, returning null if the field exists but is "uninitialized" (i.e.
/// set to `?`), and throwing an exception if the field does not exist or if
/// its value is not the right type.
Record *getValueAsOptionalDef(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a bit,
/// throwing an exception if the field does not exist or if the value is not
/// the right type.
bool getValueAsBit(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as a bit.
/// If the field is unset, sets Unset to true and returns false.
bool getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const;
/// This method looks up the specified field and returns its value as an
/// int64_t, throwing an exception if the field does not exist or if the
/// value is not the right type.
int64_t getValueAsInt(StringRef FieldName) const;
/// This method looks up the specified field and returns its value as an Dag,
/// throwing an exception if the field does not exist or if the value is not
/// the right type.
DagInit *getValueAsDag(StringRef FieldName) const;
};
raw_ostream &operator<<(raw_ostream &OS, const Record &R);
class RecordKeeper {
using RecordMap = std::map<std::string, std::unique_ptr<Record>, std::less<>>;
using GlobalMap = std::map<std::string, Init *, std::less<>>;
public:
RecordKeeper();
~RecordKeeper();
/// Return the internal implementation of the RecordKeeper.
detail::RecordKeeperImpl &getImpl() { return *Impl; }
/// Get the main TableGen input file's name.
const std::string getInputFilename() const { return InputFilename; }
/// Get the map of classes.
const RecordMap &getClasses() const { return Classes; }
/// Get the map of records (defs).
const RecordMap &getDefs() const { return Defs; }
/// Get the map of global variables.
const GlobalMap &getGlobals() const { return ExtraGlobals; }
/// Get the class with the specified name.
Record *getClass(StringRef Name) const {
auto I = Classes.find(Name);
return I == Classes.end() ? nullptr : I->second.get();
}
/// Get the concrete record with the specified name.
Record *getDef(StringRef Name) const {
auto I = Defs.find(Name);
return I == Defs.end() ? nullptr : I->second.get();
}
/// Get the \p Init value of the specified global variable.
Init *getGlobal(StringRef Name) const {
if (Record *R = getDef(Name))
return R->getDefInit();
auto It = ExtraGlobals.find(Name);
return It == ExtraGlobals.end() ? nullptr : It->second;
}
void saveInputFilename(std::string Filename) {
InputFilename = Filename;
}
void addClass(std::unique_ptr<Record> R) {
bool Ins = Classes.insert(std::make_pair(std::string(R->getName()),
std::move(R))).second;
(void)Ins;
assert(Ins && "Class already exists");
}
void addDef(std::unique_ptr<Record> R) {
bool Ins = Defs.insert(std::make_pair(std::string(R->getName()),
std::move(R))).second;
(void)Ins;
assert(Ins && "Record already exists");
}
void addExtraGlobal(StringRef Name, Init *I) {
bool Ins = ExtraGlobals.insert(std::make_pair(std::string(Name), I)).second;
(void)Ins;
assert(!getDef(Name));
assert(Ins && "Global already exists");
}
Init *getNewAnonymousName();
/// Start phase timing; called if the --time-phases option is specified.
void startPhaseTiming() {
TimingGroup = new TimerGroup("TableGen", "TableGen Phase Timing");
}
/// Start timing a phase. Automatically stops any previous phase timer.
void startTimer(StringRef Name);
/// Stop timing a phase.
void stopTimer();
/// Start timing the overall backend. If the backend itself starts a timer,
/// then this timer is cleared.
void startBackendTimer(StringRef Name);
/// Stop timing the overall backend.
void stopBackendTimer();
/// Stop phase timing and print the report.
void stopPhaseTiming() {
if (TimingGroup)
delete TimingGroup;
}
//===--------------------------------------------------------------------===//
// High-level helper methods, useful for tablegen backends.
/// Get all the concrete records that inherit from the one specified
/// class. The class must be defined.
std::vector<Record *> getAllDerivedDefinitions(StringRef ClassName) const;
/// Get all the concrete records that inherit from all the specified
/// classes. The classes must be defined.
std::vector<Record *> getAllDerivedDefinitions(
ArrayRef<StringRef> ClassNames) const;
/// Get all the concrete records that inherit from specified class, if the
/// class is defined. Returns an empty vector if the class is not defined.
std::vector<Record *>
getAllDerivedDefinitionsIfDefined(StringRef ClassName) const;
void dump() const;
private:
RecordKeeper(RecordKeeper &&) = delete;
RecordKeeper(const RecordKeeper &) = delete;
RecordKeeper &operator=(RecordKeeper &&) = delete;
RecordKeeper &operator=(const RecordKeeper &) = delete;
std::string InputFilename;
RecordMap Classes, Defs;
mutable StringMap<std::vector<Record *>> ClassRecordsMap;
GlobalMap ExtraGlobals;
// These members are for the phase timing feature. We need a timer group,
// the last timer started, and a flag to say whether the last timer
// is the special "backend overall timer."
TimerGroup *TimingGroup = nullptr;
Timer *LastTimer = nullptr;
bool BackendTimer = false;
/// The internal uniquer implementation of the RecordKeeper.
std::unique_ptr<detail::RecordKeeperImpl> Impl;
};
/// Sorting predicate to sort record pointers by name.
struct LessRecord {
bool operator()(const Record *Rec1, const Record *Rec2) const {
return StringRef(Rec1->getName()).compare_numeric(Rec2->getName()) < 0;
}
};
/// Sorting predicate to sort record pointers by their
/// unique ID. If you just need a deterministic order, use this, since it
/// just compares two `unsigned`; the other sorting predicates require
/// string manipulation.
struct LessRecordByID {
bool operator()(const Record *LHS, const Record *RHS) const {
return LHS->getID() < RHS->getID();
}
};
/// Sorting predicate to sort record pointers by their
/// name field.
struct LessRecordFieldName {
bool operator()(const Record *Rec1, const Record *Rec2) const {
return Rec1->getValueAsString("Name") < Rec2->getValueAsString("Name");
}
};
struct LessRecordRegister {
struct RecordParts {
SmallVector<std::pair< bool, StringRef>, 4> Parts;
RecordParts(StringRef Rec) {
if (Rec.empty())
return;
size_t Len = 0;
const char *Start = Rec.data();
const char *Curr = Start;
bool IsDigitPart = isDigit(Curr[0]);
for (size_t I = 0, E = Rec.size(); I != E; ++I, ++Len) {
bool IsDigit = isDigit(Curr[I]);
if (IsDigit != IsDigitPart) {
Parts.push_back(std::make_pair(IsDigitPart, StringRef(Start, Len)));
Len = 0;
Start = &Curr[I];
IsDigitPart = isDigit(Curr[I]);
}
}
// Push the last part.
Parts.push_back(std::make_pair(IsDigitPart, StringRef(Start, Len)));
}
size_t size() { return Parts.size(); }
std::pair<bool, StringRef> getPart(size_t i) {
assert (i < Parts.size() && "Invalid idx!");
return Parts[i];
}
};
bool operator()(const Record *Rec1, const Record *Rec2) const {
RecordParts LHSParts(StringRef(Rec1->getName()));
RecordParts RHSParts(StringRef(Rec2->getName()));
size_t LHSNumParts = LHSParts.size();
size_t RHSNumParts = RHSParts.size();
assert (LHSNumParts && RHSNumParts && "Expected at least one part!");
if (LHSNumParts != RHSNumParts)
return LHSNumParts < RHSNumParts;
// We expect the registers to be of the form [_a-zA-Z]+([0-9]*[_a-zA-Z]*)*.
for (size_t I = 0, E = LHSNumParts; I < E; I+=2) {
std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
// Expect even part to always be alpha.
assert (LHSPart.first == false && RHSPart.first == false &&
"Expected both parts to be alpha.");
if (int Res = LHSPart.second.compare(RHSPart.second))
return Res < 0;
}
for (size_t I = 1, E = LHSNumParts; I < E; I+=2) {
std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
// Expect odd part to always be numeric.
assert (LHSPart.first == true && RHSPart.first == true &&
"Expected both parts to be numeric.");
if (LHSPart.second.size() != RHSPart.second.size())
return LHSPart.second.size() < RHSPart.second.size();
unsigned LHSVal, RHSVal;
bool LHSFailed = LHSPart.second.getAsInteger(10, LHSVal); (void)LHSFailed;
assert(!LHSFailed && "Unable to convert LHS to integer.");
bool RHSFailed = RHSPart.second.getAsInteger(10, RHSVal); (void)RHSFailed;
assert(!RHSFailed && "Unable to convert RHS to integer.");
if (LHSVal != RHSVal)
return LHSVal < RHSVal;
}
return LHSNumParts < RHSNumParts;
}
};
raw_ostream &operator<<(raw_ostream &OS, const RecordKeeper &RK);
//===----------------------------------------------------------------------===//
// Resolvers
//===----------------------------------------------------------------------===//
/// Interface for looking up the initializer for a variable name, used by
/// Init::resolveReferences.
class Resolver {
Record *CurRec;
bool IsFinal = false;
public:
explicit Resolver(Record *CurRec) : CurRec(CurRec) {}
virtual ~Resolver() = default;
Record *getCurrentRecord() const { return CurRec; }
/// Return the initializer for the given variable name (should normally be a
/// StringInit), or nullptr if the name could not be resolved.
virtual Init *resolve(Init *VarName) = 0;
// Whether bits in a BitsInit should stay unresolved if resolving them would
// result in a ? (UnsetInit). This behavior is used to represent instruction
// encodings by keeping references to unset variables within a record.
virtual bool keepUnsetBits() const { return false; }
// Whether this is the final resolve step before adding a record to the
// RecordKeeper. Error reporting during resolve and related constant folding
// should only happen when this is true.
bool isFinal() const { return IsFinal; }
void setFinal(bool Final) { IsFinal = Final; }
};
/// Resolve arbitrary mappings.
class MapResolver final : public Resolver {
struct MappedValue {
Init *V;
bool Resolved;
MappedValue() : V(nullptr), Resolved(false) {}
MappedValue(Init *V, bool Resolved) : V(V), Resolved(Resolved) {}
};
DenseMap<Init *, MappedValue> Map;
public:
explicit MapResolver(Record *CurRec = nullptr) : Resolver(CurRec) {}
void set(Init *Key, Init *Value) { Map[Key] = {Value, false}; }
bool isComplete(Init *VarName) const {
auto It = Map.find(VarName);
assert(It != Map.end() && "key must be present in map");
return It->second.V->isComplete();
}
Init *resolve(Init *VarName) override;
};
/// Resolve all variables from a record except for unset variables.
class RecordResolver final : public Resolver {
DenseMap<Init *, Init *> Cache;
SmallVector<Init *, 4> Stack;
Init *Name = nullptr;
public:
explicit RecordResolver(Record &R) : Resolver(&R) {}
void setName(Init *NewName) { Name = NewName; }
Init *resolve(Init *VarName) override;
bool keepUnsetBits() const override { return true; }
};
/// Delegate resolving to a sub-resolver, but shadow some variable names.
class ShadowResolver final : public Resolver {
Resolver &R;
DenseSet<Init *> Shadowed;
public:
explicit ShadowResolver(Resolver &R)
: Resolver(R.getCurrentRecord()), R(R) {
setFinal(R.isFinal());
}
void addShadow(Init *Key) { Shadowed.insert(Key); }
Init *resolve(Init *VarName) override {
if (Shadowed.count(VarName))
return nullptr;
return R.resolve(VarName);
}
};
/// (Optionally) delegate resolving to a sub-resolver, and keep track whether
/// there were unresolved references.
class TrackUnresolvedResolver final : public Resolver {
Resolver *R;
bool FoundUnresolved = false;
public:
explicit TrackUnresolvedResolver(Resolver *R = nullptr)
: Resolver(R ? R->getCurrentRecord() : nullptr), R(R) {}
bool foundUnresolved() const { return FoundUnresolved; }
Init *resolve(Init *VarName) override;
};
/// Do not resolve anything, but keep track of whether a given variable was
/// referenced.
class HasReferenceResolver final : public Resolver {
Init *VarNameToTrack;
bool Found = false;
public:
explicit HasReferenceResolver(Init *VarNameToTrack)
: Resolver(nullptr), VarNameToTrack(VarNameToTrack) {}
bool found() const { return Found; }
Init *resolve(Init *VarName) override;
};
void EmitDetailedRecords(RecordKeeper &RK, raw_ostream &OS);
void EmitJSON(RecordKeeper &RK, raw_ostream &OS);
} // end namespace llvm
#endif // LLVM_TABLEGEN_RECORD_H