//===- llvm/TableGen/Record.h - Classes for Table Records -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the main TableGen data structures, including the TableGen
 
// types, values, and high-level data structures.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_TABLEGEN_RECORD_H
 
#define LLVM_TABLEGEN_RECORD_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/FoldingSet.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringExtras.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include "llvm/Support/SMLoc.h"
 
#include "llvm/Support/Timer.h"
 
#include "llvm/Support/TrailingObjects.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <map>
 
#include <memory>
 
#include <optional>
 
#include <string>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
namespace detail {
 
struct RecordKeeperImpl;
 
} // namespace detail
 
 
 
class ListRecTy;
 
class Record;
 
class RecordKeeper;
 
class RecordVal;
 
class Resolver;
 
class StringInit;
 
class TypedInit;
 
 
 
//===----------------------------------------------------------------------===//
 
//  Type Classes
 
//===----------------------------------------------------------------------===//
 
 
 
class RecTy {
 
public:
 
  /// Subclass discriminator (for dyn_cast<> et al.)
 
  enum RecTyKind {
 
    BitRecTyKind,
 
    BitsRecTyKind,
 
    IntRecTyKind,
 
    StringRecTyKind,
 
    ListRecTyKind,
 
    DagRecTyKind,
 
    RecordRecTyKind
 
  };
 
 
 
private:
 
  RecTyKind Kind;
 
  /// The RecordKeeper that uniqued this Type.
 
  RecordKeeper &RK;
 
  /// ListRecTy of the list that has elements of this type.
 
  ListRecTy *ListTy = nullptr;
 
 
 
public:
 
  RecTy(RecTyKind K, RecordKeeper &RK) : Kind(K), RK(RK) {}
 
  virtual ~RecTy() = default;
 
 
 
  RecTyKind getRecTyKind() const { return Kind; }
 
 
 
  /// Return the RecordKeeper that uniqued this Type.
 
  RecordKeeper &getRecordKeeper() const { return RK; }
 
 
 
  virtual std::string getAsString() const = 0;
 
  void print(raw_ostream &OS) const { OS << getAsString(); }
 
  void dump() const;
 
 
 
  /// Return true if all values of 'this' type can be converted to the specified
 
  /// type.
 
  virtual bool typeIsConvertibleTo(const RecTy *RHS) const;
 
 
 
  /// Return true if 'this' type is equal to or a subtype of RHS. For example,
 
  /// a bit set is not an int, but they are convertible.
 
  virtual bool typeIsA(const RecTy *RHS) const;
 
 
 
  /// Returns the type representing list<thistype>.
 
  ListRecTy *getListTy();
 
};
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, const RecTy &Ty) {
 
  Ty.print(OS);
 
  return OS;
 
}
 
 
 
/// 'bit' - Represent a single bit
 
class BitRecTy : public RecTy {
 
  friend detail::RecordKeeperImpl;
 
 
 
  BitRecTy(RecordKeeper &RK) : RecTy(BitRecTyKind, RK) {}
 
 
 
public:
 
  static bool classof(const RecTy *RT) {
 
    return RT->getRecTyKind() == BitRecTyKind;
 
  }
 
 
 
  static BitRecTy *get(RecordKeeper &RK);
 
 
 
  std::string getAsString() const override { return "bit"; }
 
 
 
  bool typeIsConvertibleTo(const RecTy *RHS) const override;
 
};
 
 
 
/// 'bits<n>' - Represent a fixed number of bits
 
class BitsRecTy : public RecTy {
 
  unsigned Size;
 
 
 
  explicit BitsRecTy(RecordKeeper &RK, unsigned Sz)
 
      : RecTy(BitsRecTyKind, RK), Size(Sz) {}
 
 
 
public:
 
  static bool classof(const RecTy *RT) {
 
    return RT->getRecTyKind() == BitsRecTyKind;
 
  }
 
 
 
  static BitsRecTy *get(RecordKeeper &RK, unsigned Sz);
 
 
 
  unsigned getNumBits() const { return Size; }
 
 
 
  std::string getAsString() const override;
 
 
 
  bool typeIsConvertibleTo(const RecTy *RHS) const override;
 
 
 
  bool typeIsA(const RecTy *RHS) const override;
 
};
 
 
 
/// 'int' - Represent an integer value of no particular size
 
class IntRecTy : public RecTy {
 
  friend detail::RecordKeeperImpl;
 
 
 
  IntRecTy(RecordKeeper &RK) : RecTy(IntRecTyKind, RK) {}
 
 
 
public:
 
  static bool classof(const RecTy *RT) {
 
    return RT->getRecTyKind() == IntRecTyKind;
 
  }
 
 
 
  static IntRecTy *get(RecordKeeper &RK);
 
 
 
  std::string getAsString() const override { return "int"; }
 
 
 
  bool typeIsConvertibleTo(const RecTy *RHS) const override;
 
};
 
 
 
/// 'string' - Represent an string value
 
class StringRecTy : public RecTy {
 
  friend detail::RecordKeeperImpl;
 
 
 
  StringRecTy(RecordKeeper &RK) : RecTy(StringRecTyKind, RK) {}
 
 
 
public:
 
  static bool classof(const RecTy *RT) {
 
    return RT->getRecTyKind() == StringRecTyKind;
 
  }
 
 
 
  static StringRecTy *get(RecordKeeper &RK);
 
 
 
  std::string getAsString() const override;
 
 
 
  bool typeIsConvertibleTo(const RecTy *RHS) const override;
 
};
 
 
 
/// 'list<Ty>' - Represent a list of element values, all of which must be of
 
/// the specified type. The type is stored in ElementTy.
 
class ListRecTy : public RecTy {
 
  friend ListRecTy *RecTy::getListTy();
 
 
 
  RecTy *ElementTy;
 
 
 
  explicit ListRecTy(RecTy *T)
 
      : RecTy(ListRecTyKind, T->getRecordKeeper()), ElementTy(T) {}
 
 
 
public:
 
  static bool classof(const RecTy *RT) {
 
    return RT->getRecTyKind() == ListRecTyKind;
 
  }
 
 
 
  static ListRecTy *get(RecTy *T) { return T->getListTy(); }
 
  RecTy *getElementType() const { return ElementTy; }
 
 
 
  std::string getAsString() const override;
 
 
 
  bool typeIsConvertibleTo(const RecTy *RHS) const override;
 
 
 
  bool typeIsA(const RecTy *RHS) const override;
 
};
 
 
 
/// 'dag' - Represent a dag fragment
 
class DagRecTy : public RecTy {
 
  friend detail::RecordKeeperImpl;
 
 
 
  DagRecTy(RecordKeeper &RK) : RecTy(DagRecTyKind, RK) {}
 
 
 
public:
 
  static bool classof(const RecTy *RT) {
 
    return RT->getRecTyKind() == DagRecTyKind;
 
  }
 
 
 
  static DagRecTy *get(RecordKeeper &RK);
 
 
 
  std::string getAsString() const override;
 
};
 
 
 
/// '[classname]' - Type of record values that have zero or more superclasses.
 
///
 
/// The list of superclasses is non-redundant, i.e. only contains classes that
 
/// are not the superclass of some other listed class.
 
class RecordRecTy final : public RecTy, public FoldingSetNode,
 
                          public TrailingObjects<RecordRecTy, Record *> {
 
  friend class Record;
 
  friend detail::RecordKeeperImpl;
 
 
 
  unsigned NumClasses;
 
 
 
  explicit RecordRecTy(RecordKeeper &RK, unsigned Num)
 
      : RecTy(RecordRecTyKind, RK), NumClasses(Num) {}
 
 
 
public:
 
  RecordRecTy(const RecordRecTy &) = delete;
 
  RecordRecTy &operator=(const RecordRecTy &) = delete;
 
 
 
  // Do not use sized deallocation due to trailing objects.
 
  void operator delete(void *p) { ::operator delete(p); }
 
 
 
  static bool classof(const RecTy *RT) {
 
    return RT->getRecTyKind() == RecordRecTyKind;
 
  }
 
 
 
  /// Get the record type with the given non-redundant list of superclasses.
 
  static RecordRecTy *get(RecordKeeper &RK, ArrayRef<Record *> Classes);
 
  static RecordRecTy *get(Record *Class);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  ArrayRef<Record *> getClasses() const {
 
    return ArrayRef(getTrailingObjects<Record *>(), NumClasses);
 
  }
 
 
 
  using const_record_iterator = Record * const *;
 
 
 
  const_record_iterator classes_begin() const { return getClasses().begin(); }
 
  const_record_iterator classes_end() const { return getClasses().end(); }
 
 
 
  std::string getAsString() const override;
 
 
 
  bool isSubClassOf(Record *Class) const;
 
  bool typeIsConvertibleTo(const RecTy *RHS) const override;
 
 
 
  bool typeIsA(const RecTy *RHS) const override;
 
};
 
 
 
/// Find a common type that T1 and T2 convert to.
 
/// Return 0 if no such type exists.
 
RecTy *resolveTypes(RecTy *T1, RecTy *T2);
 
 
 
//===----------------------------------------------------------------------===//
 
//  Initializer Classes
 
//===----------------------------------------------------------------------===//
 
 
 
class Init {
 
protected:
 
  /// Discriminator enum (for isa<>, dyn_cast<>, et al.)
 
  ///
 
  /// This enum is laid out by a preorder traversal of the inheritance
 
  /// hierarchy, and does not contain an entry for abstract classes, as per
 
  /// the recommendation in docs/HowToSetUpLLVMStyleRTTI.rst.
 
  ///
 
  /// We also explicitly include "first" and "last" values for each
 
  /// interior node of the inheritance tree, to make it easier to read the
 
  /// corresponding classof().
 
  ///
 
  /// We could pack these a bit tighter by not having the IK_FirstXXXInit
 
  /// and IK_LastXXXInit be their own values, but that would degrade
 
  /// readability for really no benefit.
 
  enum InitKind : uint8_t {
 
    IK_First, // unused; silence a spurious warning
 
    IK_FirstTypedInit,
 
    IK_BitInit,
 
    IK_BitsInit,
 
    IK_DagInit,
 
    IK_DefInit,
 
    IK_FieldInit,
 
    IK_IntInit,
 
    IK_ListInit,
 
    IK_FirstOpInit,
 
    IK_BinOpInit,
 
    IK_TernOpInit,
 
    IK_UnOpInit,
 
    IK_LastOpInit,
 
    IK_CondOpInit,
 
    IK_FoldOpInit,
 
    IK_IsAOpInit,
 
    IK_ExistsOpInit,
 
    IK_AnonymousNameInit,
 
    IK_StringInit,
 
    IK_VarInit,
 
    IK_VarListElementInit,
 
    IK_VarBitInit,
 
    IK_VarDefInit,
 
    IK_LastTypedInit,
 
    IK_UnsetInit
 
  };
 
 
 
private:
 
  const InitKind Kind;
 
 
 
protected:
 
  uint8_t Opc; // Used by UnOpInit, BinOpInit, and TernOpInit
 
 
 
private:
 
  virtual void anchor();
 
 
 
public:
 
  /// Get the kind (type) of the value.
 
  InitKind getKind() const { return Kind; }
 
 
 
  /// Get the record keeper that initialized this Init.
 
  RecordKeeper &getRecordKeeper() const;
 
 
 
protected:
 
  explicit Init(InitKind K, uint8_t Opc = 0) : Kind(K), Opc(Opc) {}
 
 
 
public:
 
  Init(const Init &) = delete;
 
  Init &operator=(const Init &) = delete;
 
  virtual ~Init() = default;
 
 
 
  /// Is this a complete value with no unset (uninitialized) subvalues?
 
  virtual bool isComplete() const { return true; }
 
 
 
  /// Is this a concrete and fully resolved value without any references or
 
  /// stuck operations? Unset values are concrete.
 
  virtual bool isConcrete() const { return false; }
 
 
 
  /// Print this value.
 
  void print(raw_ostream &OS) const { OS << getAsString(); }
 
 
 
  /// Convert this value to a literal form.
 
  virtual std::string getAsString() const = 0;
 
 
 
  /// Convert this value to a literal form,
 
  /// without adding quotes around a string.
 
  virtual std::string getAsUnquotedString() const { return getAsString(); }
 
 
 
  /// Debugging method that may be called through a debugger; just
 
  /// invokes print on stderr.
 
  void dump() const;
 
 
 
  /// If this value is convertible to type \p Ty, return a value whose
 
  /// type is \p Ty, generating a !cast operation if required.
 
  /// Otherwise, return null.
 
  virtual Init *getCastTo(RecTy *Ty) const = 0;
 
 
 
  /// Convert to a value whose type is \p Ty, or return null if this
 
  /// is not possible. This can happen if the value's type is convertible
 
  /// to \p Ty, but there are unresolved references.
 
  virtual Init *convertInitializerTo(RecTy *Ty) const = 0;
 
 
 
  /// This function is used to implement the bit range
 
  /// selection operator. Given a value, it selects the specified bits,
 
  /// returning them as a new \p Init of type \p bits. If it is not legal
 
  /// to use the bit selection operator on this value, null is returned.
 
  virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
 
    return nullptr;
 
  }
 
 
 
  /// This function is used to implement the list slice
 
  /// selection operator.  Given a value, it selects the specified list
 
  /// elements, returning them as a new \p Init of type \p list. If it
 
  /// is not legal to use the slice operator, null is returned.
 
  virtual Init *convertInitListSlice(ArrayRef<unsigned> Elements) const {
 
    return nullptr;
 
  }
 
 
 
  /// This function is used to implement the FieldInit class.
 
  /// Implementors of this method should return the type of the named
 
  /// field if they are of type record.
 
  virtual RecTy *getFieldType(StringInit *FieldName) const {
 
    return nullptr;
 
  }
 
 
 
  /// This function is used by classes that refer to other
 
  /// variables which may not be defined at the time the expression is formed.
 
  /// If a value is set for the variable later, this method will be called on
 
  /// users of the value to allow the value to propagate out.
 
  virtual Init *resolveReferences(Resolver &R) const {
 
    return const_cast<Init *>(this);
 
  }
 
 
 
  /// Get the \p Init value of the specified bit.
 
  virtual Init *getBit(unsigned Bit) const = 0;
 
};
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, const Init &I) {
 
  I.print(OS); return OS;
 
}
 
 
 
/// This is the common superclass of types that have a specific,
 
/// explicit type, stored in ValueTy.
 
class TypedInit : public Init {
 
  RecTy *ValueTy;
 
 
 
protected:
 
  explicit TypedInit(InitKind K, RecTy *T, uint8_t Opc = 0)
 
      : Init(K, Opc), ValueTy(T) {}
 
 
 
public:
 
  TypedInit(const TypedInit &) = delete;
 
  TypedInit &operator=(const TypedInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() >= IK_FirstTypedInit &&
 
           I->getKind() <= IK_LastTypedInit;
 
  }
 
 
 
  /// Get the type of the Init as a RecTy.
 
  RecTy *getType() const { return ValueTy; }
 
 
 
  /// Get the record keeper that initialized this Init.
 
  RecordKeeper &getRecordKeeper() const { return ValueTy->getRecordKeeper(); }
 
 
 
  Init *getCastTo(RecTy *Ty) const override;
 
  Init *convertInitializerTo(RecTy *Ty) const override;
 
 
 
  Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
 
  Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
 
 
 
  /// This method is used to implement the FieldInit class.
 
  /// Implementors of this method should return the type of the named field if
 
  /// they are of type record.
 
  RecTy *getFieldType(StringInit *FieldName) const override;
 
};
 
 
 
/// '?' - Represents an uninitialized value.
 
class UnsetInit : public Init {
 
  friend detail::RecordKeeperImpl;
 
 
 
  /// The record keeper that initialized this Init.
 
  RecordKeeper &RK;
 
 
 
  UnsetInit(RecordKeeper &RK) : Init(IK_UnsetInit), RK(RK) {}
 
 
 
public:
 
  UnsetInit(const UnsetInit &) = delete;
 
  UnsetInit &operator=(const UnsetInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_UnsetInit;
 
  }
 
 
 
  /// Get the singleton unset Init.
 
  static UnsetInit *get(RecordKeeper &RK);
 
 
 
  /// Get the record keeper that initialized this Init.
 
  RecordKeeper &getRecordKeeper() const { return RK; }
 
 
 
  Init *getCastTo(RecTy *Ty) const override;
 
  Init *convertInitializerTo(RecTy *Ty) const override;
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    return const_cast<UnsetInit*>(this);
 
  }
 
 
 
  /// Is this a complete value with no unset (uninitialized) subvalues?
 
  bool isComplete() const override { return false; }
 
 
 
  bool isConcrete() const override { return true; }
 
 
 
  /// Get the string representation of the Init.
 
  std::string getAsString() const override { return "?"; }
 
};
 
 
 
/// 'true'/'false' - Represent a concrete initializer for a bit.
 
class BitInit final : public TypedInit {
 
  friend detail::RecordKeeperImpl;
 
 
 
  bool Value;
 
 
 
  explicit BitInit(bool V, RecTy *T) : TypedInit(IK_BitInit, T), Value(V) {}
 
 
 
public:
 
  BitInit(const BitInit &) = delete;
 
  BitInit &operator=(BitInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_BitInit;
 
  }
 
 
 
  static BitInit *get(RecordKeeper &RK, bool V);
 
 
 
  bool getValue() const { return Value; }
 
 
 
  Init *convertInitializerTo(RecTy *Ty) const override;
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    assert(Bit < 1 && "Bit index out of range!");
 
    return const_cast<BitInit*>(this);
 
  }
 
 
 
  bool isConcrete() const override { return true; }
 
  std::string getAsString() const override { return Value ? "1" : "0"; }
 
};
 
 
 
/// '{ a, b, c }' - Represents an initializer for a BitsRecTy value.
 
/// It contains a vector of bits, whose size is determined by the type.
 
class BitsInit final : public TypedInit, public FoldingSetNode,
 
                       public TrailingObjects<BitsInit, Init *> {
 
  unsigned NumBits;
 
 
 
  BitsInit(RecordKeeper &RK, unsigned N)
 
      : TypedInit(IK_BitsInit, BitsRecTy::get(RK, N)), NumBits(N) {}
 
 
 
public:
 
  BitsInit(const BitsInit &) = delete;
 
  BitsInit &operator=(const BitsInit &) = delete;
 
 
 
  // Do not use sized deallocation due to trailing objects.
 
  void operator delete(void *p) { ::operator delete(p); }
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_BitsInit;
 
  }
 
 
 
  static BitsInit *get(RecordKeeper &RK, ArrayRef<Init *> Range);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  unsigned getNumBits() const { return NumBits; }
 
 
 
  Init *convertInitializerTo(RecTy *Ty) const override;
 
  Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
 
 
 
  bool isComplete() const override {
 
    for (unsigned i = 0; i != getNumBits(); ++i)
 
      if (!getBit(i)->isComplete()) return false;
 
    return true;
 
  }
 
 
 
  bool allInComplete() const {
 
    for (unsigned i = 0; i != getNumBits(); ++i)
 
      if (getBit(i)->isComplete()) return false;
 
    return true;
 
  }
 
 
 
  bool isConcrete() const override;
 
  std::string getAsString() const override;
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    assert(Bit < NumBits && "Bit index out of range!");
 
    return getTrailingObjects<Init *>()[Bit];
 
  }
 
};
 
 
 
/// '7' - Represent an initialization by a literal integer value.
 
class IntInit : public TypedInit {
 
  int64_t Value;
 
 
 
  explicit IntInit(RecordKeeper &RK, int64_t V)
 
      : TypedInit(IK_IntInit, IntRecTy::get(RK)), Value(V) {}
 
 
 
public:
 
  IntInit(const IntInit &) = delete;
 
  IntInit &operator=(const IntInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_IntInit;
 
  }
 
 
 
  static IntInit *get(RecordKeeper &RK, int64_t V);
 
 
 
  int64_t getValue() const { return Value; }
 
 
 
  Init *convertInitializerTo(RecTy *Ty) const override;
 
  Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
 
 
 
  bool isConcrete() const override { return true; }
 
  std::string getAsString() const override;
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    return BitInit::get(getRecordKeeper(), (Value & (1ULL << Bit)) != 0);
 
  }
 
};
 
 
 
/// "anonymous_n" - Represent an anonymous record name
 
class AnonymousNameInit : public TypedInit {
 
  unsigned Value;
 
 
 
  explicit AnonymousNameInit(RecordKeeper &RK, unsigned V)
 
      : TypedInit(IK_AnonymousNameInit, StringRecTy::get(RK)), Value(V) {}
 
 
 
public:
 
  AnonymousNameInit(const AnonymousNameInit &) = delete;
 
  AnonymousNameInit &operator=(const AnonymousNameInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_AnonymousNameInit;
 
  }
 
 
 
  static AnonymousNameInit *get(RecordKeeper &RK, unsigned);
 
 
 
  unsigned getValue() const { return Value; }
 
 
 
  StringInit *getNameInit() const;
 
 
 
  std::string getAsString() const override;
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    llvm_unreachable("Illegal bit reference off string");
 
  }
 
};
 
 
 
/// "foo" - Represent an initialization by a string value.
 
class StringInit : public TypedInit {
 
public:
 
  enum StringFormat {
 
    SF_String, // Format as "text"
 
    SF_Code,   // Format as [{text}]
 
  };
 
 
 
private:
 
  StringRef Value;
 
  StringFormat Format;
 
 
 
  explicit StringInit(RecordKeeper &RK, StringRef V, StringFormat Fmt)
 
      : TypedInit(IK_StringInit, StringRecTy::get(RK)), Value(V), Format(Fmt) {}
 
 
 
public:
 
  StringInit(const StringInit &) = delete;
 
  StringInit &operator=(const StringInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_StringInit;
 
  }
 
 
 
  static StringInit *get(RecordKeeper &RK, StringRef,
 
                         StringFormat Fmt = SF_String);
 
 
 
  static StringFormat determineFormat(StringFormat Fmt1, StringFormat Fmt2) {
 
    return (Fmt1 == SF_Code || Fmt2 == SF_Code) ? SF_Code : SF_String;
 
  }
 
 
 
  StringRef getValue() const { return Value; }
 
  StringFormat getFormat() const { return Format; }
 
  bool hasCodeFormat() const { return Format == SF_Code; }
 
 
 
  Init *convertInitializerTo(RecTy *Ty) const override;
 
 
 
  bool isConcrete() const override { return true; }
 
 
 
  std::string getAsString() const override {
 
    if (Format == SF_String)
 
      return "\"" + Value.str() + "\"";
 
    else
 
      return "[{" + Value.str() + "}]";
 
  }
 
 
 
  std::string getAsUnquotedString() const override {
 
    return std::string(Value);
 
  }
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    llvm_unreachable("Illegal bit reference off string");
 
  }
 
};
 
 
 
/// [AL, AH, CL] - Represent a list of defs
 
///
 
class ListInit final : public TypedInit, public FoldingSetNode,
 
                       public TrailingObjects<ListInit, Init *> {
 
  unsigned NumValues;
 
 
 
public:
 
  using const_iterator = Init *const *;
 
 
 
private:
 
  explicit ListInit(unsigned N, RecTy *EltTy)
 
      : TypedInit(IK_ListInit, ListRecTy::get(EltTy)), NumValues(N) {}
 
 
 
public:
 
  ListInit(const ListInit &) = delete;
 
  ListInit &operator=(const ListInit &) = delete;
 
 
 
  // Do not use sized deallocation due to trailing objects.
 
  void operator delete(void *p) { ::operator delete(p); }
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_ListInit;
 
  }
 
  static ListInit *get(ArrayRef<Init *> Range, RecTy *EltTy);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  Init *getElement(unsigned i) const {
 
    assert(i < NumValues && "List element index out of range!");
 
    return getTrailingObjects<Init *>()[i];
 
  }
 
  RecTy *getElementType() const {
 
    return cast<ListRecTy>(getType())->getElementType();
 
  }
 
 
 
  Record *getElementAsRecord(unsigned i) const;
 
 
 
  Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
 
 
 
  Init *convertInitializerTo(RecTy *Ty) const override;
 
 
 
  /// This method is used by classes that refer to other
 
  /// variables which may not be defined at the time they expression is formed.
 
  /// If a value is set for the variable later, this method will be called on
 
  /// users of the value to allow the value to propagate out.
 
  ///
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  bool isComplete() const override;
 
  bool isConcrete() const override;
 
  std::string getAsString() const override;
 
 
 
  ArrayRef<Init*> getValues() const {
 
    return ArrayRef(getTrailingObjects<Init *>(), NumValues);
 
  }
 
 
 
  const_iterator begin() const { return getTrailingObjects<Init *>(); }
 
  const_iterator end  () const { return begin() + NumValues; }
 
 
 
  size_t         size () const { return NumValues;  }
 
  bool           empty() const { return NumValues == 0; }
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    llvm_unreachable("Illegal bit reference off list");
 
  }
 
};
 
 
 
/// Base class for operators
 
///
 
class OpInit : public TypedInit {
 
protected:
 
  explicit OpInit(InitKind K, RecTy *Type, uint8_t Opc)
 
    : TypedInit(K, Type, Opc) {}
 
 
 
public:
 
  OpInit(const OpInit &) = delete;
 
  OpInit &operator=(OpInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() >= IK_FirstOpInit &&
 
           I->getKind() <= IK_LastOpInit;
 
  }
 
 
 
  // Clone - Clone this operator, replacing arguments with the new list
 
  virtual OpInit *clone(ArrayRef<Init *> Operands) const = 0;
 
 
 
  virtual unsigned getNumOperands() const = 0;
 
  virtual Init *getOperand(unsigned i) const = 0;
 
 
 
  Init *getBit(unsigned Bit) const override;
 
};
 
 
 
/// !op (X) - Transform an init.
 
///
 
class UnOpInit : public OpInit, public FoldingSetNode {
 
public:
 
  enum UnaryOp : uint8_t { CAST, NOT, HEAD, TAIL, SIZE, EMPTY, GETDAGOP, LOG2 };
 
 
 
private:
 
  Init *LHS;
 
 
 
  UnOpInit(UnaryOp opc, Init *lhs, RecTy *Type)
 
    : OpInit(IK_UnOpInit, Type, opc), LHS(lhs) {}
 
 
 
public:
 
  UnOpInit(const UnOpInit &) = delete;
 
  UnOpInit &operator=(const UnOpInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_UnOpInit;
 
  }
 
 
 
  static UnOpInit *get(UnaryOp opc, Init *lhs, RecTy *Type);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  // Clone - Clone this operator, replacing arguments with the new list
 
  OpInit *clone(ArrayRef<Init *> Operands) const override {
 
    assert(Operands.size() == 1 &&
 
           "Wrong number of operands for unary operation");
 
    return UnOpInit::get(getOpcode(), *Operands.begin(), getType());
 
  }
 
 
 
  unsigned getNumOperands() const override { return 1; }
 
 
 
  Init *getOperand(unsigned i) const override {
 
    assert(i == 0 && "Invalid operand id for unary operator");
 
    return getOperand();
 
  }
 
 
 
  UnaryOp getOpcode() const { return (UnaryOp)Opc; }
 
  Init *getOperand() const { return LHS; }
 
 
 
  // Fold - If possible, fold this to a simpler init.  Return this if not
 
  // possible to fold.
 
  Init *Fold(Record *CurRec, bool IsFinal = false) const;
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  std::string getAsString() const override;
 
};
 
 
 
/// !op (X, Y) - Combine two inits.
 
class BinOpInit : public OpInit, public FoldingSetNode {
 
public:
 
  enum BinaryOp : uint8_t {
 
    ADD,
 
    SUB,
 
    MUL,
 
    DIV,
 
    AND,
 
    OR,
 
    XOR,
 
    SHL,
 
    SRA,
 
    SRL,
 
    LISTCONCAT,
 
    LISTSPLAT,
 
    LISTREMOVE,
 
    STRCONCAT,
 
    INTERLEAVE,
 
    CONCAT,
 
    EQ,
 
    NE,
 
    LE,
 
    LT,
 
    GE,
 
    GT,
 
    SETDAGOP
 
  };
 
 
 
private:
 
  Init *LHS, *RHS;
 
 
 
  BinOpInit(BinaryOp opc, Init *lhs, Init *rhs, RecTy *Type) :
 
      OpInit(IK_BinOpInit, Type, opc), LHS(lhs), RHS(rhs) {}
 
 
 
public:
 
  BinOpInit(const BinOpInit &) = delete;
 
  BinOpInit &operator=(const BinOpInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_BinOpInit;
 
  }
 
 
 
  static BinOpInit *get(BinaryOp opc, Init *lhs, Init *rhs,
 
                        RecTy *Type);
 
  static Init *getStrConcat(Init *lhs, Init *rhs);
 
  static Init *getListConcat(TypedInit *lhs, Init *rhs);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  // Clone - Clone this operator, replacing arguments with the new list
 
  OpInit *clone(ArrayRef<Init *> Operands) const override {
 
    assert(Operands.size() == 2 &&
 
           "Wrong number of operands for binary operation");
 
    return BinOpInit::get(getOpcode(), Operands[0], Operands[1], getType());
 
  }
 
 
 
  unsigned getNumOperands() const override { return 2; }
 
  Init *getOperand(unsigned i) const override {
 
    switch (i) {
 
    default: llvm_unreachable("Invalid operand id for binary operator");
 
    case 0: return getLHS();
 
    case 1: return getRHS();
 
    }
 
  }
 
 
 
  BinaryOp getOpcode() const { return (BinaryOp)Opc; }
 
  Init *getLHS() const { return LHS; }
 
  Init *getRHS() const { return RHS; }
 
 
 
  std::optional<bool> CompareInit(unsigned Opc, Init *LHS, Init *RHS) const;
 
 
 
  // Fold - If possible, fold this to a simpler init.  Return this if not
 
  // possible to fold.
 
  Init *Fold(Record *CurRec) const;
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  std::string getAsString() const override;
 
};
 
 
 
/// !op (X, Y, Z) - Combine two inits.
 
class TernOpInit : public OpInit, public FoldingSetNode {
 
public:
 
  enum TernaryOp : uint8_t { SUBST, FOREACH, FILTER, IF, DAG, SUBSTR, FIND };
 
 
 
private:
 
  Init *LHS, *MHS, *RHS;
 
 
 
  TernOpInit(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs,
 
             RecTy *Type) :
 
      OpInit(IK_TernOpInit, Type, opc), LHS(lhs), MHS(mhs), RHS(rhs) {}
 
 
 
public:
 
  TernOpInit(const TernOpInit &) = delete;
 
  TernOpInit &operator=(const TernOpInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_TernOpInit;
 
  }
 
 
 
  static TernOpInit *get(TernaryOp opc, Init *lhs,
 
                         Init *mhs, Init *rhs,
 
                         RecTy *Type);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  // Clone - Clone this operator, replacing arguments with the new list
 
  OpInit *clone(ArrayRef<Init *> Operands) const override {
 
    assert(Operands.size() == 3 &&
 
           "Wrong number of operands for ternary operation");
 
    return TernOpInit::get(getOpcode(), Operands[0], Operands[1], Operands[2],
 
                           getType());
 
  }
 
 
 
  unsigned getNumOperands() const override { return 3; }
 
  Init *getOperand(unsigned i) const override {
 
    switch (i) {
 
    default: llvm_unreachable("Invalid operand id for ternary operator");
 
    case 0: return getLHS();
 
    case 1: return getMHS();
 
    case 2: return getRHS();
 
    }
 
  }
 
 
 
  TernaryOp getOpcode() const { return (TernaryOp)Opc; }
 
  Init *getLHS() const { return LHS; }
 
  Init *getMHS() const { return MHS; }
 
  Init *getRHS() const { return RHS; }
 
 
 
  // Fold - If possible, fold this to a simpler init.  Return this if not
 
  // possible to fold.
 
  Init *Fold(Record *CurRec) const;
 
 
 
  bool isComplete() const override {
 
    return LHS->isComplete() && MHS->isComplete() && RHS->isComplete();
 
  }
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  std::string getAsString() const override;
 
};
 
 
 
/// !cond(condition_1: value1, ... , condition_n: value)
 
/// Selects the first value for which condition is true.
 
/// Otherwise reports an error.
 
class CondOpInit final : public TypedInit, public FoldingSetNode,
 
                      public TrailingObjects<CondOpInit, Init *> {
 
  unsigned NumConds;
 
  RecTy *ValType;
 
 
 
  CondOpInit(unsigned NC, RecTy *Type)
 
    : TypedInit(IK_CondOpInit, Type),
 
      NumConds(NC), ValType(Type) {}
 
 
 
  size_t numTrailingObjects(OverloadToken<Init *>) const {
 
    return 2*NumConds;
 
  }
 
 
 
public:
 
  CondOpInit(const CondOpInit &) = delete;
 
  CondOpInit &operator=(const CondOpInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_CondOpInit;
 
  }
 
 
 
  static CondOpInit *get(ArrayRef<Init*> C, ArrayRef<Init*> V,
 
                        RecTy *Type);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  RecTy *getValType() const { return ValType; }
 
 
 
  unsigned getNumConds() const { return NumConds; }
 
 
 
  Init *getCond(unsigned Num) const {
 
    assert(Num < NumConds && "Condition number out of range!");
 
    return getTrailingObjects<Init *>()[Num];
 
  }
 
 
 
  Init *getVal(unsigned Num) const {
 
    assert(Num < NumConds && "Val number out of range!");
 
    return getTrailingObjects<Init *>()[Num+NumConds];
 
  }
 
 
 
  ArrayRef<Init *> getConds() const {
 
    return ArrayRef(getTrailingObjects<Init *>(), NumConds);
 
  }
 
 
 
  ArrayRef<Init *> getVals() const {
 
    return ArrayRef(getTrailingObjects<Init *>() + NumConds, NumConds);
 
  }
 
 
 
  Init *Fold(Record *CurRec) const;
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  bool isConcrete() const override;
 
  bool isComplete() const override;
 
  std::string getAsString() const override;
 
 
 
  using const_case_iterator = SmallVectorImpl<Init*>::const_iterator;
 
  using const_val_iterator = SmallVectorImpl<Init*>::const_iterator;
 
 
 
  inline const_case_iterator  arg_begin() const { return getConds().begin(); }
 
  inline const_case_iterator  arg_end  () const { return getConds().end(); }
 
 
 
  inline size_t              case_size () const { return NumConds; }
 
  inline bool                case_empty() const { return NumConds == 0; }
 
 
 
  inline const_val_iterator name_begin() const { return getVals().begin();}
 
  inline const_val_iterator name_end  () const { return getVals().end(); }
 
 
 
  inline size_t              val_size () const { return NumConds; }
 
  inline bool                val_empty() const { return NumConds == 0; }
 
 
 
  Init *getBit(unsigned Bit) const override;
 
};
 
 
 
/// !foldl (a, b, expr, start, lst) - Fold over a list.
 
class FoldOpInit : public TypedInit, public FoldingSetNode {
 
private:
 
  Init *Start;
 
  Init *List;
 
  Init *A;
 
  Init *B;
 
  Init *Expr;
 
 
 
  FoldOpInit(Init *Start, Init *List, Init *A, Init *B, Init *Expr, RecTy *Type)
 
      : TypedInit(IK_FoldOpInit, Type), Start(Start), List(List), A(A), B(B),
 
        Expr(Expr) {}
 
 
 
public:
 
  FoldOpInit(const FoldOpInit &) = delete;
 
  FoldOpInit &operator=(const FoldOpInit &) = delete;
 
 
 
  static bool classof(const Init *I) { return I->getKind() == IK_FoldOpInit; }
 
 
 
  static FoldOpInit *get(Init *Start, Init *List, Init *A, Init *B, Init *Expr,
 
                         RecTy *Type);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  // Fold - If possible, fold this to a simpler init.  Return this if not
 
  // possible to fold.
 
  Init *Fold(Record *CurRec) const;
 
 
 
  bool isComplete() const override { return false; }
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  Init *getBit(unsigned Bit) const override;
 
 
 
  std::string getAsString() const override;
 
};
 
 
 
/// !isa<type>(expr) - Dynamically determine the type of an expression.
 
class IsAOpInit : public TypedInit, public FoldingSetNode {
 
private:
 
  RecTy *CheckType;
 
  Init *Expr;
 
 
 
  IsAOpInit(RecTy *CheckType, Init *Expr)
 
      : TypedInit(IK_IsAOpInit, IntRecTy::get(CheckType->getRecordKeeper())),
 
        CheckType(CheckType), Expr(Expr) {}
 
 
 
public:
 
  IsAOpInit(const IsAOpInit &) = delete;
 
  IsAOpInit &operator=(const IsAOpInit &) = delete;
 
 
 
  static bool classof(const Init *I) { return I->getKind() == IK_IsAOpInit; }
 
 
 
  static IsAOpInit *get(RecTy *CheckType, Init *Expr);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  // Fold - If possible, fold this to a simpler init.  Return this if not
 
  // possible to fold.
 
  Init *Fold() const;
 
 
 
  bool isComplete() const override { return false; }
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  Init *getBit(unsigned Bit) const override;
 
 
 
  std::string getAsString() const override;
 
};
 
 
 
/// !exists<type>(expr) - Dynamically determine if a record of `type` named
 
/// `expr` exists.
 
class ExistsOpInit : public TypedInit, public FoldingSetNode {
 
private:
 
  RecTy *CheckType;
 
  Init *Expr;
 
 
 
  ExistsOpInit(RecTy *CheckType, Init *Expr)
 
      : TypedInit(IK_ExistsOpInit, IntRecTy::get(CheckType->getRecordKeeper())),
 
        CheckType(CheckType), Expr(Expr) {}
 
 
 
public:
 
  ExistsOpInit(const ExistsOpInit &) = delete;
 
  ExistsOpInit &operator=(const ExistsOpInit &) = delete;
 
 
 
  static bool classof(const Init *I) { return I->getKind() == IK_ExistsOpInit; }
 
 
 
  static ExistsOpInit *get(RecTy *CheckType, Init *Expr);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  // Fold - If possible, fold this to a simpler init.  Return this if not
 
  // possible to fold.
 
  Init *Fold(Record *CurRec, bool IsFinal = false) const;
 
 
 
  bool isComplete() const override { return false; }
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  Init *getBit(unsigned Bit) const override;
 
 
 
  std::string getAsString() const override;
 
};
 
 
 
/// 'Opcode' - Represent a reference to an entire variable object.
 
class VarInit : public TypedInit {
 
  Init *VarName;
 
 
 
  explicit VarInit(Init *VN, RecTy *T)
 
      : TypedInit(IK_VarInit, T), VarName(VN) {}
 
 
 
public:
 
  VarInit(const VarInit &) = delete;
 
  VarInit &operator=(const VarInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_VarInit;
 
  }
 
 
 
  static VarInit *get(StringRef VN, RecTy *T);
 
  static VarInit *get(Init *VN, RecTy *T);
 
 
 
  StringRef getName() const;
 
  Init *getNameInit() const { return VarName; }
 
 
 
  std::string getNameInitAsString() const {
 
    return getNameInit()->getAsUnquotedString();
 
  }
 
 
 
  /// This method is used by classes that refer to other
 
  /// variables which may not be defined at the time they expression is formed.
 
  /// If a value is set for the variable later, this method will be called on
 
  /// users of the value to allow the value to propagate out.
 
  ///
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  Init *getBit(unsigned Bit) const override;
 
 
 
  std::string getAsString() const override { return std::string(getName()); }
 
};
 
 
 
/// Opcode{0} - Represent access to one bit of a variable or field.
 
class VarBitInit final : public TypedInit {
 
  TypedInit *TI;
 
  unsigned Bit;
 
 
 
  VarBitInit(TypedInit *T, unsigned B)
 
      : TypedInit(IK_VarBitInit, BitRecTy::get(T->getRecordKeeper())), TI(T),
 
        Bit(B) {
 
    assert(T->getType() &&
 
           (isa<IntRecTy>(T->getType()) ||
 
            (isa<BitsRecTy>(T->getType()) &&
 
             cast<BitsRecTy>(T->getType())->getNumBits() > B)) &&
 
           "Illegal VarBitInit expression!");
 
  }
 
 
 
public:
 
  VarBitInit(const VarBitInit &) = delete;
 
  VarBitInit &operator=(const VarBitInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_VarBitInit;
 
  }
 
 
 
  static VarBitInit *get(TypedInit *T, unsigned B);
 
 
 
  Init *getBitVar() const { return TI; }
 
  unsigned getBitNum() const { return Bit; }
 
 
 
  std::string getAsString() const override;
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  Init *getBit(unsigned B) const override {
 
    assert(B < 1 && "Bit index out of range!");
 
    return const_cast<VarBitInit*>(this);
 
  }
 
};
 
 
 
/// List[4] - Represent access to one element of a var or
 
/// field.
 
class VarListElementInit : public TypedInit {
 
  TypedInit *TI;
 
  unsigned Element;
 
 
 
  VarListElementInit(TypedInit *T, unsigned E)
 
      : TypedInit(IK_VarListElementInit,
 
                  cast<ListRecTy>(T->getType())->getElementType()),
 
        TI(T), Element(E) {
 
    assert(T->getType() && isa<ListRecTy>(T->getType()) &&
 
           "Illegal VarBitInit expression!");
 
  }
 
 
 
public:
 
  VarListElementInit(const VarListElementInit &) = delete;
 
  VarListElementInit &operator=(const VarListElementInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_VarListElementInit;
 
  }
 
 
 
  static VarListElementInit *get(TypedInit *T, unsigned E);
 
 
 
  TypedInit *getVariable() const { return TI; }
 
  unsigned getElementNum() const { return Element; }
 
 
 
  std::string getAsString() const override;
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  Init *getBit(unsigned Bit) const override;
 
};
 
 
 
/// AL - Represent a reference to a 'def' in the description
 
class DefInit : public TypedInit {
 
  friend class Record;
 
 
 
  Record *Def;
 
 
 
  explicit DefInit(Record *D);
 
 
 
public:
 
  DefInit(const DefInit &) = delete;
 
  DefInit &operator=(const DefInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_DefInit;
 
  }
 
 
 
  static DefInit *get(Record*);
 
 
 
  Init *convertInitializerTo(RecTy *Ty) const override;
 
 
 
  Record *getDef() const { return Def; }
 
 
 
  //virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits);
 
 
 
  RecTy *getFieldType(StringInit *FieldName) const override;
 
 
 
  bool isConcrete() const override { return true; }
 
  std::string getAsString() const override;
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    llvm_unreachable("Illegal bit reference off def");
 
  }
 
};
 
 
 
/// classname<targs...> - Represent an uninstantiated anonymous class
 
/// instantiation.
 
class VarDefInit final : public TypedInit, public FoldingSetNode,
 
                         public TrailingObjects<VarDefInit, Init *> {
 
  Record *Class;
 
  DefInit *Def = nullptr; // after instantiation
 
  unsigned NumArgs;
 
 
 
  explicit VarDefInit(Record *Class, unsigned N);
 
 
 
  DefInit *instantiate();
 
 
 
public:
 
  VarDefInit(const VarDefInit &) = delete;
 
  VarDefInit &operator=(const VarDefInit &) = delete;
 
 
 
  // Do not use sized deallocation due to trailing objects.
 
  void operator delete(void *p) { ::operator delete(p); }
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_VarDefInit;
 
  }
 
  static VarDefInit *get(Record *Class, ArrayRef<Init *> Args);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
  Init *Fold() const;
 
 
 
  std::string getAsString() const override;
 
 
 
  Init *getArg(unsigned i) const {
 
    assert(i < NumArgs && "Argument index out of range!");
 
    return getTrailingObjects<Init *>()[i];
 
  }
 
 
 
  using const_iterator = Init *const *;
 
 
 
  const_iterator args_begin() const { return getTrailingObjects<Init *>(); }
 
  const_iterator args_end  () const { return args_begin() + NumArgs; }
 
 
 
  size_t         args_size () const { return NumArgs; }
 
  bool           args_empty() const { return NumArgs == 0; }
 
 
 
  ArrayRef<Init *> args() const { return ArrayRef(args_begin(), NumArgs); }
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    llvm_unreachable("Illegal bit reference off anonymous def");
 
  }
 
};
 
 
 
/// X.Y - Represent a reference to a subfield of a variable
 
class FieldInit : public TypedInit {
 
  Init *Rec;                // Record we are referring to
 
  StringInit *FieldName;    // Field we are accessing
 
 
 
  FieldInit(Init *R, StringInit *FN)
 
      : TypedInit(IK_FieldInit, R->getFieldType(FN)), Rec(R), FieldName(FN) {
 
#ifndef NDEBUG
 
    if (!getType()) {
 
      llvm::errs() << "In Record = " << Rec->getAsString()
 
                   << ", got FieldName = " << *FieldName
 
                   << " with non-record type!\n";
 
      llvm_unreachable("FieldInit with non-record type!");
 
    }
 
#endif
 
  }
 
 
 
public:
 
  FieldInit(const FieldInit &) = delete;
 
  FieldInit &operator=(const FieldInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_FieldInit;
 
  }
 
 
 
  static FieldInit *get(Init *R, StringInit *FN);
 
 
 
  Init *getRecord() const { return Rec; }
 
  StringInit *getFieldName() const { return FieldName; }
 
 
 
  Init *getBit(unsigned Bit) const override;
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
  Init *Fold(Record *CurRec) const;
 
 
 
  bool isConcrete() const override;
 
  std::string getAsString() const override {
 
    return Rec->getAsString() + "." + FieldName->getValue().str();
 
  }
 
};
 
 
 
/// (v a, b) - Represent a DAG tree value.  DAG inits are required
 
/// to have at least one value then a (possibly empty) list of arguments.  Each
 
/// argument can have a name associated with it.
 
class DagInit final : public TypedInit, public FoldingSetNode,
 
                      public TrailingObjects<DagInit, Init *, StringInit *> {
 
  friend TrailingObjects;
 
 
 
  Init *Val;
 
  StringInit *ValName;
 
  unsigned NumArgs;
 
  unsigned NumArgNames;
 
 
 
  DagInit(Init *V, StringInit *VN, unsigned NumArgs, unsigned NumArgNames)
 
      : TypedInit(IK_DagInit, DagRecTy::get(V->getRecordKeeper())), Val(V),
 
        ValName(VN), NumArgs(NumArgs), NumArgNames(NumArgNames) {}
 
 
 
  size_t numTrailingObjects(OverloadToken<Init *>) const { return NumArgs; }
 
 
 
public:
 
  DagInit(const DagInit &) = delete;
 
  DagInit &operator=(const DagInit &) = delete;
 
 
 
  static bool classof(const Init *I) {
 
    return I->getKind() == IK_DagInit;
 
  }
 
 
 
  static DagInit *get(Init *V, StringInit *VN, ArrayRef<Init *> ArgRange,
 
                      ArrayRef<StringInit*> NameRange);
 
  static DagInit *get(Init *V, StringInit *VN,
 
                      ArrayRef<std::pair<Init*, StringInit*>> Args);
 
 
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  Init *getOperator() const { return Val; }
 
  Record *getOperatorAsDef(ArrayRef<SMLoc> Loc) const;
 
 
 
  StringInit *getName() const { return ValName; }
 
 
 
  StringRef getNameStr() const {
 
    return ValName ? ValName->getValue() : StringRef();
 
  }
 
 
 
  unsigned getNumArgs() const { return NumArgs; }
 
 
 
  Init *getArg(unsigned Num) const {
 
    assert(Num < NumArgs && "Arg number out of range!");
 
    return getTrailingObjects<Init *>()[Num];
 
  }
 
 
 
  StringInit *getArgName(unsigned Num) const {
 
    assert(Num < NumArgNames && "Arg number out of range!");
 
    return getTrailingObjects<StringInit *>()[Num];
 
  }
 
 
 
  StringRef getArgNameStr(unsigned Num) const {
 
    StringInit *Init = getArgName(Num);
 
    return Init ? Init->getValue() : StringRef();
 
  }
 
 
 
  ArrayRef<Init *> getArgs() const {
 
    return ArrayRef(getTrailingObjects<Init *>(), NumArgs);
 
  }
 
 
 
  ArrayRef<StringInit *> getArgNames() const {
 
    return ArrayRef(getTrailingObjects<StringInit *>(), NumArgNames);
 
  }
 
 
 
  Init *resolveReferences(Resolver &R) const override;
 
 
 
  bool isConcrete() const override;
 
  std::string getAsString() const override;
 
 
 
  using const_arg_iterator = SmallVectorImpl<Init*>::const_iterator;
 
  using const_name_iterator = SmallVectorImpl<StringInit*>::const_iterator;
 
 
 
  inline const_arg_iterator  arg_begin() const { return getArgs().begin(); }
 
  inline const_arg_iterator  arg_end  () const { return getArgs().end(); }
 
 
 
  inline size_t              arg_size () const { return NumArgs; }
 
  inline bool                arg_empty() const { return NumArgs == 0; }
 
 
 
  inline const_name_iterator name_begin() const { return getArgNames().begin();}
 
  inline const_name_iterator name_end  () const { return getArgNames().end(); }
 
 
 
  inline size_t              name_size () const { return NumArgNames; }
 
  inline bool                name_empty() const { return NumArgNames == 0; }
 
 
 
  Init *getBit(unsigned Bit) const override {
 
    llvm_unreachable("Illegal bit reference off dag");
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
//  High-Level Classes
 
//===----------------------------------------------------------------------===//
 
 
 
/// This class represents a field in a record, including its name, type,
 
/// value, and source location.
 
class RecordVal {
 
  friend class Record;
 
 
 
public:
 
  enum FieldKind {
 
    FK_Normal,        // A normal record field.
 
    FK_NonconcreteOK, // A field that can be nonconcrete ('field' keyword).
 
    FK_TemplateArg,   // A template argument.
 
  };
 
 
 
private:
 
  Init *Name;
 
  SMLoc Loc; // Source location of definition of name.
 
  PointerIntPair<RecTy *, 2, FieldKind> TyAndKind;
 
  Init *Value;
 
  bool IsUsed = false;
 
 
 
  /// Reference locations to this record value.
 
  SmallVector<SMRange> ReferenceLocs;
 
 
 
public:
 
  RecordVal(Init *N, RecTy *T, FieldKind K);
 
  RecordVal(Init *N, SMLoc Loc, RecTy *T, FieldKind K);
 
 
 
  /// Get the record keeper used to unique this value.
 
  RecordKeeper &getRecordKeeper() const { return Name->getRecordKeeper(); }
 
 
 
  /// Get the name of the field as a StringRef.
 
  StringRef getName() const;
 
 
 
  /// Get the name of the field as an Init.
 
  Init *getNameInit() const { return Name; }
 
 
 
  /// Get the name of the field as a std::string.
 
  std::string getNameInitAsString() const {
 
    return getNameInit()->getAsUnquotedString();
 
  }
 
 
 
  /// Get the source location of the point where the field was defined.
 
  const SMLoc &getLoc() const { return Loc; }
 
 
 
  /// Is this a field where nonconcrete values are okay?
 
  bool isNonconcreteOK() const {
 
    return TyAndKind.getInt() == FK_NonconcreteOK;
 
  }
 
 
 
  /// Is this a template argument?
 
  bool isTemplateArg() const {
 
    return TyAndKind.getInt() == FK_TemplateArg;
 
  }
 
 
 
  /// Get the type of the field value as a RecTy.
 
  RecTy *getType() const { return TyAndKind.getPointer(); }
 
 
 
  /// Get the type of the field for printing purposes.
 
  std::string getPrintType() const;
 
 
 
  /// Get the value of the field as an Init.
 
  Init *getValue() const { return Value; }
 
 
 
  /// Set the value of the field from an Init.
 
  bool setValue(Init *V);
 
 
 
  /// Set the value and source location of the field.
 
  bool setValue(Init *V, SMLoc NewLoc);
 
 
 
  /// Add a reference to this record value.
 
  void addReferenceLoc(SMRange Loc) { ReferenceLocs.push_back(Loc); }
 
 
 
  /// Return the references of this record value.
 
  ArrayRef<SMRange> getReferenceLocs() const { return ReferenceLocs; }
 
 
 
  /// Whether this value is used. Useful for reporting warnings, for example
 
  /// when a template argument is unused.
 
  void setUsed(bool Used) { IsUsed = Used; }
 
  bool isUsed() const { return IsUsed; }
 
 
 
  void dump() const;
 
 
 
  /// Print the value to an output stream, possibly with a semicolon.
 
  void print(raw_ostream &OS, bool PrintSem = true) const;
 
};
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, const RecordVal &RV) {
 
  RV.print(OS << "  ");
 
  return OS;
 
}
 
 
 
class Record {
 
public:
 
  struct AssertionInfo {
 
    SMLoc Loc;
 
    Init *Condition;
 
    Init *Message;
 
 
 
    // User-defined constructor to support std::make_unique(). It can be
 
    // removed in C++20 when braced initialization is supported.
 
    AssertionInfo(SMLoc Loc, Init *Condition, Init *Message)
 
        : Loc(Loc), Condition(Condition), Message(Message) {}
 
  };
 
 
 
private:
 
  Init *Name;
 
  // Location where record was instantiated, followed by the location of
 
  // multiclass prototypes used, and finally by the locations of references to
 
  // this record.
 
  SmallVector<SMLoc, 4> Locs;
 
  SmallVector<SMLoc, 0> ForwardDeclarationLocs;
 
  SmallVector<SMRange, 0> ReferenceLocs;
 
  SmallVector<Init *, 0> TemplateArgs;
 
  SmallVector<RecordVal, 0> Values;
 
  SmallVector<AssertionInfo, 0> Assertions;
 
 
 
  // All superclasses in the inheritance forest in post-order (yes, it
 
  // must be a forest; diamond-shaped inheritance is not allowed).
 
  SmallVector<std::pair<Record *, SMRange>, 0> SuperClasses;
 
 
 
  // Tracks Record instances. Not owned by Record.
 
  RecordKeeper &TrackedRecords;
 
 
 
  // The DefInit corresponding to this record.
 
  DefInit *CorrespondingDefInit = nullptr;
 
 
 
  // Unique record ID.
 
  unsigned ID;
 
 
 
  bool IsAnonymous;
 
  bool IsClass;
 
 
 
  void checkName();
 
 
 
public:
 
  // Constructs a record.
 
  explicit Record(Init *N, ArrayRef<SMLoc> locs, RecordKeeper &records,
 
                  bool Anonymous = false, bool Class = false)
 
      : Name(N), Locs(locs.begin(), locs.end()), TrackedRecords(records),
 
        ID(getNewUID(N->getRecordKeeper())), IsAnonymous(Anonymous),
 
        IsClass(Class) {
 
    checkName();
 
  }
 
 
 
  explicit Record(StringRef N, ArrayRef<SMLoc> locs, RecordKeeper &records,
 
                  bool Class = false)
 
      : Record(StringInit::get(records, N), locs, records, false, Class) {}
 
 
 
  // When copy-constructing a Record, we must still guarantee a globally unique
 
  // ID number. Don't copy CorrespondingDefInit either, since it's owned by the
 
  // original record. All other fields can be copied normally.
 
  Record(const Record &O)
 
      : Name(O.Name), Locs(O.Locs), TemplateArgs(O.TemplateArgs),
 
        Values(O.Values), Assertions(O.Assertions),
 
        SuperClasses(O.SuperClasses), TrackedRecords(O.TrackedRecords),
 
        ID(getNewUID(O.getRecords())), IsAnonymous(O.IsAnonymous),
 
        IsClass(O.IsClass) {}
 
 
 
  static unsigned getNewUID(RecordKeeper &RK);
 
 
 
  unsigned getID() const { return ID; }
 
 
 
  StringRef getName() const { return cast<StringInit>(Name)->getValue(); }
 
 
 
  Init *getNameInit() const {
 
    return Name;
 
  }
 
 
 
  std::string getNameInitAsString() const {
 
    return getNameInit()->getAsUnquotedString();
 
  }
 
 
 
  void setName(Init *Name);      // Also updates RecordKeeper.
 
 
 
  ArrayRef<SMLoc> getLoc() const { return Locs; }
 
  void appendLoc(SMLoc Loc) { Locs.push_back(Loc); }
 
 
 
  ArrayRef<SMLoc> getForwardDeclarationLocs() const {
 
    return ForwardDeclarationLocs;
 
  }
 
 
 
  /// Add a reference to this record value.
 
  void appendReferenceLoc(SMRange Loc) { ReferenceLocs.push_back(Loc); }
 
 
 
  /// Return the references of this record value.
 
  ArrayRef<SMRange> getReferenceLocs() const { return ReferenceLocs; }
 
 
 
  // Update a class location when encountering a (re-)definition.
 
  void updateClassLoc(SMLoc Loc);
 
 
 
  // Make the type that this record should have based on its superclasses.
 
  RecordRecTy *getType();
 
 
 
  /// get the corresponding DefInit.
 
  DefInit *getDefInit();
 
 
 
  bool isClass() const { return IsClass; }
 
 
 
  ArrayRef<Init *> getTemplateArgs() const {
 
    return TemplateArgs;
 
  }
 
 
 
  ArrayRef<RecordVal> getValues() const { return Values; }
 
 
 
  ArrayRef<AssertionInfo> getAssertions() const { return Assertions; }
 
 
 
  ArrayRef<std::pair<Record *, SMRange>>  getSuperClasses() const {
 
    return SuperClasses;
 
  }
 
 
 
  /// Determine whether this record has the specified direct superclass.
 
  bool hasDirectSuperClass(const Record *SuperClass) const;
 
 
 
  /// Append the direct superclasses of this record to Classes.
 
  void getDirectSuperClasses(SmallVectorImpl<Record *> &Classes) const;
 
 
 
  bool isTemplateArg(Init *Name) const {
 
    return llvm::is_contained(TemplateArgs, Name);
 
  }
 
 
 
  const RecordVal *getValue(const Init *Name) const {
 
    for (const RecordVal &Val : Values)
 
      if (Val.Name == Name) return &Val;
 
    return nullptr;
 
  }
 
 
 
  const RecordVal *getValue(StringRef Name) const {
 
    return getValue(StringInit::get(getRecords(), Name));
 
  }
 
 
 
  RecordVal *getValue(const Init *Name) {
 
    return const_cast<RecordVal *>(static_cast<const Record *>(this)->getValue(Name));
 
  }
 
 
 
  RecordVal *getValue(StringRef Name) {
 
    return const_cast<RecordVal *>(static_cast<const Record *>(this)->getValue(Name));
 
  }
 
 
 
  void addTemplateArg(Init *Name) {
 
    assert(!isTemplateArg(Name) && "Template arg already defined!");
 
    TemplateArgs.push_back(Name);
 
  }
 
 
 
  void addValue(const RecordVal &RV) {
 
    assert(getValue(RV.getNameInit()) == nullptr && "Value already added!");
 
    Values.push_back(RV);
 
  }
 
 
 
  void removeValue(Init *Name) {
 
    for (unsigned i = 0, e = Values.size(); i != e; ++i)
 
      if (Values[i].getNameInit() == Name) {
 
        Values.erase(Values.begin()+i);
 
        return;
 
      }
 
    llvm_unreachable("Cannot remove an entry that does not exist!");
 
  }
 
 
 
  void removeValue(StringRef Name) {
 
    removeValue(StringInit::get(getRecords(), Name));
 
  }
 
 
 
  void addAssertion(SMLoc Loc, Init *Condition, Init *Message) {
 
    Assertions.push_back(AssertionInfo(Loc, Condition, Message));
 
  }
 
 
 
  void appendAssertions(const Record *Rec) {
 
    Assertions.append(Rec->Assertions);
 
  }
 
 
 
  void checkRecordAssertions();
 
  void checkUnusedTemplateArgs();
 
 
 
  bool isSubClassOf(const Record *R) const {
 
    for (const auto &SCPair : SuperClasses)
 
      if (SCPair.first == R)
 
        return true;
 
    return false;
 
  }
 
 
 
  bool isSubClassOf(StringRef Name) const {
 
    for (const auto &SCPair : SuperClasses) {
 
      if (const auto *SI = dyn_cast<StringInit>(SCPair.first->getNameInit())) {
 
        if (SI->getValue() == Name)
 
          return true;
 
      } else if (SCPair.first->getNameInitAsString() == Name) {
 
        return true;
 
      }
 
    }
 
    return false;
 
  }
 
 
 
  void addSuperClass(Record *R, SMRange Range) {
 
    assert(!CorrespondingDefInit &&
 
           "changing type of record after it has been referenced");
 
    assert(!isSubClassOf(R) && "Already subclassing record!");
 
    SuperClasses.push_back(std::make_pair(R, Range));
 
  }
 
 
 
  /// If there are any field references that refer to fields that have been
 
  /// filled in, we can propagate the values now.
 
  ///
 
  /// This is a final resolve: any error messages, e.g. due to undefined !cast
 
  /// references, are generated now.
 
  void resolveReferences(Init *NewName = nullptr);
 
 
 
  /// Apply the resolver to the name of the record as well as to the
 
  /// initializers of all fields of the record except SkipVal.
 
  ///
 
  /// The resolver should not resolve any of the fields itself, to avoid
 
  /// recursion / infinite loops.
 
  void resolveReferences(Resolver &R, const RecordVal *SkipVal = nullptr);
 
 
 
  RecordKeeper &getRecords() const {
 
    return TrackedRecords;
 
  }
 
 
 
  bool isAnonymous() const {
 
    return IsAnonymous;
 
  }
 
 
 
  void dump() const;
 
 
 
  //===--------------------------------------------------------------------===//
 
  // High-level methods useful to tablegen back-ends
 
  //
 
 
 
  /// Return the source location for the named field.
 
  SMLoc getFieldLoc(StringRef FieldName) const;
 
 
 
  /// Return the initializer for a value with the specified name, or throw an
 
  /// exception if the field does not exist.
 
  Init *getValueInit(StringRef FieldName) const;
 
 
 
  /// Return true if the named field is unset.
 
  bool isValueUnset(StringRef FieldName) const {
 
    return isa<UnsetInit>(getValueInit(FieldName));
 
  }
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// string, throwing an exception if the field does not exist or if the value
 
  /// is not a string.
 
  StringRef getValueAsString(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// string, throwing an exception if the value is not a string and
 
  /// llvm::Optional() if the field does not exist.
 
  std::optional<StringRef> getValueAsOptionalString(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// BitsInit, throwing an exception if the field does not exist or if the
 
  /// value is not the right type.
 
  BitsInit *getValueAsBitsInit(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// ListInit, throwing an exception if the field does not exist or if the
 
  /// value is not the right type.
 
  ListInit *getValueAsListInit(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// vector of records, throwing an exception if the field does not exist or
 
  /// if the value is not the right type.
 
  std::vector<Record*> getValueAsListOfDefs(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// vector of integers, throwing an exception if the field does not exist or
 
  /// if the value is not the right type.
 
  std::vector<int64_t> getValueAsListOfInts(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// vector of strings, throwing an exception if the field does not exist or
 
  /// if the value is not the right type.
 
  std::vector<StringRef> getValueAsListOfStrings(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// Record, throwing an exception if the field does not exist or if the value
 
  /// is not the right type.
 
  Record *getValueAsDef(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a
 
  /// Record, returning null if the field exists but is "uninitialized" (i.e.
 
  /// set to `?`), and throwing an exception if the field does not exist or if
 
  /// its value is not the right type.
 
  Record *getValueAsOptionalDef(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a bit,
 
  /// throwing an exception if the field does not exist or if the value is not
 
  /// the right type.
 
  bool getValueAsBit(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as a bit.
 
  /// If the field is unset, sets Unset to true and returns false.
 
  bool getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const;
 
 
 
  /// This method looks up the specified field and returns its value as an
 
  /// int64_t, throwing an exception if the field does not exist or if the
 
  /// value is not the right type.
 
  int64_t getValueAsInt(StringRef FieldName) const;
 
 
 
  /// This method looks up the specified field and returns its value as an Dag,
 
  /// throwing an exception if the field does not exist or if the value is not
 
  /// the right type.
 
  DagInit *getValueAsDag(StringRef FieldName) const;
 
};
 
 
 
raw_ostream &operator<<(raw_ostream &OS, const Record &R);
 
 
 
class RecordKeeper {
 
  using RecordMap = std::map<std::string, std::unique_ptr<Record>, std::less<>>;
 
  using GlobalMap = std::map<std::string, Init *, std::less<>>;
 
 
 
public:
 
  RecordKeeper();
 
  ~RecordKeeper();
 
 
 
  /// Return the internal implementation of the RecordKeeper.
 
  detail::RecordKeeperImpl &getImpl() { return *Impl; }
 
 
 
  /// Get the main TableGen input file's name.
 
  const std::string getInputFilename() const { return InputFilename; }
 
 
 
  /// Get the map of classes.
 
  const RecordMap &getClasses() const { return Classes; }
 
 
 
  /// Get the map of records (defs).
 
  const RecordMap &getDefs() const { return Defs; }
 
 
 
  /// Get the map of global variables.
 
  const GlobalMap &getGlobals() const { return ExtraGlobals; }
 
 
 
  /// Get the class with the specified name.
 
  Record *getClass(StringRef Name) const {
 
    auto I = Classes.find(Name);
 
    return I == Classes.end() ? nullptr : I->second.get();
 
  }
 
 
 
  /// Get the concrete record with the specified name.
 
  Record *getDef(StringRef Name) const {
 
    auto I = Defs.find(Name);
 
    return I == Defs.end() ? nullptr : I->second.get();
 
  }
 
 
 
  /// Get the \p Init value of the specified global variable.
 
  Init *getGlobal(StringRef Name) const {
 
    if (Record *R = getDef(Name))
 
      return R->getDefInit();
 
    auto It = ExtraGlobals.find(Name);
 
    return It == ExtraGlobals.end() ? nullptr : It->second;
 
  }
 
 
 
  void saveInputFilename(std::string Filename) {
 
    InputFilename = Filename;
 
  }
 
 
 
  void addClass(std::unique_ptr<Record> R) {
 
    bool Ins = Classes.insert(std::make_pair(std::string(R->getName()),
 
                                             std::move(R))).second;
 
    (void)Ins;
 
    assert(Ins && "Class already exists");
 
  }
 
 
 
  void addDef(std::unique_ptr<Record> R) {
 
    bool Ins = Defs.insert(std::make_pair(std::string(R->getName()),
 
                                          std::move(R))).second;
 
    (void)Ins;
 
    assert(Ins && "Record already exists");
 
  }
 
 
 
  void addExtraGlobal(StringRef Name, Init *I) {
 
    bool Ins = ExtraGlobals.insert(std::make_pair(std::string(Name), I)).second;
 
    (void)Ins;
 
    assert(!getDef(Name));
 
    assert(Ins && "Global already exists");
 
  }
 
 
 
  Init *getNewAnonymousName();
 
 
 
  /// Start phase timing; called if the --time-phases option is specified.
 
  void startPhaseTiming() {
 
    TimingGroup = new TimerGroup("TableGen", "TableGen Phase Timing");
 
  }
 
 
 
  /// Start timing a phase. Automatically stops any previous phase timer.
 
  void startTimer(StringRef Name);
 
 
 
  /// Stop timing a phase.
 
  void stopTimer();
 
 
 
  /// Start timing the overall backend. If the backend itself starts a timer,
 
  /// then this timer is cleared.
 
  void startBackendTimer(StringRef Name);
 
 
 
  /// Stop timing the overall backend.
 
  void stopBackendTimer();
 
 
 
  /// Stop phase timing and print the report.
 
  void stopPhaseTiming() {
 
    if (TimingGroup)
 
      delete TimingGroup;
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // High-level helper methods, useful for tablegen backends.
 
 
 
  /// Get all the concrete records that inherit from the one specified
 
  /// class. The class must be defined.
 
  std::vector<Record *> getAllDerivedDefinitions(StringRef ClassName) const;
 
 
 
  /// Get all the concrete records that inherit from all the specified
 
  /// classes. The classes must be defined.
 
  std::vector<Record *> getAllDerivedDefinitions(
 
      ArrayRef<StringRef> ClassNames) const;
 
 
 
  /// Get all the concrete records that inherit from specified class, if the
 
  /// class is defined. Returns an empty vector if the class is not defined.
 
  std::vector<Record *>
 
  getAllDerivedDefinitionsIfDefined(StringRef ClassName) const;
 
 
 
  void dump() const;
 
 
 
private:
 
  RecordKeeper(RecordKeeper &&) = delete;
 
  RecordKeeper(const RecordKeeper &) = delete;
 
  RecordKeeper &operator=(RecordKeeper &&) = delete;
 
  RecordKeeper &operator=(const RecordKeeper &) = delete;
 
 
 
  std::string InputFilename;
 
  RecordMap Classes, Defs;
 
  mutable StringMap<std::vector<Record *>> ClassRecordsMap;
 
  GlobalMap ExtraGlobals;
 
 
 
  // These members are for the phase timing feature. We need a timer group,
 
  // the last timer started, and a flag to say whether the last timer
 
  // is the special "backend overall timer."
 
  TimerGroup *TimingGroup = nullptr;
 
  Timer *LastTimer = nullptr;
 
  bool BackendTimer = false;
 
 
 
  /// The internal uniquer implementation of the RecordKeeper.
 
  std::unique_ptr<detail::RecordKeeperImpl> Impl;
 
};
 
 
 
/// Sorting predicate to sort record pointers by name.
 
struct LessRecord {
 
  bool operator()(const Record *Rec1, const Record *Rec2) const {
 
    return StringRef(Rec1->getName()).compare_numeric(Rec2->getName()) < 0;
 
  }
 
};
 
 
 
/// Sorting predicate to sort record pointers by their
 
/// unique ID. If you just need a deterministic order, use this, since it
 
/// just compares two `unsigned`; the other sorting predicates require
 
/// string manipulation.
 
struct LessRecordByID {
 
  bool operator()(const Record *LHS, const Record *RHS) const {
 
    return LHS->getID() < RHS->getID();
 
  }
 
};
 
 
 
/// Sorting predicate to sort record pointers by their
 
/// name field.
 
struct LessRecordFieldName {
 
  bool operator()(const Record *Rec1, const Record *Rec2) const {
 
    return Rec1->getValueAsString("Name") < Rec2->getValueAsString("Name");
 
  }
 
};
 
 
 
struct LessRecordRegister {
 
  struct RecordParts {
 
    SmallVector<std::pair< bool, StringRef>, 4> Parts;
 
 
 
    RecordParts(StringRef Rec) {
 
      if (Rec.empty())
 
        return;
 
 
 
      size_t Len = 0;
 
      const char *Start = Rec.data();
 
      const char *Curr = Start;
 
      bool IsDigitPart = isDigit(Curr[0]);
 
      for (size_t I = 0, E = Rec.size(); I != E; ++I, ++Len) {
 
        bool IsDigit = isDigit(Curr[I]);
 
        if (IsDigit != IsDigitPart) {
 
          Parts.push_back(std::make_pair(IsDigitPart, StringRef(Start, Len)));
 
          Len = 0;
 
          Start = &Curr[I];
 
          IsDigitPart = isDigit(Curr[I]);
 
        }
 
      }
 
      // Push the last part.
 
      Parts.push_back(std::make_pair(IsDigitPart, StringRef(Start, Len)));
 
    }
 
 
 
    size_t size() { return Parts.size(); }
 
 
 
    std::pair<bool, StringRef> getPart(size_t i) {
 
      assert (i < Parts.size() && "Invalid idx!");
 
      return Parts[i];
 
    }
 
  };
 
 
 
  bool operator()(const Record *Rec1, const Record *Rec2) const {
 
    RecordParts LHSParts(StringRef(Rec1->getName()));
 
    RecordParts RHSParts(StringRef(Rec2->getName()));
 
 
 
    size_t LHSNumParts = LHSParts.size();
 
    size_t RHSNumParts = RHSParts.size();
 
    assert (LHSNumParts && RHSNumParts && "Expected at least one part!");
 
 
 
    if (LHSNumParts != RHSNumParts)
 
      return LHSNumParts < RHSNumParts;
 
 
 
    // We expect the registers to be of the form [_a-zA-Z]+([0-9]*[_a-zA-Z]*)*.
 
    for (size_t I = 0, E = LHSNumParts; I < E; I+=2) {
 
      std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
 
      std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
 
      // Expect even part to always be alpha.
 
      assert (LHSPart.first == false && RHSPart.first == false &&
 
              "Expected both parts to be alpha.");
 
      if (int Res = LHSPart.second.compare(RHSPart.second))
 
        return Res < 0;
 
    }
 
    for (size_t I = 1, E = LHSNumParts; I < E; I+=2) {
 
      std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
 
      std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
 
      // Expect odd part to always be numeric.
 
      assert (LHSPart.first == true && RHSPart.first == true &&
 
              "Expected both parts to be numeric.");
 
      if (LHSPart.second.size() != RHSPart.second.size())
 
        return LHSPart.second.size() < RHSPart.second.size();
 
 
 
      unsigned LHSVal, RHSVal;
 
 
 
      bool LHSFailed = LHSPart.second.getAsInteger(10, LHSVal); (void)LHSFailed;
 
      assert(!LHSFailed && "Unable to convert LHS to integer.");
 
      bool RHSFailed = RHSPart.second.getAsInteger(10, RHSVal); (void)RHSFailed;
 
      assert(!RHSFailed && "Unable to convert RHS to integer.");
 
 
 
      if (LHSVal != RHSVal)
 
        return LHSVal < RHSVal;
 
    }
 
    return LHSNumParts < RHSNumParts;
 
  }
 
};
 
 
 
raw_ostream &operator<<(raw_ostream &OS, const RecordKeeper &RK);
 
 
 
//===----------------------------------------------------------------------===//
 
//  Resolvers
 
//===----------------------------------------------------------------------===//
 
 
 
/// Interface for looking up the initializer for a variable name, used by
 
/// Init::resolveReferences.
 
class Resolver {
 
  Record *CurRec;
 
  bool IsFinal = false;
 
 
 
public:
 
  explicit Resolver(Record *CurRec) : CurRec(CurRec) {}
 
  virtual ~Resolver() = default;
 
 
 
  Record *getCurrentRecord() const { return CurRec; }
 
 
 
  /// Return the initializer for the given variable name (should normally be a
 
  /// StringInit), or nullptr if the name could not be resolved.
 
  virtual Init *resolve(Init *VarName) = 0;
 
 
 
  // Whether bits in a BitsInit should stay unresolved if resolving them would
 
  // result in a ? (UnsetInit). This behavior is used to represent instruction
 
  // encodings by keeping references to unset variables within a record.
 
  virtual bool keepUnsetBits() const { return false; }
 
 
 
  // Whether this is the final resolve step before adding a record to the
 
  // RecordKeeper. Error reporting during resolve and related constant folding
 
  // should only happen when this is true.
 
  bool isFinal() const { return IsFinal; }
 
 
 
  void setFinal(bool Final) { IsFinal = Final; }
 
};
 
 
 
/// Resolve arbitrary mappings.
 
class MapResolver final : public Resolver {
 
  struct MappedValue {
 
    Init *V;
 
    bool Resolved;
 
 
 
    MappedValue() : V(nullptr), Resolved(false) {}
 
    MappedValue(Init *V, bool Resolved) : V(V), Resolved(Resolved) {}
 
  };
 
 
 
  DenseMap<Init *, MappedValue> Map;
 
 
 
public:
 
  explicit MapResolver(Record *CurRec = nullptr) : Resolver(CurRec) {}
 
 
 
  void set(Init *Key, Init *Value) { Map[Key] = {Value, false}; }
 
 
 
  bool isComplete(Init *VarName) const {
 
    auto It = Map.find(VarName);
 
    assert(It != Map.end() && "key must be present in map");
 
    return It->second.V->isComplete();
 
  }
 
 
 
  Init *resolve(Init *VarName) override;
 
};
 
 
 
/// Resolve all variables from a record except for unset variables.
 
class RecordResolver final : public Resolver {
 
  DenseMap<Init *, Init *> Cache;
 
  SmallVector<Init *, 4> Stack;
 
  Init *Name = nullptr;
 
 
 
public:
 
  explicit RecordResolver(Record &R) : Resolver(&R) {}
 
 
 
  void setName(Init *NewName) { Name = NewName; }
 
 
 
  Init *resolve(Init *VarName) override;
 
 
 
  bool keepUnsetBits() const override { return true; }
 
};
 
 
 
/// Delegate resolving to a sub-resolver, but shadow some variable names.
 
class ShadowResolver final : public Resolver {
 
  Resolver &R;
 
  DenseSet<Init *> Shadowed;
 
 
 
public:
 
  explicit ShadowResolver(Resolver &R)
 
      : Resolver(R.getCurrentRecord()), R(R) {
 
    setFinal(R.isFinal());
 
  }
 
 
 
  void addShadow(Init *Key) { Shadowed.insert(Key); }
 
 
 
  Init *resolve(Init *VarName) override {
 
    if (Shadowed.count(VarName))
 
      return nullptr;
 
    return R.resolve(VarName);
 
  }
 
};
 
 
 
/// (Optionally) delegate resolving to a sub-resolver, and keep track whether
 
/// there were unresolved references.
 
class TrackUnresolvedResolver final : public Resolver {
 
  Resolver *R;
 
  bool FoundUnresolved = false;
 
 
 
public:
 
  explicit TrackUnresolvedResolver(Resolver *R = nullptr)
 
      : Resolver(R ? R->getCurrentRecord() : nullptr), R(R) {}
 
 
 
  bool foundUnresolved() const { return FoundUnresolved; }
 
 
 
  Init *resolve(Init *VarName) override;
 
};
 
 
 
/// Do not resolve anything, but keep track of whether a given variable was
 
/// referenced.
 
class HasReferenceResolver final : public Resolver {
 
  Init *VarNameToTrack;
 
  bool Found = false;
 
 
 
public:
 
  explicit HasReferenceResolver(Init *VarNameToTrack)
 
      : Resolver(nullptr), VarNameToTrack(VarNameToTrack) {}
 
 
 
  bool found() const { return Found; }
 
 
 
  Init *resolve(Init *VarName) override;
 
};
 
 
 
void EmitDetailedRecords(RecordKeeper &RK, raw_ostream &OS);
 
void EmitJSON(RecordKeeper &RK, raw_ostream &OS);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_TABLEGEN_RECORD_H