//===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a class for representing known zeros and ones used by
// computeKnownBits.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_KNOWNBITS_H
#define LLVM_SUPPORT_KNOWNBITS_H
#include "llvm/ADT/APInt.h"
#include <optional>
namespace llvm {
// Struct for tracking the known zeros and ones of a value.
struct KnownBits {
APInt Zero;
APInt One;
private:
// Internal constructor for creating a KnownBits from two APInts.
KnownBits(APInt Zero, APInt One)
: Zero(std::move(Zero)), One(std::move(One)) {}
public:
// Default construct Zero and One.
KnownBits() = default;
/// Create a known bits object of BitWidth bits initialized to unknown.
KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {}
/// Get the bit width of this value.
unsigned getBitWidth() const {
assert(Zero.getBitWidth() == One.getBitWidth() &&
"Zero and One should have the same width!");
return Zero.getBitWidth();
}
/// Returns true if there is conflicting information.
bool hasConflict() const { return Zero.intersects(One); }
/// Returns true if we know the value of all bits.
bool isConstant() const {
assert(!hasConflict() && "KnownBits conflict!");
return Zero.countPopulation() + One.countPopulation() == getBitWidth();
}
/// Returns the value when all bits have a known value. This just returns One
/// with a protective assertion.
const APInt &getConstant() const {
assert(isConstant() && "Can only get value when all bits are known");
return One;
}
/// Returns true if we don't know any bits.
bool isUnknown() const { return Zero.isZero() && One.isZero(); }
/// Resets the known state of all bits.
void resetAll() {
Zero.clearAllBits();
One.clearAllBits();
}
/// Returns true if value is all zero.
bool isZero() const {
assert(!hasConflict() && "KnownBits conflict!");
return Zero.isAllOnes();
}
/// Returns true if value is all one bits.
bool isAllOnes() const {
assert(!hasConflict() && "KnownBits conflict!");
return One.isAllOnes();
}
/// Make all bits known to be zero and discard any previous information.
void setAllZero() {
Zero.setAllBits();
One.clearAllBits();
}
/// Make all bits known to be one and discard any previous information.
void setAllOnes() {
Zero.clearAllBits();
One.setAllBits();
}
/// Returns true if this value is known to be negative.
bool isNegative() const { return One.isSignBitSet(); }
/// Returns true if this value is known to be non-negative.
bool isNonNegative() const { return Zero.isSignBitSet(); }
/// Returns true if this value is known to be non-zero.
bool isNonZero() const { return !One.isZero(); }
/// Returns true if this value is known to be positive.
bool isStrictlyPositive() const {
return Zero.isSignBitSet() && !One.isZero();
}
/// Make this value negative.
void makeNegative() {
One.setSignBit();
}
/// Make this value non-negative.
void makeNonNegative() {
Zero.setSignBit();
}
/// Return the minimal unsigned value possible given these KnownBits.
APInt getMinValue() const {
// Assume that all bits that aren't known-ones are zeros.
return One;
}
/// Return the minimal signed value possible given these KnownBits.
APInt getSignedMinValue() const {
// Assume that all bits that aren't known-ones are zeros.
APInt Min = One;
// Sign bit is unknown.
if (Zero.isSignBitClear())
Min.setSignBit();
return Min;
}
/// Return the maximal unsigned value possible given these KnownBits.
APInt getMaxValue() const {
// Assume that all bits that aren't known-zeros are ones.
return ~Zero;
}
/// Return the maximal signed value possible given these KnownBits.
APInt getSignedMaxValue() const {
// Assume that all bits that aren't known-zeros are ones.
APInt Max = ~Zero;
// Sign bit is unknown.
if (One.isSignBitClear())
Max.clearSignBit();
return Max;
}
/// Return known bits for a truncation of the value we're tracking.
KnownBits trunc(unsigned BitWidth) const {
return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth));
}
/// Return known bits for an "any" extension of the value we're tracking,
/// where we don't know anything about the extended bits.
KnownBits anyext(unsigned BitWidth) const {
return KnownBits(Zero.zext(BitWidth), One.zext(BitWidth));
}
/// Return known bits for a zero extension of the value we're tracking.
KnownBits zext(unsigned BitWidth) const {
unsigned OldBitWidth = getBitWidth();
APInt NewZero = Zero.zext(BitWidth);
NewZero.setBitsFrom(OldBitWidth);
return KnownBits(NewZero, One.zext(BitWidth));
}
/// Return known bits for a sign extension of the value we're tracking.
KnownBits sext(unsigned BitWidth) const {
return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth));
}
/// Return known bits for an "any" extension or truncation of the value we're
/// tracking.
KnownBits anyextOrTrunc(unsigned BitWidth) const {
if (BitWidth > getBitWidth())
return anyext(BitWidth);
if (BitWidth < getBitWidth())
return trunc(BitWidth);
return *this;
}
/// Return known bits for a zero extension or truncation of the value we're
/// tracking.
KnownBits zextOrTrunc(unsigned BitWidth) const {
if (BitWidth > getBitWidth())
return zext(BitWidth);
if (BitWidth < getBitWidth())
return trunc(BitWidth);
return *this;
}
/// Return known bits for a sign extension or truncation of the value we're
/// tracking.
KnownBits sextOrTrunc(unsigned BitWidth) const {
if (BitWidth > getBitWidth())
return sext(BitWidth);
if (BitWidth < getBitWidth())
return trunc(BitWidth);
return *this;
}
/// Return known bits for a in-register sign extension of the value we're
/// tracking.
KnownBits sextInReg(unsigned SrcBitWidth) const;
/// Insert the bits from a smaller known bits starting at bitPosition.
void insertBits(const KnownBits &SubBits, unsigned BitPosition) {
Zero.insertBits(SubBits.Zero, BitPosition);
One.insertBits(SubBits.One, BitPosition);
}
/// Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const {
return KnownBits(Zero.extractBits(NumBits, BitPosition),
One.extractBits(NumBits, BitPosition));
}
/// Concatenate the bits from \p Lo onto the bottom of *this. This is
/// equivalent to:
/// (this->zext(NewWidth) << Lo.getBitWidth()) | Lo.zext(NewWidth)
KnownBits concat(const KnownBits &Lo) const {
return KnownBits(Zero.concat(Lo.Zero), One.concat(Lo.One));
}
/// Return KnownBits based on this, but updated given that the underlying
/// value is known to be greater than or equal to Val.
KnownBits makeGE(const APInt &Val) const;
/// Returns the minimum number of trailing zero bits.
unsigned countMinTrailingZeros() const {
return Zero.countTrailingOnes();
}
/// Returns the minimum number of trailing one bits.
unsigned countMinTrailingOnes() const {
return One.countTrailingOnes();
}
/// Returns the minimum number of leading zero bits.
unsigned countMinLeadingZeros() const {
return Zero.countLeadingOnes();
}
/// Returns the minimum number of leading one bits.
unsigned countMinLeadingOnes() const {
return One.countLeadingOnes();
}
/// Returns the number of times the sign bit is replicated into the other
/// bits.
unsigned countMinSignBits() const {
if (isNonNegative())
return countMinLeadingZeros();
if (isNegative())
return countMinLeadingOnes();
// Every value has at least 1 sign bit.
return 1;
}
/// Returns the maximum number of bits needed to represent all possible
/// signed values with these known bits. This is the inverse of the minimum
/// number of known sign bits. Examples for bitwidth 5:
/// 110?? --> 4
/// 0000? --> 2
unsigned countMaxSignificantBits() const {
return getBitWidth() - countMinSignBits() + 1;
}
/// Returns the maximum number of trailing zero bits possible.
unsigned countMaxTrailingZeros() const {
return One.countTrailingZeros();
}
/// Returns the maximum number of trailing one bits possible.
unsigned countMaxTrailingOnes() const {
return Zero.countTrailingZeros();
}
/// Returns the maximum number of leading zero bits possible.
unsigned countMaxLeadingZeros() const {
return One.countLeadingZeros();
}
/// Returns the maximum number of leading one bits possible.
unsigned countMaxLeadingOnes() const {
return Zero.countLeadingZeros();
}
/// Returns the number of bits known to be one.
unsigned countMinPopulation() const {
return One.countPopulation();
}
/// Returns the maximum number of bits that could be one.
unsigned countMaxPopulation() const {
return getBitWidth() - Zero.countPopulation();
}
/// Returns the maximum number of bits needed to represent all possible
/// unsigned values with these known bits. This is the inverse of the
/// minimum number of leading zeros.
unsigned countMaxActiveBits() const {
return getBitWidth() - countMinLeadingZeros();
}
/// Create known bits from a known constant.
static KnownBits makeConstant(const APInt &C) {
return KnownBits(~C, C);
}
/// Compute known bits common to LHS and RHS.
static KnownBits commonBits(const KnownBits &LHS, const KnownBits &RHS) {
return KnownBits(LHS.Zero & RHS.Zero, LHS.One & RHS.One);
}
/// Return true if LHS and RHS have no common bits set.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS) {
return (LHS.Zero | RHS.Zero).isAllOnes();
}
/// Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
static KnownBits computeForAddCarry(
const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry);
/// Compute known bits resulting from adding LHS and RHS.
static KnownBits computeForAddSub(bool Add, bool NSW, const KnownBits &LHS,
KnownBits RHS);
/// Compute known bits resulting from multiplying LHS and RHS.
static KnownBits mul(const KnownBits &LHS, const KnownBits &RHS,
bool NoUndefSelfMultiply = false);
/// Compute known bits from sign-extended multiply-hi.
static KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits from zero-extended multiply-hi.
static KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for udiv(LHS, RHS).
static KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for urem(LHS, RHS).
static KnownBits urem(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for srem(LHS, RHS).
static KnownBits srem(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for umax(LHS, RHS).
static KnownBits umax(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for umin(LHS, RHS).
static KnownBits umin(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for smax(LHS, RHS).
static KnownBits smax(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for smin(LHS, RHS).
static KnownBits smin(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for shl(LHS, RHS).
/// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS.
static KnownBits shl(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for lshr(LHS, RHS).
/// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS.
static KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS);
/// Compute known bits for ashr(LHS, RHS).
/// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS.
static KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_EQ result.
static std::optional<bool> eq(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_NE result.
static std::optional<bool> ne(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_UGT result.
static std::optional<bool> ugt(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_UGE result.
static std::optional<bool> uge(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_ULT result.
static std::optional<bool> ult(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_ULE result.
static std::optional<bool> ule(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_SGT result.
static std::optional<bool> sgt(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_SGE result.
static std::optional<bool> sge(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_SLT result.
static std::optional<bool> slt(const KnownBits &LHS, const KnownBits &RHS);
/// Determine if these known bits always give the same ICMP_SLE result.
static std::optional<bool> sle(const KnownBits &LHS, const KnownBits &RHS);
/// Update known bits based on ANDing with RHS.
KnownBits &operator&=(const KnownBits &RHS);
/// Update known bits based on ORing with RHS.
KnownBits &operator|=(const KnownBits &RHS);
/// Update known bits based on XORing with RHS.
KnownBits &operator^=(const KnownBits &RHS);
/// Compute known bits for the absolute value.
KnownBits abs(bool IntMinIsPoison = false) const;
KnownBits byteSwap() const {
return KnownBits(Zero.byteSwap(), One.byteSwap());
}
KnownBits reverseBits() const {
return KnownBits(Zero.reverseBits(), One.reverseBits());
}
bool operator==(const KnownBits &Other) const {
return Zero == Other.Zero && One == Other.One;
}
bool operator!=(const KnownBits &Other) const { return !(*this == Other); }
void print(raw_ostream &OS) const;
void dump() const;
};
inline KnownBits operator&(KnownBits LHS, const KnownBits &RHS) {
LHS &= RHS;
return LHS;
}
inline KnownBits operator&(const KnownBits &LHS, KnownBits &&RHS) {
RHS &= LHS;
return std::move(RHS);
}
inline KnownBits operator|(KnownBits LHS, const KnownBits &RHS) {
LHS |= RHS;
return LHS;
}
inline KnownBits operator|(const KnownBits &LHS, KnownBits &&RHS) {
RHS |= LHS;
return std::move(RHS);
}
inline KnownBits operator^(KnownBits LHS, const KnownBits &RHS) {
LHS ^= RHS;
return LHS;
}
inline KnownBits operator^(const KnownBits &LHS, KnownBits &&RHS) {
RHS ^= LHS;
return std::move(RHS);
}
} // end namespace llvm
#endif