//===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_PARALLEL_H
 
#define LLVM_SUPPORT_PARALLEL_H
 
 
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/Config/llvm-config.h"
 
#include "llvm/Support/Error.h"
 
#include "llvm/Support/MathExtras.h"
 
#include "llvm/Support/Threading.h"
 
 
 
#include <algorithm>
 
#include <condition_variable>
 
#include <functional>
 
#include <mutex>
 
 
 
namespace llvm {
 
 
 
namespace parallel {
 
 
 
// Strategy for the default executor used by the parallel routines provided by
 
// this file. It defaults to using all hardware threads and should be
 
// initialized before the first use of parallel routines.
 
extern ThreadPoolStrategy strategy;
 
 
 
#if LLVM_ENABLE_THREADS
 
#ifdef _WIN32
 
// Direct access to thread_local variables from a different DLL isn't
 
// possible with Windows Native TLS.
 
unsigned getThreadIndex();
 
#else
 
// Don't access this directly, use the getThreadIndex wrapper.
 
extern thread_local unsigned threadIndex;
 
 
 
inline unsigned getThreadIndex() { return threadIndex; }
 
#endif
 
#else
 
inline unsigned getThreadIndex() { return 0; }
 
#endif
 
 
 
namespace detail {
 
class Latch {
 
  uint32_t Count;
 
  mutable std::mutex Mutex;
 
  mutable std::condition_variable Cond;
 
 
 
public:
 
  explicit Latch(uint32_t Count = 0) : Count(Count) {}
 
  ~Latch() {
 
    // Ensure at least that sync() was called.
 
    assert(Count == 0);
 
  }
 
 
 
  void inc() {
 
    std::lock_guard<std::mutex> lock(Mutex);
 
    ++Count;
 
  }
 
 
 
  void dec() {
 
    std::lock_guard<std::mutex> lock(Mutex);
 
    if (--Count == 0)
 
      Cond.notify_all();
 
  }
 
 
 
  void sync() const {
 
    std::unique_lock<std::mutex> lock(Mutex);
 
    Cond.wait(lock, [&] { return Count == 0; });
 
  }
 
};
 
} // namespace detail
 
 
 
class TaskGroup {
 
  detail::Latch L;
 
  bool Parallel;
 
 
 
public:
 
  TaskGroup();
 
  ~TaskGroup();
 
 
 
  // Spawn a task, but does not wait for it to finish.
 
  void spawn(std::function<void()> f);
 
 
 
  // Similar to spawn, but execute the task immediately when ThreadsRequested ==
 
  // 1. The difference is to give the following pattern a more intuitive order
 
  // when single threading is requested.
 
  //
 
  // for (size_t begin = 0, i = 0, taskSize = 0;;) {
 
  //   taskSize += ...
 
  //   bool done = ++i == end;
 
  //   if (done || taskSize >= taskSizeLimit) {
 
  //     tg.execute([=] { fn(begin, i); });
 
  //     if (done)
 
  //       break;
 
  //     begin = i;
 
  //     taskSize = 0;
 
  //   }
 
  // }
 
  void execute(std::function<void()> f);
 
 
 
  void sync() const { L.sync(); }
 
};
 
 
 
namespace detail {
 
 
 
#if LLVM_ENABLE_THREADS
 
const ptrdiff_t MinParallelSize = 1024;
 
 
 
/// Inclusive median.
 
template <class RandomAccessIterator, class Comparator>
 
RandomAccessIterator medianOf3(RandomAccessIterator Start,
 
                               RandomAccessIterator End,
 
                               const Comparator &Comp) {
 
  RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
 
  return Comp(*Start, *(End - 1))
 
             ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
 
                                       : End - 1)
 
             : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
 
                                   : Start);
 
}
 
 
 
template <class RandomAccessIterator, class Comparator>
 
void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
 
                         const Comparator &Comp, TaskGroup &TG, size_t Depth) {
 
  // Do a sequential sort for small inputs.
 
  if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
 
    llvm::sort(Start, End, Comp);
 
    return;
 
  }
 
 
 
  // Partition.
 
  auto Pivot = medianOf3(Start, End, Comp);
 
  // Move Pivot to End.
 
  std::swap(*(End - 1), *Pivot);
 
  Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
 
    return Comp(V, *(End - 1));
 
  });
 
  // Move Pivot to middle of partition.
 
  std::swap(*Pivot, *(End - 1));
 
 
 
  // Recurse.
 
  TG.spawn([=, &Comp, &TG] {
 
    parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
 
  });
 
  parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
 
}
 
 
 
template <class RandomAccessIterator, class Comparator>
 
void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
 
                   const Comparator &Comp) {
 
  TaskGroup TG;
 
  parallel_quick_sort(Start, End, Comp, TG,
 
                      llvm::Log2_64(std::distance(Start, End)) + 1);
 
}
 
 
 
// TaskGroup has a relatively high overhead, so we want to reduce
 
// the number of spawn() calls. We'll create up to 1024 tasks here.
 
// (Note that 1024 is an arbitrary number. This code probably needs
 
// improving to take the number of available cores into account.)
 
enum { MaxTasksPerGroup = 1024 };
 
 
 
template <class IterTy, class ResultTy, class ReduceFuncTy,
 
          class TransformFuncTy>
 
ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init,
 
                                   ReduceFuncTy Reduce,
 
                                   TransformFuncTy Transform) {
 
  // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
 
  // overhead on large inputs.
 
  size_t NumInputs = std::distance(Begin, End);
 
  if (NumInputs == 0)
 
    return std::move(Init);
 
  size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs);
 
  std::vector<ResultTy> Results(NumTasks, Init);
 
  {
 
    // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs
 
    // remaining after dividing them equally amongst tasks are distributed as
 
    // one extra input over the first tasks.
 
    TaskGroup TG;
 
    size_t TaskSize = NumInputs / NumTasks;
 
    size_t RemainingInputs = NumInputs % NumTasks;
 
    IterTy TBegin = Begin;
 
    for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) {
 
      IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0);
 
      TG.spawn([=, &Transform, &Reduce, &Results] {
 
        // Reduce the result of transformation eagerly within each task.
 
        ResultTy R = Init;
 
        for (IterTy It = TBegin; It != TEnd; ++It)
 
          R = Reduce(R, Transform(*It));
 
        Results[TaskId] = R;
 
      });
 
      TBegin = TEnd;
 
    }
 
    assert(TBegin == End);
 
  }
 
 
 
  // Do a final reduction. There are at most 1024 tasks, so this only adds
 
  // constant single-threaded overhead for large inputs. Hopefully most
 
  // reductions are cheaper than the transformation.
 
  ResultTy FinalResult = std::move(Results.front());
 
  for (ResultTy &PartialResult :
 
       MutableArrayRef(Results.data() + 1, Results.size() - 1))
 
    FinalResult = Reduce(FinalResult, std::move(PartialResult));
 
  return std::move(FinalResult);
 
}
 
 
 
#endif
 
 
 
} // namespace detail
 
} // namespace parallel
 
 
 
template <class RandomAccessIterator,
 
          class Comparator = std::less<
 
              typename std::iterator_traits<RandomAccessIterator>::value_type>>
 
void parallelSort(RandomAccessIterator Start, RandomAccessIterator End,
 
                  const Comparator &Comp = Comparator()) {
 
#if LLVM_ENABLE_THREADS
 
  if (parallel::strategy.ThreadsRequested != 1) {
 
    parallel::detail::parallel_sort(Start, End, Comp);
 
    return;
 
  }
 
#endif
 
  llvm::sort(Start, End, Comp);
 
}
 
 
 
void parallelFor(size_t Begin, size_t End, function_ref<void(size_t)> Fn);
 
 
 
template <class IterTy, class FuncTy>
 
void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) {
 
  parallelFor(0, End - Begin, [&](size_t I) { Fn(Begin[I]); });
 
}
 
 
 
template <class IterTy, class ResultTy, class ReduceFuncTy,
 
          class TransformFuncTy>
 
ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init,
 
                                 ReduceFuncTy Reduce,
 
                                 TransformFuncTy Transform) {
 
#if LLVM_ENABLE_THREADS
 
  if (parallel::strategy.ThreadsRequested != 1) {
 
    return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce,
 
                                                       Transform);
 
  }
 
#endif
 
  for (IterTy I = Begin; I != End; ++I)
 
    Init = Reduce(std::move(Init), Transform(*I));
 
  return std::move(Init);
 
}
 
 
 
// Range wrappers.
 
template <class RangeTy,
 
          class Comparator = std::less<decltype(*std::begin(RangeTy()))>>
 
void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) {
 
  parallelSort(std::begin(R), std::end(R), Comp);
 
}
 
 
 
template <class RangeTy, class FuncTy>
 
void parallelForEach(RangeTy &&R, FuncTy Fn) {
 
  parallelForEach(std::begin(R), std::end(R), Fn);
 
}
 
 
 
template <class RangeTy, class ResultTy, class ReduceFuncTy,
 
          class TransformFuncTy>
 
ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init,
 
                                 ReduceFuncTy Reduce,
 
                                 TransformFuncTy Transform) {
 
  return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce,
 
                                 Transform);
 
}
 
 
 
// Parallel for-each, but with error handling.
 
template <class RangeTy, class FuncTy>
 
Error parallelForEachError(RangeTy &&R, FuncTy Fn) {
 
  // The transform_reduce algorithm requires that the initial value be copyable.
 
  // Error objects are uncopyable. We only need to copy initial success values,
 
  // so work around this mismatch via the C API. The C API represents success
 
  // values with a null pointer. The joinErrors discards null values and joins
 
  // multiple errors into an ErrorList.
 
  return unwrap(parallelTransformReduce(
 
      std::begin(R), std::end(R), wrap(Error::success()),
 
      [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) {
 
        return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs)));
 
      },
 
      [&Fn](auto &&V) { return wrap(Fn(V)); }));
 
}
 
 
 
} // namespace llvm
 
 
 
#endif // LLVM_SUPPORT_PARALLEL_H