Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===-- llvm/Support/Threading.h - Control multithreading mode --*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file declares helper functions for running LLVM in a multi-threaded
  10. // environment.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_SUPPORT_THREADING_H
  15. #define LLVM_SUPPORT_THREADING_H
  16.  
  17. #include "llvm/ADT/BitVector.h"
  18. #include "llvm/ADT/StringRef.h"
  19. #include "llvm/Config/llvm-config.h" // for LLVM_ON_UNIX
  20. #include "llvm/Support/Compiler.h"
  21. #include <ciso646> // So we can check the C++ standard lib macros.
  22. #include <optional>
  23.  
  24. #if defined(_MSC_VER)
  25. // MSVC's call_once implementation worked since VS 2015, which is the minimum
  26. // supported version as of this writing.
  27. #define LLVM_THREADING_USE_STD_CALL_ONCE 1
  28. #elif defined(LLVM_ON_UNIX) &&                                                 \
  29.     (defined(_LIBCPP_VERSION) ||                                               \
  30.      !(defined(__NetBSD__) || defined(__OpenBSD__) || defined(__powerpc__)))
  31. // std::call_once from libc++ is used on all Unix platforms. Other
  32. // implementations like libstdc++ are known to have problems on NetBSD,
  33. // OpenBSD and PowerPC.
  34. #define LLVM_THREADING_USE_STD_CALL_ONCE 1
  35. #elif defined(LLVM_ON_UNIX) &&                                                 \
  36.     (defined(__powerpc__) && defined(__LITTLE_ENDIAN__))
  37. #define LLVM_THREADING_USE_STD_CALL_ONCE 1
  38. #else
  39. #define LLVM_THREADING_USE_STD_CALL_ONCE 0
  40. #endif
  41.  
  42. #if LLVM_THREADING_USE_STD_CALL_ONCE
  43. #include <mutex>
  44. #else
  45. #include "llvm/Support/Atomic.h"
  46. #endif
  47.  
  48. namespace llvm {
  49. class Twine;
  50.  
  51. /// Returns true if LLVM is compiled with support for multi-threading, and
  52. /// false otherwise.
  53. constexpr bool llvm_is_multithreaded() { return LLVM_ENABLE_THREADS; }
  54.  
  55. #if LLVM_THREADING_USE_STD_CALL_ONCE
  56.  
  57.   typedef std::once_flag once_flag;
  58.  
  59. #else
  60.  
  61.   enum InitStatus { Uninitialized = 0, Wait = 1, Done = 2 };
  62.  
  63.   /// The llvm::once_flag structure
  64.   ///
  65.   /// This type is modeled after std::once_flag to use with llvm::call_once.
  66.   /// This structure must be used as an opaque object. It is a struct to force
  67.   /// autoinitialization and behave like std::once_flag.
  68.   struct once_flag {
  69.     volatile sys::cas_flag status = Uninitialized;
  70.   };
  71.  
  72. #endif
  73.  
  74.   /// Execute the function specified as a parameter once.
  75.   ///
  76.   /// Typical usage:
  77.   /// \code
  78.   ///   void foo() {...};
  79.   ///   ...
  80.   ///   static once_flag flag;
  81.   ///   call_once(flag, foo);
  82.   /// \endcode
  83.   ///
  84.   /// \param flag Flag used for tracking whether or not this has run.
  85.   /// \param F Function to call once.
  86.   template <typename Function, typename... Args>
  87.   void call_once(once_flag &flag, Function &&F, Args &&... ArgList) {
  88. #if LLVM_THREADING_USE_STD_CALL_ONCE
  89.     std::call_once(flag, std::forward<Function>(F),
  90.                    std::forward<Args>(ArgList)...);
  91. #else
  92.     // For other platforms we use a generic (if brittle) version based on our
  93.     // atomics.
  94.     sys::cas_flag old_val = sys::CompareAndSwap(&flag.status, Wait, Uninitialized);
  95.     if (old_val == Uninitialized) {
  96.       std::forward<Function>(F)(std::forward<Args>(ArgList)...);
  97.       sys::MemoryFence();
  98.       TsanIgnoreWritesBegin();
  99.       TsanHappensBefore(&flag.status);
  100.       flag.status = Done;
  101.       TsanIgnoreWritesEnd();
  102.     } else {
  103.       // Wait until any thread doing the call has finished.
  104.       sys::cas_flag tmp = flag.status;
  105.       sys::MemoryFence();
  106.       while (tmp != Done) {
  107.         tmp = flag.status;
  108.         sys::MemoryFence();
  109.       }
  110.     }
  111.     TsanHappensAfter(&flag.status);
  112. #endif
  113.   }
  114.  
  115.   /// This tells how a thread pool will be used
  116.   class ThreadPoolStrategy {
  117.   public:
  118.     // The default value (0) means all available threads should be used,
  119.     // taking the affinity mask into account. If set, this value only represents
  120.     // a suggested high bound, the runtime might choose a lower value (not
  121.     // higher).
  122.     unsigned ThreadsRequested = 0;
  123.  
  124.     // If SMT is active, use hyper threads. If false, there will be only one
  125.     // std::thread per core.
  126.     bool UseHyperThreads = true;
  127.  
  128.     // If set, will constrain 'ThreadsRequested' to the number of hardware
  129.     // threads, or hardware cores.
  130.     bool Limit = false;
  131.  
  132.     /// Retrieves the max available threads for the current strategy. This
  133.     /// accounts for affinity masks and takes advantage of all CPU sockets.
  134.     unsigned compute_thread_count() const;
  135.  
  136.     /// Assign the current thread to an ideal hardware CPU or NUMA node. In a
  137.     /// multi-socket system, this ensures threads are assigned to all CPU
  138.     /// sockets. \p ThreadPoolNum represents a number bounded by [0,
  139.     /// compute_thread_count()).
  140.     void apply_thread_strategy(unsigned ThreadPoolNum) const;
  141.  
  142.     /// Finds the CPU socket where a thread should go. Returns 'std::nullopt' if
  143.     /// the thread shall remain on the actual CPU socket.
  144.     std::optional<unsigned> compute_cpu_socket(unsigned ThreadPoolNum) const;
  145.   };
  146.  
  147.   /// Build a strategy from a number of threads as a string provided in \p Num.
  148.   /// When Num is above the max number of threads specified by the \p Default
  149.   /// strategy, we attempt to equally allocate the threads on all CPU sockets.
  150.   /// "0" or an empty string will return the \p Default strategy.
  151.   /// "all" for using all hardware threads.
  152.   std::optional<ThreadPoolStrategy>
  153.   get_threadpool_strategy(StringRef Num, ThreadPoolStrategy Default = {});
  154.  
  155.   /// Returns a thread strategy for tasks requiring significant memory or other
  156.   /// resources. To be used for workloads where hardware_concurrency() proves to
  157.   /// be less efficient. Avoid this strategy if doing lots of I/O. Currently
  158.   /// based on physical cores, if available for the host system, otherwise falls
  159.   /// back to hardware_concurrency(). Returns 1 when LLVM is configured with
  160.   /// LLVM_ENABLE_THREADS = OFF.
  161.   inline ThreadPoolStrategy
  162.   heavyweight_hardware_concurrency(unsigned ThreadCount = 0) {
  163.     ThreadPoolStrategy S;
  164.     S.UseHyperThreads = false;
  165.     S.ThreadsRequested = ThreadCount;
  166.     return S;
  167.   }
  168.  
  169.   /// Like heavyweight_hardware_concurrency() above, but builds a strategy
  170.   /// based on the rules described for get_threadpool_strategy().
  171.   /// If \p Num is invalid, returns a default strategy where one thread per
  172.   /// hardware core is used.
  173.   inline ThreadPoolStrategy heavyweight_hardware_concurrency(StringRef Num) {
  174.     std::optional<ThreadPoolStrategy> S =
  175.         get_threadpool_strategy(Num, heavyweight_hardware_concurrency());
  176.     if (S)
  177.       return *S;
  178.     return heavyweight_hardware_concurrency();
  179.   }
  180.  
  181.   /// Returns a default thread strategy where all available hardware resources
  182.   /// are to be used, except for those initially excluded by an affinity mask.
  183.   /// This function takes affinity into consideration. Returns 1 when LLVM is
  184.   /// configured with LLVM_ENABLE_THREADS=OFF.
  185.   inline ThreadPoolStrategy hardware_concurrency(unsigned ThreadCount = 0) {
  186.     ThreadPoolStrategy S;
  187.     S.ThreadsRequested = ThreadCount;
  188.     return S;
  189.   }
  190.  
  191.   /// Returns an optimal thread strategy to execute specified amount of tasks.
  192.   /// This strategy should prevent us from creating too many threads if we
  193.   /// occasionaly have an unexpectedly small amount of tasks.
  194.   inline ThreadPoolStrategy optimal_concurrency(unsigned TaskCount = 0) {
  195.     ThreadPoolStrategy S;
  196.     S.Limit = true;
  197.     S.ThreadsRequested = TaskCount;
  198.     return S;
  199.   }
  200.  
  201.   /// Return the current thread id, as used in various OS system calls.
  202.   /// Note that not all platforms guarantee that the value returned will be
  203.   /// unique across the entire system, so portable code should not assume
  204.   /// this.
  205.   uint64_t get_threadid();
  206.  
  207.   /// Get the maximum length of a thread name on this platform.
  208.   /// A value of 0 means there is no limit.
  209.   uint32_t get_max_thread_name_length();
  210.  
  211.   /// Set the name of the current thread.  Setting a thread's name can
  212.   /// be helpful for enabling useful diagnostics under a debugger or when
  213.   /// logging.  The level of support for setting a thread's name varies
  214.   /// wildly across operating systems, and we only make a best effort to
  215.   /// perform the operation on supported platforms.  No indication of success
  216.   /// or failure is returned.
  217.   void set_thread_name(const Twine &Name);
  218.  
  219.   /// Get the name of the current thread.  The level of support for
  220.   /// getting a thread's name varies wildly across operating systems, and it
  221.   /// is not even guaranteed that if you can successfully set a thread's name
  222.   /// that you can later get it back.  This function is intended for diagnostic
  223.   /// purposes, and as with setting a thread's name no indication of whether
  224.   /// the operation succeeded or failed is returned.
  225.   void get_thread_name(SmallVectorImpl<char> &Name);
  226.  
  227.   /// Returns a mask that represents on which hardware thread, core, CPU, NUMA
  228.   /// group, the calling thread can be executed. On Windows, threads cannot
  229.   /// cross CPU sockets boundaries.
  230.   llvm::BitVector get_thread_affinity_mask();
  231.  
  232.   /// Returns how many physical CPUs or NUMA groups the system has.
  233.   unsigned get_cpus();
  234.  
  235.   /// Returns how many physical cores (as opposed to logical cores returned from
  236.   /// thread::hardware_concurrency(), which includes hyperthreads).
  237.   /// Returns -1 if unknown for the current host system.
  238.   int get_physical_cores();
  239.  
  240.   enum class ThreadPriority {
  241.     /// Lower the current thread's priority as much as possible. Can be used
  242.     /// for long-running tasks that are not time critical; more energy-
  243.     /// efficient than Low.
  244.     Background = 0,
  245.  
  246.     /// Lower the current thread's priority such that it does not affect
  247.     /// foreground tasks significantly. This is a good default for long-
  248.     /// running, latency-insensitive tasks to make sure cpu is not hogged
  249.     /// by this task.
  250.     Low = 1,
  251.  
  252.     /// Restore the current thread's priority to default scheduling priority.
  253.     Default = 2,
  254.   };
  255.   enum class SetThreadPriorityResult { FAILURE, SUCCESS };
  256.   SetThreadPriorityResult set_thread_priority(ThreadPriority Priority);
  257. }
  258.  
  259. #endif
  260.