//===- llvm/Support/YAMLTraits.h --------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_YAMLTRAITS_H
 
#define LLVM_SUPPORT_YAMLTRAITS_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/BitVector.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringExtras.h"
 
#include "llvm/ADT/StringMap.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/Twine.h"
 
#include "llvm/Support/AlignOf.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/SMLoc.h"
 
#include "llvm/Support/SourceMgr.h"
 
#include "llvm/Support/YAMLParser.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <cassert>
 
#include <map>
 
#include <memory>
 
#include <new>
 
#include <optional>
 
#include <string>
 
#include <system_error>
 
#include <type_traits>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class VersionTuple;
 
 
 
namespace yaml {
 
 
 
enum class NodeKind : uint8_t {
 
  Scalar,
 
  Map,
 
  Sequence,
 
};
 
 
 
struct EmptyContext {};
 
 
 
/// This class should be specialized by any type that needs to be converted
 
/// to/from a YAML mapping.  For example:
 
///
 
///     struct MappingTraits<MyStruct> {
 
///       static void mapping(IO &io, MyStruct &s) {
 
///         io.mapRequired("name", s.name);
 
///         io.mapRequired("size", s.size);
 
///         io.mapOptional("age",  s.age);
 
///       }
 
///     };
 
template<class T>
 
struct MappingTraits {
 
  // Must provide:
 
  // static void mapping(IO &io, T &fields);
 
  // Optionally may provide:
 
  // static std::string validate(IO &io, T &fields);
 
  // static void enumInput(IO &io, T &value);
 
  //
 
  // The optional flow flag will cause generated YAML to use a flow mapping
 
  // (e.g. { a: 0, b: 1 }):
 
  // static const bool flow = true;
 
};
 
 
 
/// This class is similar to MappingTraits<T> but allows you to pass in
 
/// additional context for each map operation.  For example:
 
///
 
///     struct MappingContextTraits<MyStruct, MyContext> {
 
///       static void mapping(IO &io, MyStruct &s, MyContext &c) {
 
///         io.mapRequired("name", s.name);
 
///         io.mapRequired("size", s.size);
 
///         io.mapOptional("age",  s.age);
 
///         ++c.TimesMapped;
 
///       }
 
///     };
 
template <class T, class Context> struct MappingContextTraits {
 
  // Must provide:
 
  // static void mapping(IO &io, T &fields, Context &Ctx);
 
  // Optionally may provide:
 
  // static std::string validate(IO &io, T &fields, Context &Ctx);
 
  //
 
  // The optional flow flag will cause generated YAML to use a flow mapping
 
  // (e.g. { a: 0, b: 1 }):
 
  // static const bool flow = true;
 
};
 
 
 
/// This class should be specialized by any integral type that converts
 
/// to/from a YAML scalar where there is a one-to-one mapping between
 
/// in-memory values and a string in YAML.  For example:
 
///
 
///     struct ScalarEnumerationTraits<Colors> {
 
///         static void enumeration(IO &io, Colors &value) {
 
///           io.enumCase(value, "red",   cRed);
 
///           io.enumCase(value, "blue",  cBlue);
 
///           io.enumCase(value, "green", cGreen);
 
///         }
 
///       };
 
template <typename T, typename Enable = void> struct ScalarEnumerationTraits {
 
  // Must provide:
 
  // static void enumeration(IO &io, T &value);
 
};
 
 
 
/// This class should be specialized by any integer type that is a union
 
/// of bit values and the YAML representation is a flow sequence of
 
/// strings.  For example:
 
///
 
///      struct ScalarBitSetTraits<MyFlags> {
 
///        static void bitset(IO &io, MyFlags &value) {
 
///          io.bitSetCase(value, "big",   flagBig);
 
///          io.bitSetCase(value, "flat",  flagFlat);
 
///          io.bitSetCase(value, "round", flagRound);
 
///        }
 
///      };
 
template <typename T, typename Enable = void> struct ScalarBitSetTraits {
 
  // Must provide:
 
  // static void bitset(IO &io, T &value);
 
};
 
 
 
/// Describe which type of quotes should be used when quoting is necessary.
 
/// Some non-printable characters need to be double-quoted, while some others
 
/// are fine with simple-quoting, and some don't need any quoting.
 
enum class QuotingType { None, Single, Double };
 
 
 
/// This class should be specialized by type that requires custom conversion
 
/// to/from a yaml scalar.  For example:
 
///
 
///    template<>
 
///    struct ScalarTraits<MyType> {
 
///      static void output(const MyType &val, void*, llvm::raw_ostream &out) {
 
///        // stream out custom formatting
 
///        out << llvm::format("%x", val);
 
///      }
 
///      static StringRef input(StringRef scalar, void*, MyType &value) {
 
///        // parse scalar and set `value`
 
///        // return empty string on success, or error string
 
///        return StringRef();
 
///      }
 
///      static QuotingType mustQuote(StringRef) { return QuotingType::Single; }
 
///    };
 
template <typename T, typename Enable = void> struct ScalarTraits {
 
  // Must provide:
 
  //
 
  // Function to write the value as a string:
 
  // static void output(const T &value, void *ctxt, llvm::raw_ostream &out);
 
  //
 
  // Function to convert a string to a value.  Returns the empty
 
  // StringRef on success or an error string if string is malformed:
 
  // static StringRef input(StringRef scalar, void *ctxt, T &value);
 
  //
 
  // Function to determine if the value should be quoted.
 
  // static QuotingType mustQuote(StringRef);
 
};
 
 
 
/// This class should be specialized by type that requires custom conversion
 
/// to/from a YAML literal block scalar. For example:
 
///
 
///    template <>
 
///    struct BlockScalarTraits<MyType> {
 
///      static void output(const MyType &Value, void*, llvm::raw_ostream &Out)
 
///      {
 
///        // stream out custom formatting
 
///        Out << Value;
 
///      }
 
///      static StringRef input(StringRef Scalar, void*, MyType &Value) {
 
///        // parse scalar and set `value`
 
///        // return empty string on success, or error string
 
///        return StringRef();
 
///      }
 
///    };
 
template <typename T>
 
struct BlockScalarTraits {
 
  // Must provide:
 
  //
 
  // Function to write the value as a string:
 
  // static void output(const T &Value, void *ctx, llvm::raw_ostream &Out);
 
  //
 
  // Function to convert a string to a value.  Returns the empty
 
  // StringRef on success or an error string if string is malformed:
 
  // static StringRef input(StringRef Scalar, void *ctxt, T &Value);
 
  //
 
  // Optional:
 
  // static StringRef inputTag(T &Val, std::string Tag)
 
  // static void outputTag(const T &Val, raw_ostream &Out)
 
};
 
 
 
/// This class should be specialized by type that requires custom conversion
 
/// to/from a YAML scalar with optional tags. For example:
 
///
 
///    template <>
 
///    struct TaggedScalarTraits<MyType> {
 
///      static void output(const MyType &Value, void*, llvm::raw_ostream
 
///      &ScalarOut, llvm::raw_ostream &TagOut)
 
///      {
 
///        // stream out custom formatting including optional Tag
 
///        Out << Value;
 
///      }
 
///      static StringRef input(StringRef Scalar, StringRef Tag, void*, MyType
 
///      &Value) {
 
///        // parse scalar and set `value`
 
///        // return empty string on success, or error string
 
///        return StringRef();
 
///      }
 
///      static QuotingType mustQuote(const MyType &Value, StringRef) {
 
///        return QuotingType::Single;
 
///      }
 
///    };
 
template <typename T> struct TaggedScalarTraits {
 
  // Must provide:
 
  //
 
  // Function to write the value and tag as strings:
 
  // static void output(const T &Value, void *ctx, llvm::raw_ostream &ScalarOut,
 
  // llvm::raw_ostream &TagOut);
 
  //
 
  // Function to convert a string to a value.  Returns the empty
 
  // StringRef on success or an error string if string is malformed:
 
  // static StringRef input(StringRef Scalar, StringRef Tag, void *ctxt, T
 
  // &Value);
 
  //
 
  // Function to determine if the value should be quoted.
 
  // static QuotingType mustQuote(const T &Value, StringRef Scalar);
 
};
 
 
 
/// This class should be specialized by any type that needs to be converted
 
/// to/from a YAML sequence.  For example:
 
///
 
///    template<>
 
///    struct SequenceTraits<MyContainer> {
 
///      static size_t size(IO &io, MyContainer &seq) {
 
///        return seq.size();
 
///      }
 
///      static MyType& element(IO &, MyContainer &seq, size_t index) {
 
///        if ( index >= seq.size() )
 
///          seq.resize(index+1);
 
///        return seq[index];
 
///      }
 
///    };
 
template<typename T, typename EnableIf = void>
 
struct SequenceTraits {
 
  // Must provide:
 
  // static size_t size(IO &io, T &seq);
 
  // static T::value_type& element(IO &io, T &seq, size_t index);
 
  //
 
  // The following is option and will cause generated YAML to use
 
  // a flow sequence (e.g. [a,b,c]).
 
  // static const bool flow = true;
 
};
 
 
 
/// This class should be specialized by any type for which vectors of that
 
/// type need to be converted to/from a YAML sequence.
 
template<typename T, typename EnableIf = void>
 
struct SequenceElementTraits {
 
  // Must provide:
 
  // static const bool flow;
 
};
 
 
 
/// This class should be specialized by any type that needs to be converted
 
/// to/from a list of YAML documents.
 
template<typename T>
 
struct DocumentListTraits {
 
  // Must provide:
 
  // static size_t size(IO &io, T &seq);
 
  // static T::value_type& element(IO &io, T &seq, size_t index);
 
};
 
 
 
/// This class should be specialized by any type that needs to be converted
 
/// to/from a YAML mapping in the case where the names of the keys are not known
 
/// in advance, e.g. a string map.
 
template <typename T>
 
struct CustomMappingTraits {
 
  // static void inputOne(IO &io, StringRef key, T &elem);
 
  // static void output(IO &io, T &elem);
 
};
 
 
 
/// This class should be specialized by any type that can be represented as
 
/// a scalar, map, or sequence, decided dynamically. For example:
 
///
 
///    typedef std::unique_ptr<MyBase> MyPoly;
 
///
 
///    template<>
 
///    struct PolymorphicTraits<MyPoly> {
 
///      static NodeKind getKind(const MyPoly &poly) {
 
///        return poly->getKind();
 
///      }
 
///      static MyScalar& getAsScalar(MyPoly &poly) {
 
///        if (!poly || !isa<MyScalar>(poly))
 
///          poly.reset(new MyScalar());
 
///        return *cast<MyScalar>(poly.get());
 
///      }
 
///      // ...
 
///    };
 
template <typename T> struct PolymorphicTraits {
 
  // Must provide:
 
  // static NodeKind getKind(const T &poly);
 
  // static scalar_type &getAsScalar(T &poly);
 
  // static map_type &getAsMap(T &poly);
 
  // static sequence_type &getAsSequence(T &poly);
 
};
 
 
 
// Only used for better diagnostics of missing traits
 
template <typename T>
 
struct MissingTrait;
 
 
 
// Test if ScalarEnumerationTraits<T> is defined on type T.
 
template <class T>
 
struct has_ScalarEnumerationTraits
 
{
 
  using Signature_enumeration = void (*)(class IO&, T&);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_enumeration, &U::enumeration>*);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value =
 
    (sizeof(test<ScalarEnumerationTraits<T>>(nullptr)) == 1);
 
};
 
 
 
// Test if ScalarBitSetTraits<T> is defined on type T.
 
template <class T>
 
struct has_ScalarBitSetTraits
 
{
 
  using Signature_bitset = void (*)(class IO&, T&);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_bitset, &U::bitset>*);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value = (sizeof(test<ScalarBitSetTraits<T>>(nullptr)) == 1);
 
};
 
 
 
// Test if ScalarTraits<T> is defined on type T.
 
template <class T>
 
struct has_ScalarTraits
 
{
 
  using Signature_input = StringRef (*)(StringRef, void*, T&);
 
  using Signature_output = void (*)(const T&, void*, raw_ostream&);
 
  using Signature_mustQuote = QuotingType (*)(StringRef);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_input, &U::input> *,
 
                   SameType<Signature_output, &U::output> *,
 
                   SameType<Signature_mustQuote, &U::mustQuote> *);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value =
 
      (sizeof(test<ScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
 
};
 
 
 
// Test if BlockScalarTraits<T> is defined on type T.
 
template <class T>
 
struct has_BlockScalarTraits
 
{
 
  using Signature_input = StringRef (*)(StringRef, void *, T &);
 
  using Signature_output = void (*)(const T &, void *, raw_ostream &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_input, &U::input> *,
 
                   SameType<Signature_output, &U::output> *);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value =
 
      (sizeof(test<BlockScalarTraits<T>>(nullptr, nullptr)) == 1);
 
};
 
 
 
// Test if TaggedScalarTraits<T> is defined on type T.
 
template <class T> struct has_TaggedScalarTraits {
 
  using Signature_input = StringRef (*)(StringRef, StringRef, void *, T &);
 
  using Signature_output = void (*)(const T &, void *, raw_ostream &,
 
                                    raw_ostream &);
 
  using Signature_mustQuote = QuotingType (*)(const T &, StringRef);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_input, &U::input> *,
 
                   SameType<Signature_output, &U::output> *,
 
                   SameType<Signature_mustQuote, &U::mustQuote> *);
 
 
 
  template <typename U> static double test(...);
 
 
 
  static bool const value =
 
      (sizeof(test<TaggedScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
 
};
 
 
 
// Test if MappingContextTraits<T> is defined on type T.
 
template <class T, class Context> struct has_MappingTraits {
 
  using Signature_mapping = void (*)(class IO &, T &, Context &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_mapping, &U::mapping>*);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value =
 
      (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
 
};
 
 
 
// Test if MappingTraits<T> is defined on type T.
 
template <class T> struct has_MappingTraits<T, EmptyContext> {
 
  using Signature_mapping = void (*)(class IO &, T &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_mapping, &U::mapping> *);
 
 
 
  template <typename U> static double test(...);
 
 
 
  static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
 
};
 
 
 
// Test if MappingContextTraits<T>::validate() is defined on type T.
 
template <class T, class Context> struct has_MappingValidateTraits {
 
  using Signature_validate = std::string (*)(class IO &, T &, Context &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_validate, &U::validate>*);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value =
 
      (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
 
};
 
 
 
// Test if MappingTraits<T>::validate() is defined on type T.
 
template <class T> struct has_MappingValidateTraits<T, EmptyContext> {
 
  using Signature_validate = std::string (*)(class IO &, T &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_validate, &U::validate> *);
 
 
 
  template <typename U> static double test(...);
 
 
 
  static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
 
};
 
 
 
// Test if MappingContextTraits<T>::enumInput() is defined on type T.
 
template <class T, class Context> struct has_MappingEnumInputTraits {
 
  using Signature_validate = void (*)(class IO &, T &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_validate, &U::enumInput> *);
 
 
 
  template <typename U> static double test(...);
 
 
 
  static bool const value =
 
      (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
 
};
 
 
 
// Test if MappingTraits<T>::enumInput() is defined on type T.
 
template <class T> struct has_MappingEnumInputTraits<T, EmptyContext> {
 
  using Signature_validate = void (*)(class IO &, T &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_validate, &U::enumInput> *);
 
 
 
  template <typename U> static double test(...);
 
 
 
  static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
 
};
 
 
 
// Test if SequenceTraits<T> is defined on type T.
 
template <class T>
 
struct has_SequenceMethodTraits
 
{
 
  using Signature_size = size_t (*)(class IO&, T&);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_size, &U::size>*);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value =  (sizeof(test<SequenceTraits<T>>(nullptr)) == 1);
 
};
 
 
 
// Test if CustomMappingTraits<T> is defined on type T.
 
template <class T>
 
struct has_CustomMappingTraits
 
{
 
  using Signature_input = void (*)(IO &io, StringRef key, T &v);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_input, &U::inputOne>*);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value =
 
      (sizeof(test<CustomMappingTraits<T>>(nullptr)) == 1);
 
};
 
 
 
// has_FlowTraits<int> will cause an error with some compilers because
 
// it subclasses int.  Using this wrapper only instantiates the
 
// real has_FlowTraits only if the template type is a class.
 
template <typename T, bool Enabled = std::is_class<T>::value>
 
class has_FlowTraits
 
{
 
public:
 
   static const bool value = false;
 
};
 
 
 
// Some older gcc compilers don't support straight forward tests
 
// for members, so test for ambiguity cause by the base and derived
 
// classes both defining the member.
 
template <class T>
 
struct has_FlowTraits<T, true>
 
{
 
  struct Fallback { bool flow; };
 
  struct Derived : T, Fallback { };
 
 
 
  template<typename C>
 
  static char (&f(SameType<bool Fallback::*, &C::flow>*))[1];
 
 
 
  template<typename C>
 
  static char (&f(...))[2];
 
 
 
  static bool const value = sizeof(f<Derived>(nullptr)) == 2;
 
};
 
 
 
// Test if SequenceTraits<T> is defined on type T
 
template<typename T>
 
struct has_SequenceTraits : public std::integral_constant<bool,
 
                                      has_SequenceMethodTraits<T>::value > { };
 
 
 
// Test if DocumentListTraits<T> is defined on type T
 
template <class T>
 
struct has_DocumentListTraits
 
{
 
  using Signature_size = size_t (*)(class IO &, T &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_size, &U::size>*);
 
 
 
  template <typename U>
 
  static double test(...);
 
 
 
  static bool const value = (sizeof(test<DocumentListTraits<T>>(nullptr))==1);
 
};
 
 
 
template <class T> struct has_PolymorphicTraits {
 
  using Signature_getKind = NodeKind (*)(const T &);
 
 
 
  template <typename U>
 
  static char test(SameType<Signature_getKind, &U::getKind> *);
 
 
 
  template <typename U> static double test(...);
 
 
 
  static bool const value = (sizeof(test<PolymorphicTraits<T>>(nullptr)) == 1);
 
};
 
 
 
inline bool isNumeric(StringRef S) {
 
  const auto skipDigits = [](StringRef Input) {
 
    return Input.ltrim("0123456789");
 
  };
 
 
 
  // Make S.front() and S.drop_front().front() (if S.front() is [+-]) calls
 
  // safe.
 
  if (S.empty() || S.equals("+") || S.equals("-"))
 
    return false;
 
 
 
  if (S.equals(".nan") || S.equals(".NaN") || S.equals(".NAN"))
 
    return true;
 
 
 
  // Infinity and decimal numbers can be prefixed with sign.
 
  StringRef Tail = (S.front() == '-' || S.front() == '+') ? S.drop_front() : S;
 
 
 
  // Check for infinity first, because checking for hex and oct numbers is more
 
  // expensive.
 
  if (Tail.equals(".inf") || Tail.equals(".Inf") || Tail.equals(".INF"))
 
    return true;
 
 
 
  // Section 10.3.2 Tag Resolution
 
  // YAML 1.2 Specification prohibits Base 8 and Base 16 numbers prefixed with
 
  // [-+], so S should be used instead of Tail.
 
  if (S.startswith("0o"))
 
    return S.size() > 2 &&
 
           S.drop_front(2).find_first_not_of("01234567") == StringRef::npos;
 
 
 
  if (S.startswith("0x"))
 
    return S.size() > 2 && S.drop_front(2).find_first_not_of(
 
                               "0123456789abcdefABCDEF") == StringRef::npos;
 
 
 
  // Parse float: [-+]? (\. [0-9]+ | [0-9]+ (\. [0-9]* )?) ([eE] [-+]? [0-9]+)?
 
  S = Tail;
 
 
 
  // Handle cases when the number starts with '.' and hence needs at least one
 
  // digit after dot (as opposed by number which has digits before the dot), but
 
  // doesn't have one.
 
  if (S.startswith(".") &&
 
      (S.equals(".") ||
 
       (S.size() > 1 && std::strchr("0123456789", S[1]) == nullptr)))
 
    return false;
 
 
 
  if (S.startswith("E") || S.startswith("e"))
 
    return false;
 
 
 
  enum ParseState {
 
    Default,
 
    FoundDot,
 
    FoundExponent,
 
  };
 
  ParseState State = Default;
 
 
 
  S = skipDigits(S);
 
 
 
  // Accept decimal integer.
 
  if (S.empty())
 
    return true;
 
 
 
  if (S.front() == '.') {
 
    State = FoundDot;
 
    S = S.drop_front();
 
  } else if (S.front() == 'e' || S.front() == 'E') {
 
    State = FoundExponent;
 
    S = S.drop_front();
 
  } else {
 
    return false;
 
  }
 
 
 
  if (State == FoundDot) {
 
    S = skipDigits(S);
 
    if (S.empty())
 
      return true;
 
 
 
    if (S.front() == 'e' || S.front() == 'E') {
 
      State = FoundExponent;
 
      S = S.drop_front();
 
    } else {
 
      return false;
 
    }
 
  }
 
 
 
  assert(State == FoundExponent && "Should have found exponent at this point.");
 
  if (S.empty())
 
    return false;
 
 
 
  if (S.front() == '+' || S.front() == '-') {
 
    S = S.drop_front();
 
    if (S.empty())
 
      return false;
 
  }
 
 
 
  return skipDigits(S).empty();
 
}
 
 
 
inline bool isNull(StringRef S) {
 
  return S.equals("null") || S.equals("Null") || S.equals("NULL") ||
 
         S.equals("~");
 
}
 
 
 
inline bool isBool(StringRef S) {
 
  // FIXME: using parseBool is causing multiple tests to fail.
 
  return S.equals("true") || S.equals("True") || S.equals("TRUE") ||
 
         S.equals("false") || S.equals("False") || S.equals("FALSE");
 
}
 
 
 
// 5.1. Character Set
 
// The allowed character range explicitly excludes the C0 control block #x0-#x1F
 
// (except for TAB #x9, LF #xA, and CR #xD which are allowed), DEL #x7F, the C1
 
// control block #x80-#x9F (except for NEL #x85 which is allowed), the surrogate
 
// block #xD800-#xDFFF, #xFFFE, and #xFFFF.
 
inline QuotingType needsQuotes(StringRef S) {
 
  if (S.empty())
 
    return QuotingType::Single;
 
 
 
  QuotingType MaxQuotingNeeded = QuotingType::None;
 
  if (isSpace(static_cast<unsigned char>(S.front())) ||
 
      isSpace(static_cast<unsigned char>(S.back())))
 
    MaxQuotingNeeded = QuotingType::Single;
 
  if (isNull(S))
 
    MaxQuotingNeeded = QuotingType::Single;
 
  if (isBool(S))
 
    MaxQuotingNeeded = QuotingType::Single;
 
  if (isNumeric(S))
 
    MaxQuotingNeeded = QuotingType::Single;
 
 
 
  // 7.3.3 Plain Style
 
  // Plain scalars must not begin with most indicators, as this would cause
 
  // ambiguity with other YAML constructs.
 
  if (std::strchr(R"(-?:\,[]{}#&*!|>'"%@`)", S[0]) != nullptr)
 
    MaxQuotingNeeded = QuotingType::Single;
 
 
 
  for (unsigned char C : S) {
 
    // Alphanum is safe.
 
    if (isAlnum(C))
 
      continue;
 
 
 
    switch (C) {
 
    // Safe scalar characters.
 
    case '_':
 
    case '-':
 
    case '^':
 
    case '.':
 
    case ',':
 
    case ' ':
 
    // TAB (0x9) is allowed in unquoted strings.
 
    case 0x9:
 
      continue;
 
    // LF(0xA) and CR(0xD) may delimit values and so require at least single
 
    // quotes. LLVM YAML parser cannot handle single quoted multiline so use
 
    // double quoting to produce valid YAML.
 
    case 0xA:
 
    case 0xD:
 
      return QuotingType::Double;
 
    // DEL (0x7F) are excluded from the allowed character range.
 
    case 0x7F:
 
      return QuotingType::Double;
 
    // Forward slash is allowed to be unquoted, but we quote it anyway.  We have
 
    // many tests that use FileCheck against YAML output, and this output often
 
    // contains paths.  If we quote backslashes but not forward slashes then
 
    // paths will come out either quoted or unquoted depending on which platform
 
    // the test is run on, making FileCheck comparisons difficult.
 
    case '/':
 
    default: {
 
      // C0 control block (0x0 - 0x1F) is excluded from the allowed character
 
      // range.
 
      if (C <= 0x1F)
 
        return QuotingType::Double;
 
 
 
      // Always double quote UTF-8.
 
      if ((C & 0x80) != 0)
 
        return QuotingType::Double;
 
 
 
      // The character is not safe, at least simple quoting needed.
 
      MaxQuotingNeeded = QuotingType::Single;
 
    }
 
    }
 
  }
 
 
 
  return MaxQuotingNeeded;
 
}
 
 
 
template <typename T, typename Context>
 
struct missingTraits
 
    : public std::integral_constant<bool,
 
                                    !has_ScalarEnumerationTraits<T>::value &&
 
                                        !has_ScalarBitSetTraits<T>::value &&
 
                                        !has_ScalarTraits<T>::value &&
 
                                        !has_BlockScalarTraits<T>::value &&
 
                                        !has_TaggedScalarTraits<T>::value &&
 
                                        !has_MappingTraits<T, Context>::value &&
 
                                        !has_SequenceTraits<T>::value &&
 
                                        !has_CustomMappingTraits<T>::value &&
 
                                        !has_DocumentListTraits<T>::value &&
 
                                        !has_PolymorphicTraits<T>::value> {};
 
 
 
template <typename T, typename Context>
 
struct validatedMappingTraits
 
    : public std::integral_constant<
 
          bool, has_MappingTraits<T, Context>::value &&
 
                    has_MappingValidateTraits<T, Context>::value> {};
 
 
 
template <typename T, typename Context>
 
struct unvalidatedMappingTraits
 
    : public std::integral_constant<
 
          bool, has_MappingTraits<T, Context>::value &&
 
                    !has_MappingValidateTraits<T, Context>::value> {};
 
 
 
// Base class for Input and Output.
 
class IO {
 
public:
 
  IO(void *Ctxt = nullptr);
 
  virtual ~IO();
 
 
 
  virtual bool outputting() const = 0;
 
 
 
  virtual unsigned beginSequence() = 0;
 
  virtual bool preflightElement(unsigned, void *&) = 0;
 
  virtual void postflightElement(void*) = 0;
 
  virtual void endSequence() = 0;
 
  virtual bool canElideEmptySequence() = 0;
 
 
 
  virtual unsigned beginFlowSequence() = 0;
 
  virtual bool preflightFlowElement(unsigned, void *&) = 0;
 
  virtual void postflightFlowElement(void*) = 0;
 
  virtual void endFlowSequence() = 0;
 
 
 
  virtual bool mapTag(StringRef Tag, bool Default=false) = 0;
 
  virtual void beginMapping() = 0;
 
  virtual void endMapping() = 0;
 
  virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0;
 
  virtual void postflightKey(void*) = 0;
 
  virtual std::vector<StringRef> keys() = 0;
 
 
 
  virtual void beginFlowMapping() = 0;
 
  virtual void endFlowMapping() = 0;
 
 
 
  virtual void beginEnumScalar() = 0;
 
  virtual bool matchEnumScalar(const char*, bool) = 0;
 
  virtual bool matchEnumFallback() = 0;
 
  virtual void endEnumScalar() = 0;
 
 
 
  virtual bool beginBitSetScalar(bool &) = 0;
 
  virtual bool bitSetMatch(const char*, bool) = 0;
 
  virtual void endBitSetScalar() = 0;
 
 
 
  virtual void scalarString(StringRef &, QuotingType) = 0;
 
  virtual void blockScalarString(StringRef &) = 0;
 
  virtual void scalarTag(std::string &) = 0;
 
 
 
  virtual NodeKind getNodeKind() = 0;
 
 
 
  virtual void setError(const Twine &) = 0;
 
  virtual void setAllowUnknownKeys(bool Allow);
 
 
 
  template <typename T>
 
  void enumCase(T &Val, const char* Str, const T ConstVal) {
 
    if ( matchEnumScalar(Str, outputting() && Val == ConstVal) ) {
 
      Val = ConstVal;
 
    }
 
  }
 
 
 
  // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
 
  template <typename T>
 
  void enumCase(T &Val, const char* Str, const uint32_t ConstVal) {
 
    if ( matchEnumScalar(Str, outputting() && Val == static_cast<T>(ConstVal)) ) {
 
      Val = ConstVal;
 
    }
 
  }
 
 
 
  template <typename FBT, typename T>
 
  void enumFallback(T &Val) {
 
    if (matchEnumFallback()) {
 
      EmptyContext Context;
 
      // FIXME: Force integral conversion to allow strong typedefs to convert.
 
      FBT Res = static_cast<typename FBT::BaseType>(Val);
 
      yamlize(*this, Res, true, Context);
 
      Val = static_cast<T>(static_cast<typename FBT::BaseType>(Res));
 
    }
 
  }
 
 
 
  template <typename T>
 
  void bitSetCase(T &Val, const char* Str, const T ConstVal) {
 
    if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
 
      Val = static_cast<T>(Val | ConstVal);
 
    }
 
  }
 
 
 
  // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
 
  template <typename T>
 
  void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) {
 
    if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
 
      Val = static_cast<T>(Val | ConstVal);
 
    }
 
  }
 
 
 
  template <typename T>
 
  void maskedBitSetCase(T &Val, const char *Str, T ConstVal, T Mask) {
 
    if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
 
      Val = Val | ConstVal;
 
  }
 
 
 
  template <typename T>
 
  void maskedBitSetCase(T &Val, const char *Str, uint32_t ConstVal,
 
                        uint32_t Mask) {
 
    if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
 
      Val = Val | ConstVal;
 
  }
 
 
 
  void *getContext() const;
 
  void setContext(void *);
 
 
 
  template <typename T> void mapRequired(const char *Key, T &Val) {
 
    EmptyContext Ctx;
 
    this->processKey(Key, Val, true, Ctx);
 
  }
 
 
 
  template <typename T, typename Context>
 
  void mapRequired(const char *Key, T &Val, Context &Ctx) {
 
    this->processKey(Key, Val, true, Ctx);
 
  }
 
 
 
  template <typename T> void mapOptional(const char *Key, T &Val) {
 
    EmptyContext Ctx;
 
    mapOptionalWithContext(Key, Val, Ctx);
 
  }
 
 
 
  template <typename T, typename DefaultT>
 
  void mapOptional(const char *Key, T &Val, const DefaultT &Default) {
 
    EmptyContext Ctx;
 
    mapOptionalWithContext(Key, Val, Default, Ctx);
 
  }
 
 
 
  template <typename T, typename Context>
 
  std::enable_if_t<has_SequenceTraits<T>::value, void>
 
  mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
 
    // omit key/value instead of outputting empty sequence
 
    if (this->canElideEmptySequence() && !(Val.begin() != Val.end()))
 
      return;
 
    this->processKey(Key, Val, false, Ctx);
 
  }
 
 
 
  template <typename T, typename Context>
 
  void mapOptionalWithContext(const char *Key, std::optional<T> &Val,
 
                              Context &Ctx) {
 
    this->processKeyWithDefault(Key, Val, std::optional<T>(),
 
                                /*Required=*/false, Ctx);
 
  }
 
 
 
  template <typename T, typename Context>
 
  std::enable_if_t<!has_SequenceTraits<T>::value, void>
 
  mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
 
    this->processKey(Key, Val, false, Ctx);
 
  }
 
 
 
  template <typename T, typename Context, typename DefaultT>
 
  void mapOptionalWithContext(const char *Key, T &Val, const DefaultT &Default,
 
                              Context &Ctx) {
 
    static_assert(std::is_convertible<DefaultT, T>::value,
 
                  "Default type must be implicitly convertible to value type!");
 
    this->processKeyWithDefault(Key, Val, static_cast<const T &>(Default),
 
                                false, Ctx);
 
  }
 
 
 
private:
 
  template <typename T, typename Context>
 
  void processKeyWithDefault(const char *Key, std::optional<T> &Val,
 
                             const std::optional<T> &DefaultValue,
 
                             bool Required, Context &Ctx);
 
 
 
  template <typename T, typename Context>
 
  void processKeyWithDefault(const char *Key, T &Val, const T &DefaultValue,
 
                             bool Required, Context &Ctx) {
 
    void *SaveInfo;
 
    bool UseDefault;
 
    const bool sameAsDefault = outputting() && Val == DefaultValue;
 
    if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault,
 
                                                                  SaveInfo) ) {
 
      yamlize(*this, Val, Required, Ctx);
 
      this->postflightKey(SaveInfo);
 
    }
 
    else {
 
      if ( UseDefault )
 
        Val = DefaultValue;
 
    }
 
  }
 
 
 
  template <typename T, typename Context>
 
  void processKey(const char *Key, T &Val, bool Required, Context &Ctx) {
 
    void *SaveInfo;
 
    bool UseDefault;
 
    if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) {
 
      yamlize(*this, Val, Required, Ctx);
 
      this->postflightKey(SaveInfo);
 
    }
 
  }
 
 
 
private:
 
  void *Ctxt;
 
};
 
 
 
namespace detail {
 
 
 
template <typename T, typename Context>
 
void doMapping(IO &io, T &Val, Context &Ctx) {
 
  MappingContextTraits<T, Context>::mapping(io, Val, Ctx);
 
}
 
 
 
template <typename T> void doMapping(IO &io, T &Val, EmptyContext &Ctx) {
 
  MappingTraits<T>::mapping(io, Val);
 
}
 
 
 
} // end namespace detail
 
 
 
template <typename T>
 
std::enable_if_t<has_ScalarEnumerationTraits<T>::value, void>
 
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
 
  io.beginEnumScalar();
 
  ScalarEnumerationTraits<T>::enumeration(io, Val);
 
  io.endEnumScalar();
 
}
 
 
 
template <typename T>
 
std::enable_if_t<has_ScalarBitSetTraits<T>::value, void>
 
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
 
  bool DoClear;
 
  if ( io.beginBitSetScalar(DoClear) ) {
 
    if ( DoClear )
 
      Val = T();
 
    ScalarBitSetTraits<T>::bitset(io, Val);
 
    io.endBitSetScalar();
 
  }
 
}
 
 
 
template <typename T>
 
std::enable_if_t<has_ScalarTraits<T>::value, void> yamlize(IO &io, T &Val, bool,
 
                                                           EmptyContext &Ctx) {
 
  if ( io.outputting() ) {
 
    SmallString<128> Storage;
 
    raw_svector_ostream Buffer(Storage);
 
    ScalarTraits<T>::output(Val, io.getContext(), Buffer);
 
    StringRef Str = Buffer.str();
 
    io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
 
  }
 
  else {
 
    StringRef Str;
 
    io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
 
    StringRef Result = ScalarTraits<T>::input(Str, io.getContext(), Val);
 
    if ( !Result.empty() ) {
 
      io.setError(Twine(Result));
 
    }
 
  }
 
}
 
 
 
template <typename T>
 
std::enable_if_t<has_BlockScalarTraits<T>::value, void>
 
yamlize(IO &YamlIO, T &Val, bool, EmptyContext &Ctx) {
 
  if (YamlIO.outputting()) {
 
    std::string Storage;
 
    raw_string_ostream Buffer(Storage);
 
    BlockScalarTraits<T>::output(Val, YamlIO.getContext(), Buffer);
 
    StringRef Str = Buffer.str();
 
    YamlIO.blockScalarString(Str);
 
  } else {
 
    StringRef Str;
 
    YamlIO.blockScalarString(Str);
 
    StringRef Result =
 
        BlockScalarTraits<T>::input(Str, YamlIO.getContext(), Val);
 
    if (!Result.empty())
 
      YamlIO.setError(Twine(Result));
 
  }
 
}
 
 
 
template <typename T>
 
std::enable_if_t<has_TaggedScalarTraits<T>::value, void>
 
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
 
  if (io.outputting()) {
 
    std::string ScalarStorage, TagStorage;
 
    raw_string_ostream ScalarBuffer(ScalarStorage), TagBuffer(TagStorage);
 
    TaggedScalarTraits<T>::output(Val, io.getContext(), ScalarBuffer,
 
                                  TagBuffer);
 
    io.scalarTag(TagBuffer.str());
 
    StringRef ScalarStr = ScalarBuffer.str();
 
    io.scalarString(ScalarStr,
 
                    TaggedScalarTraits<T>::mustQuote(Val, ScalarStr));
 
  } else {
 
    std::string Tag;
 
    io.scalarTag(Tag);
 
    StringRef Str;
 
    io.scalarString(Str, QuotingType::None);
 
    StringRef Result =
 
        TaggedScalarTraits<T>::input(Str, Tag, io.getContext(), Val);
 
    if (!Result.empty()) {
 
      io.setError(Twine(Result));
 
    }
 
  }
 
}
 
 
 
template <typename T, typename Context>
 
std::enable_if_t<validatedMappingTraits<T, Context>::value, void>
 
yamlize(IO &io, T &Val, bool, Context &Ctx) {
 
  if (has_FlowTraits<MappingTraits<T>>::value)
 
    io.beginFlowMapping();
 
  else
 
    io.beginMapping();
 
  if (io.outputting()) {
 
    std::string Err = MappingTraits<T>::validate(io, Val);
 
    if (!Err.empty()) {
 
      errs() << Err << "\n";
 
      assert(Err.empty() && "invalid struct trying to be written as yaml");
 
    }
 
  }
 
  detail::doMapping(io, Val, Ctx);
 
  if (!io.outputting()) {
 
    std::string Err = MappingTraits<T>::validate(io, Val);
 
    if (!Err.empty())
 
      io.setError(Err);
 
  }
 
  if (has_FlowTraits<MappingTraits<T>>::value)
 
    io.endFlowMapping();
 
  else
 
    io.endMapping();
 
}
 
 
 
template <typename T, typename Context>
 
std::enable_if_t<!has_MappingEnumInputTraits<T, Context>::value, bool>
 
yamlizeMappingEnumInput(IO &io, T &Val) {
 
  return false;
 
}
 
 
 
template <typename T, typename Context>
 
std::enable_if_t<has_MappingEnumInputTraits<T, Context>::value, bool>
 
yamlizeMappingEnumInput(IO &io, T &Val) {
 
  if (io.outputting())
 
    return false;
 
 
 
  io.beginEnumScalar();
 
  MappingTraits<T>::enumInput(io, Val);
 
  bool Matched = !io.matchEnumFallback();
 
  io.endEnumScalar();
 
  return Matched;
 
}
 
 
 
template <typename T, typename Context>
 
std::enable_if_t<unvalidatedMappingTraits<T, Context>::value, void>
 
yamlize(IO &io, T &Val, bool, Context &Ctx) {
 
  if (yamlizeMappingEnumInput<T, Context>(io, Val))
 
    return;
 
  if (has_FlowTraits<MappingTraits<T>>::value) {
 
    io.beginFlowMapping();
 
    detail::doMapping(io, Val, Ctx);
 
    io.endFlowMapping();
 
  } else {
 
    io.beginMapping();
 
    detail::doMapping(io, Val, Ctx);
 
    io.endMapping();
 
  }
 
}
 
 
 
template <typename T>
 
std::enable_if_t<has_CustomMappingTraits<T>::value, void>
 
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
 
  if ( io.outputting() ) {
 
    io.beginMapping();
 
    CustomMappingTraits<T>::output(io, Val);
 
    io.endMapping();
 
  } else {
 
    io.beginMapping();
 
    for (StringRef key : io.keys())
 
      CustomMappingTraits<T>::inputOne(io, key, Val);
 
    io.endMapping();
 
  }
 
}
 
 
 
template <typename T>
 
std::enable_if_t<has_PolymorphicTraits<T>::value, void>
 
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
 
  switch (io.outputting() ? PolymorphicTraits<T>::getKind(Val)
 
                          : io.getNodeKind()) {
 
  case NodeKind::Scalar:
 
    return yamlize(io, PolymorphicTraits<T>::getAsScalar(Val), true, Ctx);
 
  case NodeKind::Map:
 
    return yamlize(io, PolymorphicTraits<T>::getAsMap(Val), true, Ctx);
 
  case NodeKind::Sequence:
 
    return yamlize(io, PolymorphicTraits<T>::getAsSequence(Val), true, Ctx);
 
  }
 
}
 
 
 
template <typename T>
 
std::enable_if_t<missingTraits<T, EmptyContext>::value, void>
 
yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
 
  char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
 
}
 
 
 
template <typename T, typename Context>
 
std::enable_if_t<has_SequenceTraits<T>::value, void>
 
yamlize(IO &io, T &Seq, bool, Context &Ctx) {
 
  if ( has_FlowTraits< SequenceTraits<T>>::value ) {
 
    unsigned incnt = io.beginFlowSequence();
 
    unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
 
    for(unsigned i=0; i < count; ++i) {
 
      void *SaveInfo;
 
      if ( io.preflightFlowElement(i, SaveInfo) ) {
 
        yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx);
 
        io.postflightFlowElement(SaveInfo);
 
      }
 
    }
 
    io.endFlowSequence();
 
  }
 
  else {
 
    unsigned incnt = io.beginSequence();
 
    unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
 
    for(unsigned i=0; i < count; ++i) {
 
      void *SaveInfo;
 
      if ( io.preflightElement(i, SaveInfo) ) {
 
        yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx);
 
        io.postflightElement(SaveInfo);
 
      }
 
    }
 
    io.endSequence();
 
  }
 
}
 
 
 
template<>
 
struct ScalarTraits<bool> {
 
  static void output(const bool &, void* , raw_ostream &);
 
  static StringRef input(StringRef, void *, bool &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<StringRef> {
 
  static void output(const StringRef &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, StringRef &);
 
  static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
 
};
 
 
 
template<>
 
struct ScalarTraits<std::string> {
 
  static void output(const std::string &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, std::string &);
 
  static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
 
};
 
 
 
template<>
 
struct ScalarTraits<uint8_t> {
 
  static void output(const uint8_t &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, uint8_t &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<uint16_t> {
 
  static void output(const uint16_t &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, uint16_t &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<uint32_t> {
 
  static void output(const uint32_t &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, uint32_t &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<uint64_t> {
 
  static void output(const uint64_t &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, uint64_t &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<int8_t> {
 
  static void output(const int8_t &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, int8_t &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<int16_t> {
 
  static void output(const int16_t &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, int16_t &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<int32_t> {
 
  static void output(const int32_t &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, int32_t &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<int64_t> {
 
  static void output(const int64_t &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, int64_t &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<float> {
 
  static void output(const float &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, float &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<double> {
 
  static void output(const double &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, double &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
// For endian types, we use existing scalar Traits class for the underlying
 
// type.  This way endian aware types are supported whenever the traits are
 
// defined for the underlying type.
 
template <typename value_type, support::endianness endian, size_t alignment>
 
struct ScalarTraits<support::detail::packed_endian_specific_integral<
 
                        value_type, endian, alignment>,
 
                    std::enable_if_t<has_ScalarTraits<value_type>::value>> {
 
  using endian_type =
 
      support::detail::packed_endian_specific_integral<value_type, endian,
 
                                                       alignment>;
 
 
 
  static void output(const endian_type &E, void *Ctx, raw_ostream &Stream) {
 
    ScalarTraits<value_type>::output(static_cast<value_type>(E), Ctx, Stream);
 
  }
 
 
 
  static StringRef input(StringRef Str, void *Ctx, endian_type &E) {
 
    value_type V;
 
    auto R = ScalarTraits<value_type>::input(Str, Ctx, V);
 
    E = static_cast<endian_type>(V);
 
    return R;
 
  }
 
 
 
  static QuotingType mustQuote(StringRef Str) {
 
    return ScalarTraits<value_type>::mustQuote(Str);
 
  }
 
};
 
 
 
template <typename value_type, support::endianness endian, size_t alignment>
 
struct ScalarEnumerationTraits<
 
    support::detail::packed_endian_specific_integral<value_type, endian,
 
                                                     alignment>,
 
    std::enable_if_t<has_ScalarEnumerationTraits<value_type>::value>> {
 
  using endian_type =
 
      support::detail::packed_endian_specific_integral<value_type, endian,
 
                                                       alignment>;
 
 
 
  static void enumeration(IO &io, endian_type &E) {
 
    value_type V = E;
 
    ScalarEnumerationTraits<value_type>::enumeration(io, V);
 
    E = V;
 
  }
 
};
 
 
 
template <typename value_type, support::endianness endian, size_t alignment>
 
struct ScalarBitSetTraits<
 
    support::detail::packed_endian_specific_integral<value_type, endian,
 
                                                     alignment>,
 
    std::enable_if_t<has_ScalarBitSetTraits<value_type>::value>> {
 
  using endian_type =
 
      support::detail::packed_endian_specific_integral<value_type, endian,
 
                                                       alignment>;
 
  static void bitset(IO &io, endian_type &E) {
 
    value_type V = E;
 
    ScalarBitSetTraits<value_type>::bitset(io, V);
 
    E = V;
 
  }
 
};
 
 
 
// Utility for use within MappingTraits<>::mapping() method
 
// to [de]normalize an object for use with YAML conversion.
 
template <typename TNorm, typename TFinal>
 
struct MappingNormalization {
 
  MappingNormalization(IO &i_o, TFinal &Obj)
 
      : io(i_o), BufPtr(nullptr), Result(Obj) {
 
    if ( io.outputting() ) {
 
      BufPtr = new (&Buffer) TNorm(io, Obj);
 
    }
 
    else {
 
      BufPtr = new (&Buffer) TNorm(io);
 
    }
 
  }
 
 
 
  ~MappingNormalization() {
 
    if ( ! io.outputting() ) {
 
      Result = BufPtr->denormalize(io);
 
    }
 
    BufPtr->~TNorm();
 
  }
 
 
 
  TNorm* operator->() { return BufPtr; }
 
 
 
private:
 
  using Storage = AlignedCharArrayUnion<TNorm>;
 
 
 
  Storage       Buffer;
 
  IO           &io;
 
  TNorm        *BufPtr;
 
  TFinal       &Result;
 
};
 
 
 
// Utility for use within MappingTraits<>::mapping() method
 
// to [de]normalize an object for use with YAML conversion.
 
template <typename TNorm, typename TFinal>
 
struct MappingNormalizationHeap {
 
  MappingNormalizationHeap(IO &i_o, TFinal &Obj, BumpPtrAllocator *allocator)
 
    : io(i_o), Result(Obj) {
 
    if ( io.outputting() ) {
 
      BufPtr = new (&Buffer) TNorm(io, Obj);
 
    }
 
    else if (allocator) {
 
      BufPtr = allocator->Allocate<TNorm>();
 
      new (BufPtr) TNorm(io);
 
    } else {
 
      BufPtr = new TNorm(io);
 
    }
 
  }
 
 
 
  ~MappingNormalizationHeap() {
 
    if ( io.outputting() ) {
 
      BufPtr->~TNorm();
 
    }
 
    else {
 
      Result = BufPtr->denormalize(io);
 
    }
 
  }
 
 
 
  TNorm* operator->() { return BufPtr; }
 
 
 
private:
 
  using Storage = AlignedCharArrayUnion<TNorm>;
 
 
 
  Storage       Buffer;
 
  IO           &io;
 
  TNorm        *BufPtr = nullptr;
 
  TFinal       &Result;
 
};
 
 
 
///
 
/// The Input class is used to parse a yaml document into in-memory structs
 
/// and vectors.
 
///
 
/// It works by using YAMLParser to do a syntax parse of the entire yaml
 
/// document, then the Input class builds a graph of HNodes which wraps
 
/// each yaml Node.  The extra layer is buffering.  The low level yaml
 
/// parser only lets you look at each node once.  The buffering layer lets
 
/// you search and interate multiple times.  This is necessary because
 
/// the mapRequired() method calls may not be in the same order
 
/// as the keys in the document.
 
///
 
class Input : public IO {
 
public:
 
  // Construct a yaml Input object from a StringRef and optional
 
  // user-data. The DiagHandler can be specified to provide
 
  // alternative error reporting.
 
  Input(StringRef InputContent,
 
        void *Ctxt = nullptr,
 
        SourceMgr::DiagHandlerTy DiagHandler = nullptr,
 
        void *DiagHandlerCtxt = nullptr);
 
  Input(MemoryBufferRef Input,
 
        void *Ctxt = nullptr,
 
        SourceMgr::DiagHandlerTy DiagHandler = nullptr,
 
        void *DiagHandlerCtxt = nullptr);
 
  ~Input() override;
 
 
 
  // Check if there was an syntax or semantic error during parsing.
 
  std::error_code error();
 
 
 
private:
 
  bool outputting() const override;
 
  bool mapTag(StringRef, bool) override;
 
  void beginMapping() override;
 
  void endMapping() override;
 
  bool preflightKey(const char *, bool, bool, bool &, void *&) override;
 
  void postflightKey(void *) override;
 
  std::vector<StringRef> keys() override;
 
  void beginFlowMapping() override;
 
  void endFlowMapping() override;
 
  unsigned beginSequence() override;
 
  void endSequence() override;
 
  bool preflightElement(unsigned index, void *&) override;
 
  void postflightElement(void *) override;
 
  unsigned beginFlowSequence() override;
 
  bool preflightFlowElement(unsigned , void *&) override;
 
  void postflightFlowElement(void *) override;
 
  void endFlowSequence() override;
 
  void beginEnumScalar() override;
 
  bool matchEnumScalar(const char*, bool) override;
 
  bool matchEnumFallback() override;
 
  void endEnumScalar() override;
 
  bool beginBitSetScalar(bool &) override;
 
  bool bitSetMatch(const char *, bool ) override;
 
  void endBitSetScalar() override;
 
  void scalarString(StringRef &, QuotingType) override;
 
  void blockScalarString(StringRef &) override;
 
  void scalarTag(std::string &) override;
 
  NodeKind getNodeKind() override;
 
  void setError(const Twine &message) override;
 
  bool canElideEmptySequence() override;
 
 
 
  class HNode {
 
    virtual void anchor();
 
 
 
  public:
 
    HNode(Node *n) : _node(n) { }
 
    virtual ~HNode() = default;
 
 
 
    static bool classof(const HNode *) { return true; }
 
 
 
    Node *_node;
 
  };
 
 
 
  class EmptyHNode : public HNode {
 
    void anchor() override;
 
 
 
  public:
 
    EmptyHNode(Node *n) : HNode(n) { }
 
 
 
    static bool classof(const HNode *n) { return NullNode::classof(n->_node); }
 
 
 
    static bool classof(const EmptyHNode *) { return true; }
 
  };
 
 
 
  class ScalarHNode : public HNode {
 
    void anchor() override;
 
 
 
  public:
 
    ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { }
 
 
 
    StringRef value() const { return _value; }
 
 
 
    static bool classof(const HNode *n) {
 
      return ScalarNode::classof(n->_node) ||
 
             BlockScalarNode::classof(n->_node);
 
    }
 
 
 
    static bool classof(const ScalarHNode *) { return true; }
 
 
 
  protected:
 
    StringRef _value;
 
  };
 
 
 
  class MapHNode : public HNode {
 
    void anchor() override;
 
 
 
  public:
 
    MapHNode(Node *n) : HNode(n) { }
 
 
 
    static bool classof(const HNode *n) {
 
      return MappingNode::classof(n->_node);
 
    }
 
 
 
    static bool classof(const MapHNode *) { return true; }
 
 
 
    using NameToNodeAndLoc =
 
        StringMap<std::pair<std::unique_ptr<HNode>, SMRange>>;
 
 
 
    NameToNodeAndLoc Mapping;
 
    SmallVector<std::string, 6> ValidKeys;
 
  };
 
 
 
  class SequenceHNode : public HNode {
 
    void anchor() override;
 
 
 
  public:
 
    SequenceHNode(Node *n) : HNode(n) { }
 
 
 
    static bool classof(const HNode *n) {
 
      return SequenceNode::classof(n->_node);
 
    }
 
 
 
    static bool classof(const SequenceHNode *) { return true; }
 
 
 
    std::vector<std::unique_ptr<HNode>> Entries;
 
  };
 
 
 
  std::unique_ptr<Input::HNode> createHNodes(Node *node);
 
  void setError(HNode *hnode, const Twine &message);
 
  void setError(Node *node, const Twine &message);
 
  void setError(const SMRange &Range, const Twine &message);
 
 
 
  void reportWarning(HNode *hnode, const Twine &message);
 
  void reportWarning(Node *hnode, const Twine &message);
 
  void reportWarning(const SMRange &Range, const Twine &message);
 
 
 
public:
 
  // These are only used by operator>>. They could be private
 
  // if those templated things could be made friends.
 
  bool setCurrentDocument();
 
  bool nextDocument();
 
 
 
  /// Returns the current node that's being parsed by the YAML Parser.
 
  const Node *getCurrentNode() const;
 
 
 
  void setAllowUnknownKeys(bool Allow) override;
 
 
 
private:
 
  SourceMgr                           SrcMgr; // must be before Strm
 
  std::unique_ptr<llvm::yaml::Stream> Strm;
 
  std::unique_ptr<HNode>              TopNode;
 
  std::error_code                     EC;
 
  BumpPtrAllocator                    StringAllocator;
 
  document_iterator                   DocIterator;
 
  llvm::BitVector                     BitValuesUsed;
 
  HNode *CurrentNode = nullptr;
 
  bool                                ScalarMatchFound = false;
 
  bool AllowUnknownKeys = false;
 
};
 
 
 
///
 
/// The Output class is used to generate a yaml document from in-memory structs
 
/// and vectors.
 
///
 
class Output : public IO {
 
public:
 
  Output(raw_ostream &, void *Ctxt = nullptr, int WrapColumn = 70);
 
  ~Output() override;
 
 
 
  /// Set whether or not to output optional values which are equal
 
  /// to the default value.  By default, when outputting if you attempt
 
  /// to write a value that is equal to the default, the value gets ignored.
 
  /// Sometimes, it is useful to be able to see these in the resulting YAML
 
  /// anyway.
 
  void setWriteDefaultValues(bool Write) { WriteDefaultValues = Write; }
 
 
 
  bool outputting() const override;
 
  bool mapTag(StringRef, bool) override;
 
  void beginMapping() override;
 
  void endMapping() override;
 
  bool preflightKey(const char *key, bool, bool, bool &, void *&) override;
 
  void postflightKey(void *) override;
 
  std::vector<StringRef> keys() override;
 
  void beginFlowMapping() override;
 
  void endFlowMapping() override;
 
  unsigned beginSequence() override;
 
  void endSequence() override;
 
  bool preflightElement(unsigned, void *&) override;
 
  void postflightElement(void *) override;
 
  unsigned beginFlowSequence() override;
 
  bool preflightFlowElement(unsigned, void *&) override;
 
  void postflightFlowElement(void *) override;
 
  void endFlowSequence() override;
 
  void beginEnumScalar() override;
 
  bool matchEnumScalar(const char*, bool) override;
 
  bool matchEnumFallback() override;
 
  void endEnumScalar() override;
 
  bool beginBitSetScalar(bool &) override;
 
  bool bitSetMatch(const char *, bool ) override;
 
  void endBitSetScalar() override;
 
  void scalarString(StringRef &, QuotingType) override;
 
  void blockScalarString(StringRef &) override;
 
  void scalarTag(std::string &) override;
 
  NodeKind getNodeKind() override;
 
  void setError(const Twine &message) override;
 
  bool canElideEmptySequence() override;
 
 
 
  // These are only used by operator<<. They could be private
 
  // if that templated operator could be made a friend.
 
  void beginDocuments();
 
  bool preflightDocument(unsigned);
 
  void postflightDocument();
 
  void endDocuments();
 
 
 
private:
 
  void output(StringRef s);
 
  void outputUpToEndOfLine(StringRef s);
 
  void newLineCheck(bool EmptySequence = false);
 
  void outputNewLine();
 
  void paddedKey(StringRef key);
 
  void flowKey(StringRef Key);
 
 
 
  enum InState {
 
    inSeqFirstElement,
 
    inSeqOtherElement,
 
    inFlowSeqFirstElement,
 
    inFlowSeqOtherElement,
 
    inMapFirstKey,
 
    inMapOtherKey,
 
    inFlowMapFirstKey,
 
    inFlowMapOtherKey
 
  };
 
 
 
  static bool inSeqAnyElement(InState State);
 
  static bool inFlowSeqAnyElement(InState State);
 
  static bool inMapAnyKey(InState State);
 
  static bool inFlowMapAnyKey(InState State);
 
 
 
  raw_ostream &Out;
 
  int WrapColumn;
 
  SmallVector<InState, 8> StateStack;
 
  int Column = 0;
 
  int ColumnAtFlowStart = 0;
 
  int ColumnAtMapFlowStart = 0;
 
  bool NeedBitValueComma = false;
 
  bool NeedFlowSequenceComma = false;
 
  bool EnumerationMatchFound = false;
 
  bool WriteDefaultValues = false;
 
  StringRef Padding;
 
  StringRef PaddingBeforeContainer;
 
};
 
 
 
template <typename T, typename Context>
 
void IO::processKeyWithDefault(const char *Key, std::optional<T> &Val,
 
                               const std::optional<T> &DefaultValue,
 
                               bool Required, Context &Ctx) {
 
  assert(!DefaultValue && "std::optional<T> shouldn't have a value!");
 
  void *SaveInfo;
 
  bool UseDefault = true;
 
  const bool sameAsDefault = outputting() && !Val;
 
  if (!outputting() && !Val)
 
    Val = T();
 
  if (Val &&
 
      this->preflightKey(Key, Required, sameAsDefault, UseDefault, SaveInfo)) {
 
 
 
    // When reading an std::optional<X> key from a YAML description, we allow
 
    // the special "<none>" value, which can be used to specify that no value
 
    // was requested, i.e. the DefaultValue will be assigned. The DefaultValue
 
    // is usually None.
 
    bool IsNone = false;
 
    if (!outputting())
 
      if (const auto *Node =
 
              dyn_cast<ScalarNode>(((Input *)this)->getCurrentNode()))
 
        // We use rtrim to ignore possible white spaces that might exist when a
 
        // comment is present on the same line.
 
        IsNone = Node->getRawValue().rtrim(' ') == "<none>";
 
 
 
    if (IsNone)
 
      Val = DefaultValue;
 
    else
 
      yamlize(*this, *Val, Required, Ctx);
 
    this->postflightKey(SaveInfo);
 
  } else {
 
    if (UseDefault)
 
      Val = DefaultValue;
 
  }
 
}
 
 
 
/// YAML I/O does conversion based on types. But often native data types
 
/// are just a typedef of built in intergral types (e.g. int).  But the C++
 
/// type matching system sees through the typedef and all the typedefed types
 
/// look like a built in type. This will cause the generic YAML I/O conversion
 
/// to be used. To provide better control over the YAML conversion, you can
 
/// use this macro instead of typedef.  It will create a class with one field
 
/// and automatic conversion operators to and from the base type.
 
/// Based on BOOST_STRONG_TYPEDEF
 
#define LLVM_YAML_STRONG_TYPEDEF(_base, _type)                                 \
 
    struct _type {                                                             \
 
        _type() = default;                                                     \
 
        _type(const _base v) : value(v) {}                                     \
 
        _type(const _type &v) = default;                                       \
 
        _type &operator=(const _type &rhs) = default;                          \
 
        _type &operator=(const _base &rhs) { value = rhs; return *this; }      \
 
        operator const _base & () const { return value; }                      \
 
        bool operator==(const _type &rhs) const { return value == rhs.value; } \
 
        bool operator==(const _base &rhs) const { return value == rhs; }       \
 
        bool operator<(const _type &rhs) const { return value < rhs.value; }   \
 
        _base value;                                                           \
 
        using BaseType = _base;                                                \
 
    };
 
 
 
///
 
/// Use these types instead of uintXX_t in any mapping to have
 
/// its yaml output formatted as hexadecimal.
 
///
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8)
 
LLVM_YAML_STRONG_TYPEDEF(uint16_t, Hex16)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, Hex32)
 
LLVM_YAML_STRONG_TYPEDEF(uint64_t, Hex64)
 
 
 
template<>
 
struct ScalarTraits<Hex8> {
 
  static void output(const Hex8 &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, Hex8 &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<Hex16> {
 
  static void output(const Hex16 &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, Hex16 &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<Hex32> {
 
  static void output(const Hex32 &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, Hex32 &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template<>
 
struct ScalarTraits<Hex64> {
 
  static void output(const Hex64 &, void *, raw_ostream &);
 
  static StringRef input(StringRef, void *, Hex64 &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template <> struct ScalarTraits<VersionTuple> {
 
  static void output(const VersionTuple &Value, void *, llvm::raw_ostream &Out);
 
  static StringRef input(StringRef, void *, VersionTuple &);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
// Define non-member operator>> so that Input can stream in a document list.
 
template <typename T>
 
inline std::enable_if_t<has_DocumentListTraits<T>::value, Input &>
 
operator>>(Input &yin, T &docList) {
 
  int i = 0;
 
  EmptyContext Ctx;
 
  while ( yin.setCurrentDocument() ) {
 
    yamlize(yin, DocumentListTraits<T>::element(yin, docList, i), true, Ctx);
 
    if ( yin.error() )
 
      return yin;
 
    yin.nextDocument();
 
    ++i;
 
  }
 
  return yin;
 
}
 
 
 
// Define non-member operator>> so that Input can stream in a map as a document.
 
template <typename T>
 
inline std::enable_if_t<has_MappingTraits<T, EmptyContext>::value, Input &>
 
operator>>(Input &yin, T &docMap) {
 
  EmptyContext Ctx;
 
  yin.setCurrentDocument();
 
  yamlize(yin, docMap, true, Ctx);
 
  return yin;
 
}
 
 
 
// Define non-member operator>> so that Input can stream in a sequence as
 
// a document.
 
template <typename T>
 
inline std::enable_if_t<has_SequenceTraits<T>::value, Input &>
 
operator>>(Input &yin, T &docSeq) {
 
  EmptyContext Ctx;
 
  if (yin.setCurrentDocument())
 
    yamlize(yin, docSeq, true, Ctx);
 
  return yin;
 
}
 
 
 
// Define non-member operator>> so that Input can stream in a block scalar.
 
template <typename T>
 
inline std::enable_if_t<has_BlockScalarTraits<T>::value, Input &>
 
operator>>(Input &In, T &Val) {
 
  EmptyContext Ctx;
 
  if (In.setCurrentDocument())
 
    yamlize(In, Val, true, Ctx);
 
  return In;
 
}
 
 
 
// Define non-member operator>> so that Input can stream in a string map.
 
template <typename T>
 
inline std::enable_if_t<has_CustomMappingTraits<T>::value, Input &>
 
operator>>(Input &In, T &Val) {
 
  EmptyContext Ctx;
 
  if (In.setCurrentDocument())
 
    yamlize(In, Val, true, Ctx);
 
  return In;
 
}
 
 
 
// Define non-member operator>> so that Input can stream in a polymorphic type.
 
template <typename T>
 
inline std::enable_if_t<has_PolymorphicTraits<T>::value, Input &>
 
operator>>(Input &In, T &Val) {
 
  EmptyContext Ctx;
 
  if (In.setCurrentDocument())
 
    yamlize(In, Val, true, Ctx);
 
  return In;
 
}
 
 
 
// Provide better error message about types missing a trait specialization
 
template <typename T>
 
inline std::enable_if_t<missingTraits<T, EmptyContext>::value, Input &>
 
operator>>(Input &yin, T &docSeq) {
 
  char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
 
  return yin;
 
}
 
 
 
// Define non-member operator<< so that Output can stream out document list.
 
template <typename T>
 
inline std::enable_if_t<has_DocumentListTraits<T>::value, Output &>
 
operator<<(Output &yout, T &docList) {
 
  EmptyContext Ctx;
 
  yout.beginDocuments();
 
  const size_t count = DocumentListTraits<T>::size(yout, docList);
 
  for(size_t i=0; i < count; ++i) {
 
    if ( yout.preflightDocument(i) ) {
 
      yamlize(yout, DocumentListTraits<T>::element(yout, docList, i), true,
 
              Ctx);
 
      yout.postflightDocument();
 
    }
 
  }
 
  yout.endDocuments();
 
  return yout;
 
}
 
 
 
// Define non-member operator<< so that Output can stream out a map.
 
template <typename T>
 
inline std::enable_if_t<has_MappingTraits<T, EmptyContext>::value, Output &>
 
operator<<(Output &yout, T &map) {
 
  EmptyContext Ctx;
 
  yout.beginDocuments();
 
  if ( yout.preflightDocument(0) ) {
 
    yamlize(yout, map, true, Ctx);
 
    yout.postflightDocument();
 
  }
 
  yout.endDocuments();
 
  return yout;
 
}
 
 
 
// Define non-member operator<< so that Output can stream out a sequence.
 
template <typename T>
 
inline std::enable_if_t<has_SequenceTraits<T>::value, Output &>
 
operator<<(Output &yout, T &seq) {
 
  EmptyContext Ctx;
 
  yout.beginDocuments();
 
  if ( yout.preflightDocument(0) ) {
 
    yamlize(yout, seq, true, Ctx);
 
    yout.postflightDocument();
 
  }
 
  yout.endDocuments();
 
  return yout;
 
}
 
 
 
// Define non-member operator<< so that Output can stream out a block scalar.
 
template <typename T>
 
inline std::enable_if_t<has_BlockScalarTraits<T>::value, Output &>
 
operator<<(Output &Out, T &Val) {
 
  EmptyContext Ctx;
 
  Out.beginDocuments();
 
  if (Out.preflightDocument(0)) {
 
    yamlize(Out, Val, true, Ctx);
 
    Out.postflightDocument();
 
  }
 
  Out.endDocuments();
 
  return Out;
 
}
 
 
 
// Define non-member operator<< so that Output can stream out a string map.
 
template <typename T>
 
inline std::enable_if_t<has_CustomMappingTraits<T>::value, Output &>
 
operator<<(Output &Out, T &Val) {
 
  EmptyContext Ctx;
 
  Out.beginDocuments();
 
  if (Out.preflightDocument(0)) {
 
    yamlize(Out, Val, true, Ctx);
 
    Out.postflightDocument();
 
  }
 
  Out.endDocuments();
 
  return Out;
 
}
 
 
 
// Define non-member operator<< so that Output can stream out a polymorphic
 
// type.
 
template <typename T>
 
inline std::enable_if_t<has_PolymorphicTraits<T>::value, Output &>
 
operator<<(Output &Out, T &Val) {
 
  EmptyContext Ctx;
 
  Out.beginDocuments();
 
  if (Out.preflightDocument(0)) {
 
    // FIXME: The parser does not support explicit documents terminated with a
 
    // plain scalar; the end-marker is included as part of the scalar token.
 
    assert(PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && "plain scalar documents are not supported");
 
    yamlize(Out, Val, true, Ctx);
 
    Out.postflightDocument();
 
  }
 
  Out.endDocuments();
 
  return Out;
 
}
 
 
 
// Provide better error message about types missing a trait specialization
 
template <typename T>
 
inline std::enable_if_t<missingTraits<T, EmptyContext>::value, Output &>
 
operator<<(Output &yout, T &seq) {
 
  char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
 
  return yout;
 
}
 
 
 
template <bool B> struct IsFlowSequenceBase {};
 
template <> struct IsFlowSequenceBase<true> { static const bool flow = true; };
 
 
 
template <typename T, typename U = void>
 
struct IsResizable : std::false_type {};
 
 
 
template <typename T>
 
struct IsResizable<T, std::void_t<decltype(std::declval<T>().resize(0))>>
 
    : public std::true_type {};
 
 
 
template <typename T, bool B> struct IsResizableBase {
 
  using type = typename T::value_type;
 
 
 
  static type &element(IO &io, T &seq, size_t index) {
 
    if (index >= seq.size())
 
      seq.resize(index + 1);
 
    return seq[index];
 
  }
 
};
 
 
 
template <typename T> struct IsResizableBase<T, false> {
 
  using type = typename T::value_type;
 
 
 
  static type &element(IO &io, T &seq, size_t index) {
 
    if (index >= seq.size()) {
 
      io.setError(Twine("value sequence extends beyond static size (") +
 
                  Twine(seq.size()) + ")");
 
      return seq[0];
 
    }
 
    return seq[index];
 
  }
 
};
 
 
 
template <typename T, bool Flow>
 
struct SequenceTraitsImpl
 
    : IsFlowSequenceBase<Flow>, IsResizableBase<T, IsResizable<T>::value> {
 
  static size_t size(IO &io, T &seq) { return seq.size(); }
 
};
 
 
 
// Simple helper to check an expression can be used as a bool-valued template
 
// argument.
 
template <bool> struct CheckIsBool { static const bool value = true; };
 
 
 
// If T has SequenceElementTraits, then vector<T> and SmallVector<T, N> have
 
// SequenceTraits that do the obvious thing.
 
template <typename T>
 
struct SequenceTraits<
 
    std::vector<T>,
 
    std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
 
    : SequenceTraitsImpl<std::vector<T>, SequenceElementTraits<T>::flow> {};
 
template <typename T, unsigned N>
 
struct SequenceTraits<
 
    SmallVector<T, N>,
 
    std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
 
    : SequenceTraitsImpl<SmallVector<T, N>, SequenceElementTraits<T>::flow> {};
 
template <typename T>
 
struct SequenceTraits<
 
    SmallVectorImpl<T>,
 
    std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
 
    : SequenceTraitsImpl<SmallVectorImpl<T>, SequenceElementTraits<T>::flow> {};
 
template <typename T>
 
struct SequenceTraits<
 
    MutableArrayRef<T>,
 
    std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
 
    : SequenceTraitsImpl<MutableArrayRef<T>, SequenceElementTraits<T>::flow> {};
 
 
 
// Sequences of fundamental types use flow formatting.
 
template <typename T>
 
struct SequenceElementTraits<T,
 
                             std::enable_if_t<std::is_fundamental<T>::value>> {
 
  static const bool flow = true;
 
};
 
 
 
// Sequences of strings use block formatting.
 
template<> struct SequenceElementTraits<std::string> {
 
  static const bool flow = false;
 
};
 
template<> struct SequenceElementTraits<StringRef> {
 
  static const bool flow = false;
 
};
 
template<> struct SequenceElementTraits<std::pair<std::string, std::string>> {
 
  static const bool flow = false;
 
};
 
 
 
/// Implementation of CustomMappingTraits for std::map<std::string, T>.
 
template <typename T> struct StdMapStringCustomMappingTraitsImpl {
 
  using map_type = std::map<std::string, T>;
 
 
 
  static void inputOne(IO &io, StringRef key, map_type &v) {
 
    io.mapRequired(key.str().c_str(), v[std::string(key)]);
 
  }
 
 
 
  static void output(IO &io, map_type &v) {
 
    for (auto &p : v)
 
      io.mapRequired(p.first.c_str(), p.second);
 
  }
 
};
 
 
 
} // end namespace yaml
 
} // end namespace llvm
 
 
 
#define LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(TYPE, FLOW)                          \
 
  namespace llvm {                                                             \
 
  namespace yaml {                                                             \
 
  static_assert(                                                               \
 
      !std::is_fundamental_v<TYPE> && !std::is_same_v<TYPE, std::string> &&    \
 
          !std::is_same_v<TYPE, llvm::StringRef>,                              \
 
      "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control");          \
 
  template <> struct SequenceElementTraits<TYPE> {                             \
 
    static const bool flow = FLOW;                                             \
 
  };                                                                           \
 
  }                                                                            \
 
  }
 
 
 
/// Utility for declaring that a std::vector of a particular type
 
/// should be considered a YAML sequence.
 
#define LLVM_YAML_IS_SEQUENCE_VECTOR(type)                                     \
 
  LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, false)
 
 
 
/// Utility for declaring that a std::vector of a particular type
 
/// should be considered a YAML flow sequence.
 
#define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(type)                                \
 
  LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, true)
 
 
 
#define LLVM_YAML_DECLARE_MAPPING_TRAITS(Type)                                 \
 
  namespace llvm {                                                             \
 
  namespace yaml {                                                             \
 
  template <> struct MappingTraits<Type> {                                     \
 
    static void mapping(IO &IO, Type &Obj);                                    \
 
  };                                                                           \
 
  }                                                                            \
 
  }
 
 
 
#define LLVM_YAML_DECLARE_ENUM_TRAITS(Type)                                    \
 
  namespace llvm {                                                             \
 
  namespace yaml {                                                             \
 
  template <> struct ScalarEnumerationTraits<Type> {                           \
 
    static void enumeration(IO &io, Type &Value);                              \
 
  };                                                                           \
 
  }                                                                            \
 
  }
 
 
 
#define LLVM_YAML_DECLARE_BITSET_TRAITS(Type)                                  \
 
  namespace llvm {                                                             \
 
  namespace yaml {                                                             \
 
  template <> struct ScalarBitSetTraits<Type> {                                \
 
    static void bitset(IO &IO, Type &Options);                                 \
 
  };                                                                           \
 
  }                                                                            \
 
  }
 
 
 
#define LLVM_YAML_DECLARE_SCALAR_TRAITS(Type, MustQuote)                       \
 
  namespace llvm {                                                             \
 
  namespace yaml {                                                             \
 
  template <> struct ScalarTraits<Type> {                                      \
 
    static void output(const Type &Value, void *ctx, raw_ostream &Out);        \
 
    static StringRef input(StringRef Scalar, void *ctxt, Type &Value);         \
 
    static QuotingType mustQuote(StringRef) { return MustQuote; }              \
 
  };                                                                           \
 
  }                                                                            \
 
  }
 
 
 
/// Utility for declaring that a std::vector of a particular type
 
/// should be considered a YAML document list.
 
#define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type)                               \
 
  namespace llvm {                                                             \
 
  namespace yaml {                                                             \
 
  template <unsigned N>                                                        \
 
  struct DocumentListTraits<SmallVector<_type, N>>                             \
 
      : public SequenceTraitsImpl<SmallVector<_type, N>, false> {};            \
 
  template <>                                                                  \
 
  struct DocumentListTraits<std::vector<_type>>                                \
 
      : public SequenceTraitsImpl<std::vector<_type>, false> {};               \
 
  }                                                                            \
 
  }
 
 
 
/// Utility for declaring that std::map<std::string, _type> should be considered
 
/// a YAML map.
 
#define LLVM_YAML_IS_STRING_MAP(_type)                                         \
 
  namespace llvm {                                                             \
 
  namespace yaml {                                                             \
 
  template <>                                                                  \
 
  struct CustomMappingTraits<std::map<std::string, _type>>                     \
 
      : public StdMapStringCustomMappingTraitsImpl<_type> {};                  \
 
  }                                                                            \
 
  }
 
 
 
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex64)
 
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex32)
 
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex16)
 
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex8)
 
 
 
#endif // LLVM_SUPPORT_YAMLTRAITS_H