//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This header defines support for implementing classes that have
 
/// some trailing object (or arrays of objects) appended to them. The
 
/// main purpose is to make it obvious where this idiom is being used,
 
/// and to make the usage more idiomatic and more difficult to get
 
/// wrong.
 
///
 
/// The TrailingObject template abstracts away the reinterpret_cast,
 
/// pointer arithmetic, and size calculations used for the allocation
 
/// and access of appended arrays of objects, and takes care that they
 
/// are all allocated at their required alignment. Additionally, it
 
/// ensures that the base type is final -- deriving from a class that
 
/// expects data appended immediately after it is typically not safe.
 
///
 
/// Users are expected to derive from this template, and provide
 
/// numTrailingObjects implementations for each trailing type except
 
/// the last, e.g. like this sample:
 
///
 
/// \code
 
/// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> {
 
///   friend TrailingObjects;
 
///
 
///   unsigned NumInts, NumDoubles;
 
///   size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; }
 
///  };
 
/// \endcode
 
///
 
/// You can access the appended arrays via 'getTrailingObjects', and
 
/// determine the size needed for allocation via
 
/// 'additionalSizeToAlloc' and 'totalSizeToAlloc'.
 
///
 
/// All the methods implemented by this class are are intended for use
 
/// by the implementation of the class, not as part of its interface
 
/// (thus, private inheritance is suggested).
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H
 
#define LLVM_SUPPORT_TRAILINGOBJECTS_H
 
 
 
#include "llvm/Support/AlignOf.h"
 
#include "llvm/Support/Alignment.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/MathExtras.h"
 
#include "llvm/Support/type_traits.h"
 
#include <new>
 
#include <type_traits>
 
 
 
namespace llvm {
 
 
 
namespace trailing_objects_internal {
 
/// Helper template to calculate the max alignment requirement for a set of
 
/// objects.
 
template <typename First, typename... Rest> class AlignmentCalcHelper {
 
private:
 
  enum {
 
    FirstAlignment = alignof(First),
 
    RestAlignment = AlignmentCalcHelper<Rest...>::Alignment,
 
  };
 
 
 
public:
 
  enum {
 
    Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment
 
  };
 
};
 
 
 
template <typename First> class AlignmentCalcHelper<First> {
 
public:
 
  enum { Alignment = alignof(First) };
 
};
 
 
 
/// The base class for TrailingObjects* classes.
 
class TrailingObjectsBase {
 
protected:
 
  /// OverloadToken's purpose is to allow specifying function overloads
 
  /// for different types, without actually taking the types as
 
  /// parameters. (Necessary because member function templates cannot
 
  /// be specialized, so overloads must be used instead of
 
  /// specialization.)
 
  template <typename T> struct OverloadToken {};
 
};
 
 
 
// Just a little helper for transforming a type pack into the same
 
// number of a different type. e.g.:
 
//   ExtractSecondType<Foo..., int>::type
 
template <typename Ty1, typename Ty2> struct ExtractSecondType {
 
  typedef Ty2 type;
 
};
 
 
 
// TrailingObjectsImpl is somewhat complicated, because it is a
 
// recursively inheriting template, in order to handle the template
 
// varargs. Each level of inheritance picks off a single trailing type
 
// then recurses on the rest. The "Align", "BaseTy", and
 
// "TopTrailingObj" arguments are passed through unchanged through the
 
// recursion. "PrevTy" is, at each level, the type handled by the
 
// level right above it.
 
 
 
template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
 
          typename... MoreTys>
 
class TrailingObjectsImpl {
 
  // The main template definition is never used -- the two
 
  // specializations cover all possibilities.
 
};
 
 
 
template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
 
          typename NextTy, typename... MoreTys>
 
class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy,
 
                          MoreTys...>
 
    : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy,
 
                                 MoreTys...> {
 
 
 
  typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...>
 
      ParentType;
 
 
 
  struct RequiresRealignment {
 
    static const bool value = alignof(PrevTy) < alignof(NextTy);
 
  };
 
 
 
  static constexpr bool requiresRealignment() {
 
    return RequiresRealignment::value;
 
  }
 
 
 
protected:
 
  // Ensure the inherited getTrailingObjectsImpl is not hidden.
 
  using ParentType::getTrailingObjectsImpl;
 
 
 
  // These two functions are helper functions for
 
  // TrailingObjects::getTrailingObjects. They recurse to the left --
 
  // the result for each type in the list of trailing types depends on
 
  // the result of calling the function on the type to the
 
  // left. However, the function for the type to the left is
 
  // implemented by a *subclass* of this class, so we invoke it via
 
  // the TopTrailingObj, which is, via the
 
  // curiously-recurring-template-pattern, the most-derived type in
 
  // this recursion, and thus, contains all the overloads.
 
  static const NextTy *
 
  getTrailingObjectsImpl(const BaseTy *Obj,
 
                         TrailingObjectsBase::OverloadToken<NextTy>) {
 
    auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
 
                    Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
 
                TopTrailingObj::callNumTrailingObjects(
 
                    Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
 
 
 
    if (requiresRealignment())
 
      return reinterpret_cast<const NextTy *>(
 
          alignAddr(Ptr, Align::Of<NextTy>()));
 
    else
 
      return reinterpret_cast<const NextTy *>(Ptr);
 
  }
 
 
 
  static NextTy *
 
  getTrailingObjectsImpl(BaseTy *Obj,
 
                         TrailingObjectsBase::OverloadToken<NextTy>) {
 
    auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
 
                    Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
 
                TopTrailingObj::callNumTrailingObjects(
 
                    Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
 
 
 
    if (requiresRealignment())
 
      return reinterpret_cast<NextTy *>(alignAddr(Ptr, Align::Of<NextTy>()));
 
    else
 
      return reinterpret_cast<NextTy *>(Ptr);
 
  }
 
 
 
  // Helper function for TrailingObjects::additionalSizeToAlloc: this
 
  // function recurses to superclasses, each of which requires one
 
  // fewer size_t argument, and adds its own size.
 
  static constexpr size_t additionalSizeToAllocImpl(
 
      size_t SizeSoFar, size_t Count1,
 
      typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) {
 
    return ParentType::additionalSizeToAllocImpl(
 
        (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar)
 
                               : SizeSoFar) +
 
            sizeof(NextTy) * Count1,
 
        MoreCounts...);
 
  }
 
};
 
 
 
// The base case of the TrailingObjectsImpl inheritance recursion,
 
// when there's no more trailing types.
 
template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy>
 
class alignas(Align) TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy>
 
    : public TrailingObjectsBase {
 
protected:
 
  // This is a dummy method, only here so the "using" doesn't fail --
 
  // it will never be called, because this function recurses backwards
 
  // up the inheritance chain to subclasses.
 
  static void getTrailingObjectsImpl();
 
 
 
  static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) {
 
    return SizeSoFar;
 
  }
 
 
 
  template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {}
 
};
 
 
 
} // end namespace trailing_objects_internal
 
 
 
// Finally, the main type defined in this file, the one intended for users...
 
 
 
/// See the file comment for details on the usage of the
 
/// TrailingObjects type.
 
template <typename BaseTy, typename... TrailingTys>
 
class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl<
 
                            trailing_objects_internal::AlignmentCalcHelper<
 
                                TrailingTys...>::Alignment,
 
                            BaseTy, TrailingObjects<BaseTy, TrailingTys...>,
 
                            BaseTy, TrailingTys...> {
 
 
 
  template <int A, typename B, typename T, typename P, typename... M>
 
  friend class trailing_objects_internal::TrailingObjectsImpl;
 
 
 
  template <typename... Tys> class Foo {};
 
 
 
  typedef trailing_objects_internal::TrailingObjectsImpl<
 
      trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment,
 
      BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...>
 
      ParentType;
 
  using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase;
 
 
 
  using ParentType::getTrailingObjectsImpl;
 
 
 
  // This function contains only a static_assert BaseTy is final. The
 
  // static_assert must be in a function, and not at class-level
 
  // because BaseTy isn't complete at class instantiation time, but
 
  // will be by the time this function is instantiated.
 
  static void verifyTrailingObjectsAssertions() {
 
    static_assert(std::is_final<BaseTy>(), "BaseTy must be final.");
 
  }
 
 
 
  // These two methods are the base of the recursion for this method.
 
  static const BaseTy *
 
  getTrailingObjectsImpl(const BaseTy *Obj,
 
                         TrailingObjectsBase::OverloadToken<BaseTy>) {
 
    return Obj;
 
  }
 
 
 
  static BaseTy *
 
  getTrailingObjectsImpl(BaseTy *Obj,
 
                         TrailingObjectsBase::OverloadToken<BaseTy>) {
 
    return Obj;
 
  }
 
 
 
  // callNumTrailingObjects simply calls numTrailingObjects on the
 
  // provided Obj -- except when the type being queried is BaseTy
 
  // itself. There is always only one of the base object, so that case
 
  // is handled here. (An additional benefit of indirecting through
 
  // this function is that consumers only say "friend
 
  // TrailingObjects", and thus, only this class itself can call the
 
  // numTrailingObjects function.)
 
  static size_t
 
  callNumTrailingObjects(const BaseTy *Obj,
 
                         TrailingObjectsBase::OverloadToken<BaseTy>) {
 
    return 1;
 
  }
 
 
 
  template <typename T>
 
  static size_t callNumTrailingObjects(const BaseTy *Obj,
 
                                       TrailingObjectsBase::OverloadToken<T>) {
 
    return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>());
 
  }
 
 
 
public:
 
  // Make this (privately inherited) member public.
 
#ifndef _MSC_VER
 
  using ParentType::OverloadToken;
 
#else
 
  // An MSVC bug prevents the above from working, (last tested at CL version
 
  // 19.28). "Class5" in TrailingObjectsTest.cpp tests the problematic case.
 
  template <typename T>
 
  using OverloadToken = typename ParentType::template OverloadToken<T>;
 
#endif
 
 
 
  /// Returns a pointer to the trailing object array of the given type
 
  /// (which must be one of those specified in the class template). The
 
  /// array may have zero or more elements in it.
 
  template <typename T> const T *getTrailingObjects() const {
 
    verifyTrailingObjectsAssertions();
 
    // Forwards to an impl function with overloads, since member
 
    // function templates can't be specialized.
 
    return this->getTrailingObjectsImpl(
 
        static_cast<const BaseTy *>(this),
 
        TrailingObjectsBase::OverloadToken<T>());
 
  }
 
 
 
  /// Returns a pointer to the trailing object array of the given type
 
  /// (which must be one of those specified in the class template). The
 
  /// array may have zero or more elements in it.
 
  template <typename T> T *getTrailingObjects() {
 
    verifyTrailingObjectsAssertions();
 
    // Forwards to an impl function with overloads, since member
 
    // function templates can't be specialized.
 
    return this->getTrailingObjectsImpl(
 
        static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>());
 
  }
 
 
 
  /// Returns the size of the trailing data, if an object were
 
  /// allocated with the given counts (The counts are in the same order
 
  /// as the template arguments). This does not include the size of the
 
  /// base object.  The template arguments must be the same as those
 
  /// used in the class; they are supplied here redundantly only so
 
  /// that it's clear what the counts are counting in callers.
 
  template <typename... Tys>
 
  static constexpr std::enable_if_t<
 
      std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
 
  additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
 
                        TrailingTys, size_t>::type... Counts) {
 
    return ParentType::additionalSizeToAllocImpl(0, Counts...);
 
  }
 
 
 
  /// Returns the total size of an object if it were allocated with the
 
  /// given trailing object counts. This is the same as
 
  /// additionalSizeToAlloc, except it *does* include the size of the base
 
  /// object.
 
  template <typename... Tys>
 
  static constexpr std::enable_if_t<
 
      std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
 
  totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
 
                   TrailingTys, size_t>::type... Counts) {
 
    return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
 
  }
 
 
 
  TrailingObjects() = default;
 
  TrailingObjects(const TrailingObjects &) = delete;
 
  TrailingObjects(TrailingObjects &&) = delete;
 
  TrailingObjects &operator=(const TrailingObjects &) = delete;
 
  TrailingObjects &operator=(TrailingObjects &&) = delete;
 
 
 
  /// A type where its ::with_counts template member has a ::type member
 
  /// suitable for use as uninitialized storage for an object with the given
 
  /// trailing object counts. The template arguments are similar to those
 
  /// of additionalSizeToAlloc.
 
  ///
 
  /// Use with FixedSizeStorageOwner, e.g.:
 
  ///
 
  /// \code{.cpp}
 
  ///
 
  /// MyObj::FixedSizeStorage<void *>::with_counts<1u>::type myStackObjStorage;
 
  /// MyObj::FixedSizeStorageOwner
 
  ///     myStackObjOwner(new ((void *)&myStackObjStorage) MyObj);
 
  /// MyObj *const myStackObjPtr = myStackObjOwner.get();
 
  ///
 
  /// \endcode
 
  template <typename... Tys> struct FixedSizeStorage {
 
    template <size_t... Counts> struct with_counts {
 
      enum { Size = totalSizeToAlloc<Tys...>(Counts...) };
 
      struct type {
 
        alignas(BaseTy) char buffer[Size];
 
      };
 
    };
 
  };
 
 
 
  /// A type that acts as the owner for an object placed into fixed storage.
 
  class FixedSizeStorageOwner {
 
  public:
 
    FixedSizeStorageOwner(BaseTy *p) : p(p) {}
 
    ~FixedSizeStorageOwner() {
 
      assert(p && "FixedSizeStorageOwner owns null?");
 
      p->~BaseTy();
 
    }
 
 
 
    BaseTy *get() { return p; }
 
    const BaseTy *get() const { return p; }
 
 
 
  private:
 
    FixedSizeStorageOwner(const FixedSizeStorageOwner &) = delete;
 
    FixedSizeStorageOwner(FixedSizeStorageOwner &&) = delete;
 
    FixedSizeStorageOwner &operator=(const FixedSizeStorageOwner &) = delete;
 
    FixedSizeStorageOwner &operator=(FixedSizeStorageOwner &&) = delete;
 
 
 
    BaseTy *const p;
 
  };
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif