//===-- llvm/Support/Threading.h - Control multithreading mode --*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file declares helper functions for running LLVM in a multi-threaded
 
// environment.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_THREADING_H
 
#define LLVM_SUPPORT_THREADING_H
 
 
 
#include "llvm/ADT/BitVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/Config/llvm-config.h" // for LLVM_ON_UNIX
 
#include "llvm/Support/Compiler.h"
 
#include <ciso646> // So we can check the C++ standard lib macros.
 
#include <optional>
 
 
 
#if defined(_MSC_VER)
 
// MSVC's call_once implementation worked since VS 2015, which is the minimum
 
// supported version as of this writing.
 
#define LLVM_THREADING_USE_STD_CALL_ONCE 1
 
#elif defined(LLVM_ON_UNIX) &&                                                 \
 
    (defined(_LIBCPP_VERSION) ||                                               \
 
     !(defined(__NetBSD__) || defined(__OpenBSD__) || defined(__powerpc__)))
 
// std::call_once from libc++ is used on all Unix platforms. Other
 
// implementations like libstdc++ are known to have problems on NetBSD,
 
// OpenBSD and PowerPC.
 
#define LLVM_THREADING_USE_STD_CALL_ONCE 1
 
#elif defined(LLVM_ON_UNIX) &&                                                 \
 
    (defined(__powerpc__) && defined(__LITTLE_ENDIAN__))
 
#define LLVM_THREADING_USE_STD_CALL_ONCE 1
 
#else
 
#define LLVM_THREADING_USE_STD_CALL_ONCE 0
 
#endif
 
 
 
#if LLVM_THREADING_USE_STD_CALL_ONCE
 
#include <mutex>
 
#else
 
#include "llvm/Support/Atomic.h"
 
#endif
 
 
 
namespace llvm {
 
class Twine;
 
 
 
/// Returns true if LLVM is compiled with support for multi-threading, and
 
/// false otherwise.
 
constexpr bool llvm_is_multithreaded() { return LLVM_ENABLE_THREADS; }
 
 
 
#if LLVM_THREADING_USE_STD_CALL_ONCE
 
 
 
  typedef std::once_flag once_flag;
 
 
 
#else
 
 
 
  enum InitStatus { Uninitialized = 0, Wait = 1, Done = 2 };
 
 
 
  /// The llvm::once_flag structure
 
  ///
 
  /// This type is modeled after std::once_flag to use with llvm::call_once.
 
  /// This structure must be used as an opaque object. It is a struct to force
 
  /// autoinitialization and behave like std::once_flag.
 
  struct once_flag {
 
    volatile sys::cas_flag status = Uninitialized;
 
  };
 
 
 
#endif
 
 
 
  /// Execute the function specified as a parameter once.
 
  ///
 
  /// Typical usage:
 
  /// \code
 
  ///   void foo() {...};
 
  ///   ...
 
  ///   static once_flag flag;
 
  ///   call_once(flag, foo);
 
  /// \endcode
 
  ///
 
  /// \param flag Flag used for tracking whether or not this has run.
 
  /// \param F Function to call once.
 
  template <typename Function, typename... Args>
 
  void call_once(once_flag &flag, Function &&F, Args &&... ArgList) {
 
#if LLVM_THREADING_USE_STD_CALL_ONCE
 
    std::call_once(flag, std::forward<Function>(F),
 
                   std::forward<Args>(ArgList)...);
 
#else
 
    // For other platforms we use a generic (if brittle) version based on our
 
    // atomics.
 
    sys::cas_flag old_val = sys::CompareAndSwap(&flag.status, Wait, Uninitialized);
 
    if (old_val == Uninitialized) {
 
      std::forward<Function>(F)(std::forward<Args>(ArgList)...);
 
      sys::MemoryFence();
 
      TsanIgnoreWritesBegin();
 
      TsanHappensBefore(&flag.status);
 
      flag.status = Done;
 
      TsanIgnoreWritesEnd();
 
    } else {
 
      // Wait until any thread doing the call has finished.
 
      sys::cas_flag tmp = flag.status;
 
      sys::MemoryFence();
 
      while (tmp != Done) {
 
        tmp = flag.status;
 
        sys::MemoryFence();
 
      }
 
    }
 
    TsanHappensAfter(&flag.status);
 
#endif
 
  }
 
 
 
  /// This tells how a thread pool will be used
 
  class ThreadPoolStrategy {
 
  public:
 
    // The default value (0) means all available threads should be used,
 
    // taking the affinity mask into account. If set, this value only represents
 
    // a suggested high bound, the runtime might choose a lower value (not
 
    // higher).
 
    unsigned ThreadsRequested = 0;
 
 
 
    // If SMT is active, use hyper threads. If false, there will be only one
 
    // std::thread per core.
 
    bool UseHyperThreads = true;
 
 
 
    // If set, will constrain 'ThreadsRequested' to the number of hardware
 
    // threads, or hardware cores.
 
    bool Limit = false;
 
 
 
    /// Retrieves the max available threads for the current strategy. This
 
    /// accounts for affinity masks and takes advantage of all CPU sockets.
 
    unsigned compute_thread_count() const;
 
 
 
    /// Assign the current thread to an ideal hardware CPU or NUMA node. In a
 
    /// multi-socket system, this ensures threads are assigned to all CPU
 
    /// sockets. \p ThreadPoolNum represents a number bounded by [0,
 
    /// compute_thread_count()).
 
    void apply_thread_strategy(unsigned ThreadPoolNum) const;
 
 
 
    /// Finds the CPU socket where a thread should go. Returns 'std::nullopt' if
 
    /// the thread shall remain on the actual CPU socket.
 
    std::optional<unsigned> compute_cpu_socket(unsigned ThreadPoolNum) const;
 
  };
 
 
 
  /// Build a strategy from a number of threads as a string provided in \p Num.
 
  /// When Num is above the max number of threads specified by the \p Default
 
  /// strategy, we attempt to equally allocate the threads on all CPU sockets.
 
  /// "0" or an empty string will return the \p Default strategy.
 
  /// "all" for using all hardware threads.
 
  std::optional<ThreadPoolStrategy>
 
  get_threadpool_strategy(StringRef Num, ThreadPoolStrategy Default = {});
 
 
 
  /// Returns a thread strategy for tasks requiring significant memory or other
 
  /// resources. To be used for workloads where hardware_concurrency() proves to
 
  /// be less efficient. Avoid this strategy if doing lots of I/O. Currently
 
  /// based on physical cores, if available for the host system, otherwise falls
 
  /// back to hardware_concurrency(). Returns 1 when LLVM is configured with
 
  /// LLVM_ENABLE_THREADS = OFF.
 
  inline ThreadPoolStrategy
 
  heavyweight_hardware_concurrency(unsigned ThreadCount = 0) {
 
    ThreadPoolStrategy S;
 
    S.UseHyperThreads = false;
 
    S.ThreadsRequested = ThreadCount;
 
    return S;
 
  }
 
 
 
  /// Like heavyweight_hardware_concurrency() above, but builds a strategy
 
  /// based on the rules described for get_threadpool_strategy().
 
  /// If \p Num is invalid, returns a default strategy where one thread per
 
  /// hardware core is used.
 
  inline ThreadPoolStrategy heavyweight_hardware_concurrency(StringRef Num) {
 
    std::optional<ThreadPoolStrategy> S =
 
        get_threadpool_strategy(Num, heavyweight_hardware_concurrency());
 
    if (S)
 
      return *S;
 
    return heavyweight_hardware_concurrency();
 
  }
 
 
 
  /// Returns a default thread strategy where all available hardware resources
 
  /// are to be used, except for those initially excluded by an affinity mask.
 
  /// This function takes affinity into consideration. Returns 1 when LLVM is
 
  /// configured with LLVM_ENABLE_THREADS=OFF.
 
  inline ThreadPoolStrategy hardware_concurrency(unsigned ThreadCount = 0) {
 
    ThreadPoolStrategy S;
 
    S.ThreadsRequested = ThreadCount;
 
    return S;
 
  }
 
 
 
  /// Returns an optimal thread strategy to execute specified amount of tasks.
 
  /// This strategy should prevent us from creating too many threads if we
 
  /// occasionaly have an unexpectedly small amount of tasks.
 
  inline ThreadPoolStrategy optimal_concurrency(unsigned TaskCount = 0) {
 
    ThreadPoolStrategy S;
 
    S.Limit = true;
 
    S.ThreadsRequested = TaskCount;
 
    return S;
 
  }
 
 
 
  /// Return the current thread id, as used in various OS system calls.
 
  /// Note that not all platforms guarantee that the value returned will be
 
  /// unique across the entire system, so portable code should not assume
 
  /// this.
 
  uint64_t get_threadid();
 
 
 
  /// Get the maximum length of a thread name on this platform.
 
  /// A value of 0 means there is no limit.
 
  uint32_t get_max_thread_name_length();
 
 
 
  /// Set the name of the current thread.  Setting a thread's name can
 
  /// be helpful for enabling useful diagnostics under a debugger or when
 
  /// logging.  The level of support for setting a thread's name varies
 
  /// wildly across operating systems, and we only make a best effort to
 
  /// perform the operation on supported platforms.  No indication of success
 
  /// or failure is returned.
 
  void set_thread_name(const Twine &Name);
 
 
 
  /// Get the name of the current thread.  The level of support for
 
  /// getting a thread's name varies wildly across operating systems, and it
 
  /// is not even guaranteed that if you can successfully set a thread's name
 
  /// that you can later get it back.  This function is intended for diagnostic
 
  /// purposes, and as with setting a thread's name no indication of whether
 
  /// the operation succeeded or failed is returned.
 
  void get_thread_name(SmallVectorImpl<char> &Name);
 
 
 
  /// Returns a mask that represents on which hardware thread, core, CPU, NUMA
 
  /// group, the calling thread can be executed. On Windows, threads cannot
 
  /// cross CPU sockets boundaries.
 
  llvm::BitVector get_thread_affinity_mask();
 
 
 
  /// Returns how many physical CPUs or NUMA groups the system has.
 
  unsigned get_cpus();
 
 
 
  /// Returns how many physical cores (as opposed to logical cores returned from
 
  /// thread::hardware_concurrency(), which includes hyperthreads).
 
  /// Returns -1 if unknown for the current host system.
 
  int get_physical_cores();
 
 
 
  enum class ThreadPriority {
 
    /// Lower the current thread's priority as much as possible. Can be used
 
    /// for long-running tasks that are not time critical; more energy-
 
    /// efficient than Low.
 
    Background = 0,
 
 
 
    /// Lower the current thread's priority such that it does not affect
 
    /// foreground tasks significantly. This is a good default for long-
 
    /// running, latency-insensitive tasks to make sure cpu is not hogged
 
    /// by this task.
 
    Low = 1,
 
 
 
    /// Restore the current thread's priority to default scheduling priority.
 
    Default = 2,
 
  };
 
  enum class SetThreadPriorityResult { FAILURE, SUCCESS };
 
  SetThreadPriorityResult set_thread_priority(ThreadPriority Priority);
 
}
 
 
 
#endif