//===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===---------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file supports working with JSON data.
 
///
 
/// It comprises:
 
///
 
/// - classes which hold dynamically-typed parsed JSON structures
 
///   These are value types that can be composed, inspected, and modified.
 
///   See json::Value, and the related types json::Object and json::Array.
 
///
 
/// - functions to parse JSON text into Values, and to serialize Values to text.
 
///   See parse(), operator<<, and format_provider.
 
///
 
/// - a convention and helpers for mapping between json::Value and user-defined
 
///   types. See fromJSON(), ObjectMapper, and the class comment on Value.
 
///
 
/// - an output API json::OStream which can emit JSON without materializing
 
///   all structures as json::Value.
 
///
 
/// Typically, JSON data would be read from an external source, parsed into
 
/// a Value, and then converted into some native data structure before doing
 
/// real work on it. (And vice versa when writing).
 
///
 
/// Other serialization mechanisms you may consider:
 
///
 
/// - YAML is also text-based, and more human-readable than JSON. It's a more
 
///   complex format and data model, and YAML parsers aren't ubiquitous.
 
///   YAMLParser.h is a streaming parser suitable for parsing large documents
 
///   (including JSON, as YAML is a superset). It can be awkward to use
 
///   directly. YAML I/O (YAMLTraits.h) provides data mapping that is more
 
///   declarative than the toJSON/fromJSON conventions here.
 
///
 
/// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it
 
///   encodes LLVM IR ("bitcode"), but it can be a container for other data.
 
///   Low-level reader/writer libraries are in Bitstream/Bitstream*.h
 
///
 
//===---------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_JSON_H
 
#define LLVM_SUPPORT_JSON_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/STLFunctionalExtras.h"
 
#include "llvm/Support/Error.h"
 
#include "llvm/Support/FormatVariadic.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <cmath>
 
#include <map>
 
 
 
namespace llvm {
 
namespace json {
 
 
 
// === String encodings ===
 
//
 
// JSON strings are character sequences (not byte sequences like std::string).
 
// We need to know the encoding, and for simplicity only support UTF-8.
 
//
 
//   - When parsing, invalid UTF-8 is a syntax error like any other
 
//
 
//   - When creating Values from strings, callers must ensure they are UTF-8.
 
//        with asserts on, invalid UTF-8 will crash the program
 
//        with asserts off, we'll substitute the replacement character (U+FFFD)
 
//     Callers can use json::isUTF8() and json::fixUTF8() for validation.
 
//
 
//   - When retrieving strings from Values (e.g. asString()), the result will
 
//     always be valid UTF-8.
 
 
 
/// Returns true if \p S is valid UTF-8, which is required for use as JSON.
 
/// If it returns false, \p Offset is set to a byte offset near the first error.
 
bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr);
 
/// Replaces invalid UTF-8 sequences in \p S with the replacement character
 
/// (U+FFFD). The returned string is valid UTF-8.
 
/// This is much slower than isUTF8, so test that first.
 
std::string fixUTF8(llvm::StringRef S);
 
 
 
class Array;
 
class ObjectKey;
 
class Value;
 
template <typename T> Value toJSON(const std::optional<T> &Opt);
 
 
 
/// An Object is a JSON object, which maps strings to heterogenous JSON values.
 
/// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string.
 
class Object {
 
  using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>;
 
  Storage M;
 
 
 
public:
 
  using key_type = ObjectKey;
 
  using mapped_type = Value;
 
  using value_type = Storage::value_type;
 
  using iterator = Storage::iterator;
 
  using const_iterator = Storage::const_iterator;
 
 
 
  Object() = default;
 
  // KV is a trivial key-value struct for list-initialization.
 
  // (using std::pair forces extra copies).
 
  struct KV;
 
  explicit Object(std::initializer_list<KV> Properties);
 
 
 
  iterator begin() { return M.begin(); }
 
  const_iterator begin() const { return M.begin(); }
 
  iterator end() { return M.end(); }
 
  const_iterator end() const { return M.end(); }
 
 
 
  bool empty() const { return M.empty(); }
 
  size_t size() const { return M.size(); }
 
 
 
  void clear() { M.clear(); }
 
  std::pair<iterator, bool> insert(KV E);
 
  template <typename... Ts>
 
  std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) {
 
    return M.try_emplace(K, std::forward<Ts>(Args)...);
 
  }
 
  template <typename... Ts>
 
  std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) {
 
    return M.try_emplace(std::move(K), std::forward<Ts>(Args)...);
 
  }
 
  bool erase(StringRef K);
 
  void erase(iterator I) { M.erase(I); }
 
 
 
  iterator find(StringRef K) { return M.find_as(K); }
 
  const_iterator find(StringRef K) const { return M.find_as(K); }
 
  // operator[] acts as if Value was default-constructible as null.
 
  Value &operator[](const ObjectKey &K);
 
  Value &operator[](ObjectKey &&K);
 
  // Look up a property, returning nullptr if it doesn't exist.
 
  Value *get(StringRef K);
 
  const Value *get(StringRef K) const;
 
  // Typed accessors return std::nullopt/nullptr if
 
  //   - the property doesn't exist
 
  //   - or it has the wrong type
 
  std::optional<std::nullptr_t> getNull(StringRef K) const;
 
  std::optional<bool> getBoolean(StringRef K) const;
 
  std::optional<double> getNumber(StringRef K) const;
 
  std::optional<int64_t> getInteger(StringRef K) const;
 
  std::optional<llvm::StringRef> getString(StringRef K) const;
 
  const json::Object *getObject(StringRef K) const;
 
  json::Object *getObject(StringRef K);
 
  const json::Array *getArray(StringRef K) const;
 
  json::Array *getArray(StringRef K);
 
};
 
bool operator==(const Object &LHS, const Object &RHS);
 
inline bool operator!=(const Object &LHS, const Object &RHS) {
 
  return !(LHS == RHS);
 
}
 
 
 
/// An Array is a JSON array, which contains heterogeneous JSON values.
 
/// It simulates std::vector<Value>.
 
class Array {
 
  std::vector<Value> V;
 
 
 
public:
 
  using value_type = Value;
 
  using iterator = std::vector<Value>::iterator;
 
  using const_iterator = std::vector<Value>::const_iterator;
 
 
 
  Array() = default;
 
  explicit Array(std::initializer_list<Value> Elements);
 
  template <typename Collection> explicit Array(const Collection &C) {
 
    for (const auto &V : C)
 
      emplace_back(V);
 
  }
 
 
 
  Value &operator[](size_t I);
 
  const Value &operator[](size_t I) const;
 
  Value &front();
 
  const Value &front() const;
 
  Value &back();
 
  const Value &back() const;
 
  Value *data();
 
  const Value *data() const;
 
 
 
  iterator begin();
 
  const_iterator begin() const;
 
  iterator end();
 
  const_iterator end() const;
 
 
 
  bool empty() const;
 
  size_t size() const;
 
  void reserve(size_t S);
 
 
 
  void clear();
 
  void push_back(const Value &E);
 
  void push_back(Value &&E);
 
  template <typename... Args> void emplace_back(Args &&...A);
 
  void pop_back();
 
  iterator insert(const_iterator P, const Value &E);
 
  iterator insert(const_iterator P, Value &&E);
 
  template <typename It> iterator insert(const_iterator P, It A, It Z);
 
  template <typename... Args> iterator emplace(const_iterator P, Args &&...A);
 
 
 
  friend bool operator==(const Array &L, const Array &R);
 
};
 
inline bool operator!=(const Array &L, const Array &R) { return !(L == R); }
 
 
 
/// A Value is an JSON value of unknown type.
 
/// They can be copied, but should generally be moved.
 
///
 
/// === Composing values ===
 
///
 
/// You can implicitly construct Values from:
 
///   - strings: std::string, SmallString, formatv, StringRef, char*
 
///              (char*, and StringRef are references, not copies!)
 
///   - numbers
 
///   - booleans
 
///   - null: nullptr
 
///   - arrays: {"foo", 42.0, false}
 
///   - serializable things: types with toJSON(const T&)->Value, found by ADL
 
///
 
/// They can also be constructed from object/array helpers:
 
///   - json::Object is a type like map<ObjectKey, Value>
 
///   - json::Array is a type like vector<Value>
 
/// These can be list-initialized, or used to build up collections in a loop.
 
/// json::ary(Collection) converts all items in a collection to Values.
 
///
 
/// === Inspecting values ===
 
///
 
/// Each Value is one of the JSON kinds:
 
///   null    (nullptr_t)
 
///   boolean (bool)
 
///   number  (double, int64 or uint64)
 
///   string  (StringRef)
 
///   array   (json::Array)
 
///   object  (json::Object)
 
///
 
/// The kind can be queried directly, or implicitly via the typed accessors:
 
///   if (std::optional<StringRef> S = E.getAsString()
 
///     assert(E.kind() == Value::String);
 
///
 
/// Array and Object also have typed indexing accessors for easy traversal:
 
///   Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )");
 
///   if (Object* O = E->getAsObject())
 
///     if (Object* Opts = O->getObject("options"))
 
///       if (std::optional<StringRef> Font = Opts->getString("font"))
 
///         assert(Opts->at("font").kind() == Value::String);
 
///
 
/// === Converting JSON values to C++ types ===
 
///
 
/// The convention is to have a deserializer function findable via ADL:
 
///     fromJSON(const json::Value&, T&, Path) -> bool
 
///
 
/// The return value indicates overall success, and Path is used for precise
 
/// error reporting. (The Path::Root passed in at the top level fromJSON call
 
/// captures any nested error and can render it in context).
 
/// If conversion fails, fromJSON calls Path::report() and immediately returns.
 
/// This ensures that the first fatal error survives.
 
///
 
/// Deserializers are provided for:
 
///   - bool
 
///   - int and int64_t
 
///   - double
 
///   - std::string
 
///   - vector<T>, where T is deserializable
 
///   - map<string, T>, where T is deserializable
 
///   - std::optional<T>, where T is deserializable
 
/// ObjectMapper can help writing fromJSON() functions for object types.
 
///
 
/// For conversion in the other direction, the serializer function is:
 
///    toJSON(const T&) -> json::Value
 
/// If this exists, then it also allows constructing Value from T, and can
 
/// be used to serialize vector<T>, map<string, T>, and std::optional<T>.
 
///
 
/// === Serialization ===
 
///
 
/// Values can be serialized to JSON:
 
///   1) raw_ostream << Value                    // Basic formatting.
 
///   2) raw_ostream << formatv("{0}", Value)    // Basic formatting.
 
///   3) raw_ostream << formatv("{0:2}", Value)  // Pretty-print with indent 2.
 
///
 
/// And parsed:
 
///   Expected<Value> E = json::parse("[1, 2, null]");
 
///   assert(E && E->kind() == Value::Array);
 
class Value {
 
public:
 
  enum Kind {
 
    Null,
 
    Boolean,
 
    /// Number values can store both int64s and doubles at full precision,
 
    /// depending on what they were constructed/parsed from.
 
    Number,
 
    String,
 
    Array,
 
    Object,
 
  };
 
 
 
  // It would be nice to have Value() be null. But that would make {} null too.
 
  Value(const Value &M) { copyFrom(M); }
 
  Value(Value &&M) { moveFrom(std::move(M)); }
 
  Value(std::initializer_list<Value> Elements);
 
  Value(json::Array &&Elements) : Type(T_Array) {
 
    create<json::Array>(std::move(Elements));
 
  }
 
  template <typename Elt>
 
  Value(const std::vector<Elt> &C) : Value(json::Array(C)) {}
 
  Value(json::Object &&Properties) : Type(T_Object) {
 
    create<json::Object>(std::move(Properties));
 
  }
 
  template <typename Elt>
 
  Value(const std::map<std::string, Elt> &C) : Value(json::Object(C)) {}
 
  // Strings: types with value semantics. Must be valid UTF-8.
 
  Value(std::string V) : Type(T_String) {
 
    if (LLVM_UNLIKELY(!isUTF8(V))) {
 
      assert(false && "Invalid UTF-8 in value used as JSON");
 
      V = fixUTF8(std::move(V));
 
    }
 
    create<std::string>(std::move(V));
 
  }
 
  Value(const llvm::SmallVectorImpl<char> &V)
 
      : Value(std::string(V.begin(), V.end())) {}
 
  Value(const llvm::formatv_object_base &V) : Value(V.str()) {}
 
  // Strings: types with reference semantics. Must be valid UTF-8.
 
  Value(StringRef V) : Type(T_StringRef) {
 
    create<llvm::StringRef>(V);
 
    if (LLVM_UNLIKELY(!isUTF8(V))) {
 
      assert(false && "Invalid UTF-8 in value used as JSON");
 
      *this = Value(fixUTF8(V));
 
    }
 
  }
 
  Value(const char *V) : Value(StringRef(V)) {}
 
  Value(std::nullptr_t) : Type(T_Null) {}
 
  // Boolean (disallow implicit conversions).
 
  // (The last template parameter is a dummy to keep templates distinct.)
 
  template <typename T,
 
            typename = std::enable_if_t<std::is_same<T, bool>::value>,
 
            bool = false>
 
  Value(T B) : Type(T_Boolean) {
 
    create<bool>(B);
 
  }
 
 
 
  // Unsigned 64-bit long integers.
 
  template <typename T,
 
            typename = std::enable_if_t<std::is_same<T, uint64_t>::value>,
 
            bool = false, bool = false>
 
  Value(T V) : Type(T_UINT64) {
 
    create<uint64_t>(uint64_t{V});
 
  }
 
 
 
  // Integers (except boolean and uint64_t).
 
  // Must be non-narrowing convertible to int64_t.
 
  template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>,
 
            typename = std::enable_if_t<!std::is_same<T, bool>::value>,
 
            typename = std::enable_if_t<!std::is_same<T, uint64_t>::value>>
 
  Value(T I) : Type(T_Integer) {
 
    create<int64_t>(int64_t{I});
 
  }
 
  // Floating point. Must be non-narrowing convertible to double.
 
  template <typename T,
 
            typename = std::enable_if_t<std::is_floating_point<T>::value>,
 
            double * = nullptr>
 
  Value(T D) : Type(T_Double) {
 
    create<double>(double{D});
 
  }
 
  // Serializable types: with a toJSON(const T&)->Value function, found by ADL.
 
  template <typename T,
 
            typename = std::enable_if_t<std::is_same<
 
                Value, decltype(toJSON(*(const T *)nullptr))>::value>,
 
            Value * = nullptr>
 
  Value(const T &V) : Value(toJSON(V)) {}
 
 
 
  Value &operator=(const Value &M) {
 
    destroy();
 
    copyFrom(M);
 
    return *this;
 
  }
 
  Value &operator=(Value &&M) {
 
    destroy();
 
    moveFrom(std::move(M));
 
    return *this;
 
  }
 
  ~Value() { destroy(); }
 
 
 
  Kind kind() const {
 
    switch (Type) {
 
    case T_Null:
 
      return Null;
 
    case T_Boolean:
 
      return Boolean;
 
    case T_Double:
 
    case T_Integer:
 
    case T_UINT64:
 
      return Number;
 
    case T_String:
 
    case T_StringRef:
 
      return String;
 
    case T_Object:
 
      return Object;
 
    case T_Array:
 
      return Array;
 
    }
 
    llvm_unreachable("Unknown kind");
 
  }
 
 
 
  // Typed accessors return std::nullopt/nullptr if the Value is not of this
 
  // type.
 
  std::optional<std::nullptr_t> getAsNull() const {
 
    if (LLVM_LIKELY(Type == T_Null))
 
      return nullptr;
 
    return std::nullopt;
 
  }
 
  std::optional<bool> getAsBoolean() const {
 
    if (LLVM_LIKELY(Type == T_Boolean))
 
      return as<bool>();
 
    return std::nullopt;
 
  }
 
  std::optional<double> getAsNumber() const {
 
    if (LLVM_LIKELY(Type == T_Double))
 
      return as<double>();
 
    if (LLVM_LIKELY(Type == T_Integer))
 
      return as<int64_t>();
 
    if (LLVM_LIKELY(Type == T_UINT64))
 
      return as<uint64_t>();
 
    return std::nullopt;
 
  }
 
  // Succeeds if the Value is a Number, and exactly representable as int64_t.
 
  std::optional<int64_t> getAsInteger() const {
 
    if (LLVM_LIKELY(Type == T_Integer))
 
      return as<int64_t>();
 
    if (LLVM_LIKELY(Type == T_Double)) {
 
      double D = as<double>();
 
      if (LLVM_LIKELY(std::modf(D, &D) == 0.0 &&
 
                      D >= double(std::numeric_limits<int64_t>::min()) &&
 
                      D <= double(std::numeric_limits<int64_t>::max())))
 
        return D;
 
    }
 
    return std::nullopt;
 
  }
 
  std::optional<uint64_t> getAsUINT64() const {
 
    if (Type == T_UINT64)
 
      return as<uint64_t>();
 
    else if (Type == T_Integer) {
 
      int64_t N = as<int64_t>();
 
      if (N >= 0)
 
        return as<uint64_t>();
 
    }
 
    return std::nullopt;
 
  }
 
  std::optional<llvm::StringRef> getAsString() const {
 
    if (Type == T_String)
 
      return llvm::StringRef(as<std::string>());
 
    if (LLVM_LIKELY(Type == T_StringRef))
 
      return as<llvm::StringRef>();
 
    return std::nullopt;
 
  }
 
  const json::Object *getAsObject() const {
 
    return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
 
  }
 
  json::Object *getAsObject() {
 
    return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
 
  }
 
  const json::Array *getAsArray() const {
 
    return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
 
  }
 
  json::Array *getAsArray() {
 
    return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
 
  }
 
 
 
private:
 
  void destroy();
 
  void copyFrom(const Value &M);
 
  // We allow moving from *const* Values, by marking all members as mutable!
 
  // This hack is needed to support initializer-list syntax efficiently.
 
  // (std::initializer_list<T> is a container of const T).
 
  void moveFrom(const Value &&M);
 
  friend class Array;
 
  friend class Object;
 
 
 
  template <typename T, typename... U> void create(U &&... V) {
 
    new (reinterpret_cast<T *>(&Union)) T(std::forward<U>(V)...);
 
  }
 
  template <typename T> T &as() const {
 
    // Using this two-step static_cast via void * instead of reinterpret_cast
 
    // silences a -Wstrict-aliasing false positive from GCC6 and earlier.
 
    void *Storage = static_cast<void *>(&Union);
 
    return *static_cast<T *>(Storage);
 
  }
 
 
 
  friend class OStream;
 
 
 
  enum ValueType : char16_t {
 
    T_Null,
 
    T_Boolean,
 
    T_Double,
 
    T_Integer,
 
    T_UINT64,
 
    T_StringRef,
 
    T_String,
 
    T_Object,
 
    T_Array,
 
  };
 
  // All members mutable, see moveFrom().
 
  mutable ValueType Type;
 
  mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, uint64_t,
 
                                      llvm::StringRef, std::string, json::Array,
 
                                      json::Object>
 
      Union;
 
  friend bool operator==(const Value &, const Value &);
 
};
 
 
 
bool operator==(const Value &, const Value &);
 
inline bool operator!=(const Value &L, const Value &R) { return !(L == R); }
 
 
 
// Array Methods
 
inline Value &Array::operator[](size_t I) { return V[I]; }
 
inline const Value &Array::operator[](size_t I) const { return V[I]; }
 
inline Value &Array::front() { return V.front(); }
 
inline const Value &Array::front() const { return V.front(); }
 
inline Value &Array::back() { return V.back(); }
 
inline const Value &Array::back() const { return V.back(); }
 
inline Value *Array::data() { return V.data(); }
 
inline const Value *Array::data() const { return V.data(); }
 
 
 
inline typename Array::iterator Array::begin() { return V.begin(); }
 
inline typename Array::const_iterator Array::begin() const { return V.begin(); }
 
inline typename Array::iterator Array::end() { return V.end(); }
 
inline typename Array::const_iterator Array::end() const { return V.end(); }
 
 
 
inline bool Array::empty() const { return V.empty(); }
 
inline size_t Array::size() const { return V.size(); }
 
inline void Array::reserve(size_t S) { V.reserve(S); }
 
 
 
inline void Array::clear() { V.clear(); }
 
inline void Array::push_back(const Value &E) { V.push_back(E); }
 
inline void Array::push_back(Value &&E) { V.push_back(std::move(E)); }
 
template <typename... Args> inline void Array::emplace_back(Args &&...A) {
 
  V.emplace_back(std::forward<Args>(A)...);
 
}
 
inline void Array::pop_back() { V.pop_back(); }
 
inline typename Array::iterator Array::insert(const_iterator P, const Value &E) {
 
  return V.insert(P, E);
 
}
 
inline typename Array::iterator Array::insert(const_iterator P, Value &&E) {
 
  return V.insert(P, std::move(E));
 
}
 
template <typename It>
 
inline typename Array::iterator Array::insert(const_iterator P, It A, It Z) {
 
  return V.insert(P, A, Z);
 
}
 
template <typename... Args>
 
inline typename Array::iterator Array::emplace(const_iterator P, Args &&...A) {
 
  return V.emplace(P, std::forward<Args>(A)...);
 
}
 
inline bool operator==(const Array &L, const Array &R) { return L.V == R.V; }
 
 
 
/// ObjectKey is a used to capture keys in Object. Like Value but:
 
///   - only strings are allowed
 
///   - it's optimized for the string literal case (Owned == nullptr)
 
/// Like Value, strings must be UTF-8. See isUTF8 documentation for details.
 
class ObjectKey {
 
public:
 
  ObjectKey(const char *S) : ObjectKey(StringRef(S)) {}
 
  ObjectKey(std::string S) : Owned(new std::string(std::move(S))) {
 
    if (LLVM_UNLIKELY(!isUTF8(*Owned))) {
 
      assert(false && "Invalid UTF-8 in value used as JSON");
 
      *Owned = fixUTF8(std::move(*Owned));
 
    }
 
    Data = *Owned;
 
  }
 
  ObjectKey(llvm::StringRef S) : Data(S) {
 
    if (LLVM_UNLIKELY(!isUTF8(Data))) {
 
      assert(false && "Invalid UTF-8 in value used as JSON");
 
      *this = ObjectKey(fixUTF8(S));
 
    }
 
  }
 
  ObjectKey(const llvm::SmallVectorImpl<char> &V)
 
      : ObjectKey(std::string(V.begin(), V.end())) {}
 
  ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {}
 
 
 
  ObjectKey(const ObjectKey &C) { *this = C; }
 
  ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {}
 
  ObjectKey &operator=(const ObjectKey &C) {
 
    if (C.Owned) {
 
      Owned.reset(new std::string(*C.Owned));
 
      Data = *Owned;
 
    } else {
 
      Data = C.Data;
 
    }
 
    return *this;
 
  }
 
  ObjectKey &operator=(ObjectKey &&) = default;
 
 
 
  operator llvm::StringRef() const { return Data; }
 
  std::string str() const { return Data.str(); }
 
 
 
private:
 
  // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned
 
  // could be 2 pointers at most.
 
  std::unique_ptr<std::string> Owned;
 
  llvm::StringRef Data;
 
};
 
 
 
inline bool operator==(const ObjectKey &L, const ObjectKey &R) {
 
  return llvm::StringRef(L) == llvm::StringRef(R);
 
}
 
inline bool operator!=(const ObjectKey &L, const ObjectKey &R) {
 
  return !(L == R);
 
}
 
inline bool operator<(const ObjectKey &L, const ObjectKey &R) {
 
  return StringRef(L) < StringRef(R);
 
}
 
 
 
struct Object::KV {
 
  ObjectKey K;
 
  Value V;
 
};
 
 
 
inline Object::Object(std::initializer_list<KV> Properties) {
 
  for (const auto &P : Properties) {
 
    auto R = try_emplace(P.K, nullptr);
 
    if (R.second)
 
      R.first->getSecond().moveFrom(std::move(P.V));
 
  }
 
}
 
inline std::pair<Object::iterator, bool> Object::insert(KV E) {
 
  return try_emplace(std::move(E.K), std::move(E.V));
 
}
 
inline bool Object::erase(StringRef K) {
 
  return M.erase(ObjectKey(K));
 
}
 
 
 
/// A "cursor" marking a position within a Value.
 
/// The Value is a tree, and this is the path from the root to the current node.
 
/// This is used to associate errors with particular subobjects.
 
class Path {
 
public:
 
  class Root;
 
 
 
  /// Records that the value at the current path is invalid.
 
  /// Message is e.g. "expected number" and becomes part of the final error.
 
  /// This overwrites any previously written error message in the root.
 
  void report(llvm::StringLiteral Message);
 
 
 
  /// The root may be treated as a Path.
 
  Path(Root &R) : Parent(nullptr), Seg(&R) {}
 
  /// Derives a path for an array element: this[Index]
 
  Path index(unsigned Index) const { return Path(this, Segment(Index)); }
 
  /// Derives a path for an object field: this.Field
 
  Path field(StringRef Field) const { return Path(this, Segment(Field)); }
 
 
 
private:
 
  /// One element in a JSON path: an object field (.foo) or array index [27].
 
  /// Exception: the root Path encodes a pointer to the Path::Root.
 
  class Segment {
 
    uintptr_t Pointer;
 
    unsigned Offset;
 
 
 
  public:
 
    Segment() = default;
 
    Segment(Root *R) : Pointer(reinterpret_cast<uintptr_t>(R)) {}
 
    Segment(llvm::StringRef Field)
 
        : Pointer(reinterpret_cast<uintptr_t>(Field.data())),
 
          Offset(static_cast<unsigned>(Field.size())) {}
 
    Segment(unsigned Index) : Pointer(0), Offset(Index) {}
 
 
 
    bool isField() const { return Pointer != 0; }
 
    StringRef field() const {
 
      return StringRef(reinterpret_cast<const char *>(Pointer), Offset);
 
    }
 
    unsigned index() const { return Offset; }
 
    Root *root() const { return reinterpret_cast<Root *>(Pointer); }
 
  };
 
 
 
  const Path *Parent;
 
  Segment Seg;
 
 
 
  Path(const Path *Parent, Segment S) : Parent(Parent), Seg(S) {}
 
};
 
 
 
/// The root is the trivial Path to the root value.
 
/// It also stores the latest reported error and the path where it occurred.
 
class Path::Root {
 
  llvm::StringRef Name;
 
  llvm::StringLiteral ErrorMessage;
 
  std::vector<Path::Segment> ErrorPath; // Only valid in error state. Reversed.
 
 
 
  friend void Path::report(llvm::StringLiteral Message);
 
 
 
public:
 
  Root(llvm::StringRef Name = "") : Name(Name), ErrorMessage("") {}
 
  // No copy/move allowed as there are incoming pointers.
 
  Root(Root &&) = delete;
 
  Root &operator=(Root &&) = delete;
 
  Root(const Root &) = delete;
 
  Root &operator=(const Root &) = delete;
 
 
 
  /// Returns the last error reported, or else a generic error.
 
  Error getError() const;
 
  /// Print the root value with the error shown inline as a comment.
 
  /// Unrelated parts of the value are elided for brevity, e.g.
 
  ///   {
 
  ///      "id": 42,
 
  ///      "name": /* expected string */ null,
 
  ///      "properties": { ... }
 
  ///   }
 
  void printErrorContext(const Value &, llvm::raw_ostream &) const;
 
};
 
 
 
// Standard deserializers are provided for primitive types.
 
// See comments on Value.
 
inline bool fromJSON(const Value &E, std::string &Out, Path P) {
 
  if (auto S = E.getAsString()) {
 
    Out = std::string(*S);
 
    return true;
 
  }
 
  P.report("expected string");
 
  return false;
 
}
 
inline bool fromJSON(const Value &E, int &Out, Path P) {
 
  if (auto S = E.getAsInteger()) {
 
    Out = *S;
 
    return true;
 
  }
 
  P.report("expected integer");
 
  return false;
 
}
 
inline bool fromJSON(const Value &E, int64_t &Out, Path P) {
 
  if (auto S = E.getAsInteger()) {
 
    Out = *S;
 
    return true;
 
  }
 
  P.report("expected integer");
 
  return false;
 
}
 
inline bool fromJSON(const Value &E, double &Out, Path P) {
 
  if (auto S = E.getAsNumber()) {
 
    Out = *S;
 
    return true;
 
  }
 
  P.report("expected number");
 
  return false;
 
}
 
inline bool fromJSON(const Value &E, bool &Out, Path P) {
 
  if (auto S = E.getAsBoolean()) {
 
    Out = *S;
 
    return true;
 
  }
 
  P.report("expected boolean");
 
  return false;
 
}
 
inline bool fromJSON(const Value &E, uint64_t &Out, Path P) {
 
  if (auto S = E.getAsUINT64()) {
 
    Out = *S;
 
    return true;
 
  }
 
  P.report("expected uint64_t");
 
  return false;
 
}
 
inline bool fromJSON(const Value &E, std::nullptr_t &Out, Path P) {
 
  if (auto S = E.getAsNull()) {
 
    Out = *S;
 
    return true;
 
  }
 
  P.report("expected null");
 
  return false;
 
}
 
template <typename T>
 
bool fromJSON(const Value &E, std::optional<T> &Out, Path P) {
 
  if (E.getAsNull()) {
 
    Out = std::nullopt;
 
    return true;
 
  }
 
  T Result;
 
  if (!fromJSON(E, Result, P))
 
    return false;
 
  Out = std::move(Result);
 
  return true;
 
}
 
template <typename T>
 
bool fromJSON(const Value &E, std::vector<T> &Out, Path P) {
 
  if (auto *A = E.getAsArray()) {
 
    Out.clear();
 
    Out.resize(A->size());
 
    for (size_t I = 0; I < A->size(); ++I)
 
      if (!fromJSON((*A)[I], Out[I], P.index(I)))
 
        return false;
 
    return true;
 
  }
 
  P.report("expected array");
 
  return false;
 
}
 
template <typename T>
 
bool fromJSON(const Value &E, std::map<std::string, T> &Out, Path P) {
 
  if (auto *O = E.getAsObject()) {
 
    Out.clear();
 
    for (const auto &KV : *O)
 
      if (!fromJSON(KV.second, Out[std::string(llvm::StringRef(KV.first))],
 
                    P.field(KV.first)))
 
        return false;
 
    return true;
 
  }
 
  P.report("expected object");
 
  return false;
 
}
 
 
 
// Allow serialization of std::optional<T> for supported T.
 
template <typename T> Value toJSON(const std::optional<T> &Opt) {
 
  return Opt ? Value(*Opt) : Value(nullptr);
 
}
 
 
 
/// Helper for mapping JSON objects onto protocol structs.
 
///
 
/// Example:
 
/// \code
 
///   bool fromJSON(const Value &E, MyStruct &R, Path P) {
 
///     ObjectMapper O(E, P);
 
///     // When returning false, error details were already reported.
 
///     return O && O.map("mandatory_field", R.MandatoryField) &&
 
///         O.mapOptional("optional_field", R.OptionalField);
 
///   }
 
/// \endcode
 
class ObjectMapper {
 
public:
 
  /// If O is not an object, this mapper is invalid and an error is reported.
 
  ObjectMapper(const Value &E, Path P) : O(E.getAsObject()), P(P) {
 
    if (!O)
 
      P.report("expected object");
 
  }
 
 
 
  /// True if the expression is an object.
 
  /// Must be checked before calling map().
 
  operator bool() const { return O; }
 
 
 
  /// Maps a property to a field.
 
  /// If the property is missing or invalid, reports an error.
 
  template <typename T> bool map(StringLiteral Prop, T &Out) {
 
    assert(*this && "Must check this is an object before calling map()");
 
    if (const Value *E = O->get(Prop))
 
      return fromJSON(*E, Out, P.field(Prop));
 
    P.field(Prop).report("missing value");
 
    return false;
 
  }
 
 
 
  /// Maps a property to a field, if it exists.
 
  /// If the property exists and is invalid, reports an error.
 
  /// (Optional requires special handling, because missing keys are OK).
 
  template <typename T> bool map(StringLiteral Prop, std::optional<T> &Out) {
 
    assert(*this && "Must check this is an object before calling map()");
 
    if (const Value *E = O->get(Prop))
 
      return fromJSON(*E, Out, P.field(Prop));
 
    Out = std::nullopt;
 
    return true;
 
  }
 
 
 
  /// Maps a property to a field, if it exists.
 
  /// If the property exists and is invalid, reports an error.
 
  /// If the property does not exist, Out is unchanged.
 
  template <typename T> bool mapOptional(StringLiteral Prop, T &Out) {
 
    assert(*this && "Must check this is an object before calling map()");
 
    if (const Value *E = O->get(Prop))
 
      return fromJSON(*E, Out, P.field(Prop));
 
    return true;
 
  }
 
 
 
private:
 
  const Object *O;
 
  Path P;
 
};
 
 
 
/// Parses the provided JSON source, or returns a ParseError.
 
/// The returned Value is self-contained and owns its strings (they do not refer
 
/// to the original source).
 
llvm::Expected<Value> parse(llvm::StringRef JSON);
 
 
 
class ParseError : public llvm::ErrorInfo<ParseError> {
 
  const char *Msg;
 
  unsigned Line, Column, Offset;
 
 
 
public:
 
  static char ID;
 
  ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset)
 
      : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {}
 
  void log(llvm::raw_ostream &OS) const override {
 
    OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg);
 
  }
 
  std::error_code convertToErrorCode() const override {
 
    return llvm::inconvertibleErrorCode();
 
  }
 
};
 
 
 
/// Version of parse() that converts the parsed value to the type T.
 
/// RootName describes the root object and is used in error messages.
 
template <typename T>
 
Expected<T> parse(const llvm::StringRef &JSON, const char *RootName = "") {
 
  auto V = parse(JSON);
 
  if (!V)
 
    return V.takeError();
 
  Path::Root R(RootName);
 
  T Result;
 
  if (fromJSON(*V, Result, R))
 
    return std::move(Result);
 
  return R.getError();
 
}
 
 
 
/// json::OStream allows writing well-formed JSON without materializing
 
/// all structures as json::Value ahead of time.
 
/// It's faster, lower-level, and less safe than OS << json::Value.
 
/// It also allows emitting more constructs, such as comments.
 
///
 
/// Only one "top-level" object can be written to a stream.
 
/// Simplest usage involves passing lambdas (Blocks) to fill in containers:
 
///
 
///   json::OStream J(OS);
 
///   J.array([&]{
 
///     for (const Event &E : Events)
 
///       J.object([&] {
 
///         J.attribute("timestamp", int64_t(E.Time));
 
///         J.attributeArray("participants", [&] {
 
///           for (const Participant &P : E.Participants)
 
///             J.value(P.toString());
 
///         });
 
///       });
 
///   });
 
///
 
/// This would produce JSON like:
 
///
 
///   [
 
///     {
 
///       "timestamp": 19287398741,
 
///       "participants": [
 
///         "King Kong",
 
///         "Miley Cyrus",
 
///         "Cleopatra"
 
///       ]
 
///     },
 
///     ...
 
///   ]
 
///
 
/// The lower level begin/end methods (arrayBegin()) are more flexible but
 
/// care must be taken to pair them correctly:
 
///
 
///   json::OStream J(OS);
 
//    J.arrayBegin();
 
///   for (const Event &E : Events) {
 
///     J.objectBegin();
 
///     J.attribute("timestamp", int64_t(E.Time));
 
///     J.attributeBegin("participants");
 
///     for (const Participant &P : E.Participants)
 
///       J.value(P.toString());
 
///     J.attributeEnd();
 
///     J.objectEnd();
 
///   }
 
///   J.arrayEnd();
 
///
 
/// If the call sequence isn't valid JSON, asserts will fire in debug mode.
 
/// This can be mismatched begin()/end() pairs, trying to emit attributes inside
 
/// an array, and so on.
 
/// With asserts disabled, this is undefined behavior.
 
class OStream {
 
 public:
 
  using Block = llvm::function_ref<void()>;
 
  // If IndentSize is nonzero, output is pretty-printed.
 
  explicit OStream(llvm::raw_ostream &OS, unsigned IndentSize = 0)
 
      : OS(OS), IndentSize(IndentSize) {
 
    Stack.emplace_back();
 
  }
 
  ~OStream() {
 
    assert(Stack.size() == 1 && "Unmatched begin()/end()");
 
    assert(Stack.back().Ctx == Singleton);
 
    assert(Stack.back().HasValue && "Did not write top-level value");
 
  }
 
 
 
  /// Flushes the underlying ostream. OStream does not buffer internally.
 
  void flush() { OS.flush(); }
 
 
 
  // High level functions to output a value.
 
  // Valid at top-level (exactly once), in an attribute value (exactly once),
 
  // or in an array (any number of times).
 
 
 
  /// Emit a self-contained value (number, string, vector<string> etc).
 
  void value(const Value &V);
 
  /// Emit an array whose elements are emitted in the provided Block.
 
  void array(Block Contents) {
 
    arrayBegin();
 
    Contents();
 
    arrayEnd();
 
  }
 
  /// Emit an object whose elements are emitted in the provided Block.
 
  void object(Block Contents) {
 
    objectBegin();
 
    Contents();
 
    objectEnd();
 
  }
 
  /// Emit an externally-serialized value.
 
  /// The caller must write exactly one valid JSON value to the provided stream.
 
  /// No validation or formatting of this value occurs.
 
  void rawValue(llvm::function_ref<void(raw_ostream &)> Contents) {
 
    rawValueBegin();
 
    Contents(OS);
 
    rawValueEnd();
 
  }
 
  void rawValue(llvm::StringRef Contents) {
 
    rawValue([&](raw_ostream &OS) { OS << Contents; });
 
  }
 
  /// Emit a JavaScript comment associated with the next printed value.
 
  /// The string must be valid until the next attribute or value is emitted.
 
  /// Comments are not part of standard JSON, and many parsers reject them!
 
  void comment(llvm::StringRef);
 
 
 
  // High level functions to output object attributes.
 
  // Valid only within an object (any number of times).
 
 
 
  /// Emit an attribute whose value is self-contained (number, vector<int> etc).
 
  void attribute(llvm::StringRef Key, const Value& Contents) {
 
    attributeImpl(Key, [&] { value(Contents); });
 
  }
 
  /// Emit an attribute whose value is an array with elements from the Block.
 
  void attributeArray(llvm::StringRef Key, Block Contents) {
 
    attributeImpl(Key, [&] { array(Contents); });
 
  }
 
  /// Emit an attribute whose value is an object with attributes from the Block.
 
  void attributeObject(llvm::StringRef Key, Block Contents) {
 
    attributeImpl(Key, [&] { object(Contents); });
 
  }
 
 
 
  // Low-level begin/end functions to output arrays, objects, and attributes.
 
  // Must be correctly paired. Allowed contexts are as above.
 
 
 
  void arrayBegin();
 
  void arrayEnd();
 
  void objectBegin();
 
  void objectEnd();
 
  void attributeBegin(llvm::StringRef Key);
 
  void attributeEnd();
 
  raw_ostream &rawValueBegin();
 
  void rawValueEnd();
 
 
 
private:
 
  void attributeImpl(llvm::StringRef Key, Block Contents) {
 
    attributeBegin(Key);
 
    Contents();
 
    attributeEnd();
 
  }
 
 
 
  void valueBegin();
 
  void flushComment();
 
  void newline();
 
 
 
  enum Context {
 
    Singleton, // Top level, or object attribute.
 
    Array,
 
    Object,
 
    RawValue, // External code writing a value to OS directly.
 
  };
 
  struct State {
 
    Context Ctx = Singleton;
 
    bool HasValue = false;
 
  };
 
  llvm::SmallVector<State, 16> Stack; // Never empty.
 
  llvm::StringRef PendingComment;
 
  llvm::raw_ostream &OS;
 
  unsigned IndentSize;
 
  unsigned Indent = 0;
 
};
 
 
 
/// Serializes this Value to JSON, writing it to the provided stream.
 
/// The formatting is compact (no extra whitespace) and deterministic.
 
/// For pretty-printing, use the formatv() format_provider below.
 
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Value &V) {
 
  OStream(OS).value(V);
 
  return OS;
 
}
 
} // namespace json
 
 
 
/// Allow printing json::Value with formatv().
 
/// The default style is basic/compact formatting, like operator<<.
 
/// A format string like formatv("{0:2}", Value) pretty-prints with indent 2.
 
template <> struct format_provider<llvm::json::Value> {
 
  static void format(const llvm::json::Value &, raw_ostream &, StringRef);
 
};
 
} // namespace llvm
 
 
 
#endif