//===- llvm/Support/HashBuilder.h - Convenient hashing interface-*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file implements an interface allowing to conveniently build hashes of
 
// various data types, without relying on the underlying hasher type to know
 
// about hashed data types.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_HASHBUILDER_H
 
#define LLVM_SUPPORT_HASHBUILDER_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/Hashing.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/type_traits.h"
 
 
 
#include <iterator>
 
#include <optional>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
namespace hashbuilder_detail {
 
/// Trait to indicate whether a type's bits can be hashed directly (after
 
/// endianness correction).
 
template <typename U>
 
struct IsHashableData
 
    : std::integral_constant<bool, is_integral_or_enum<U>::value> {};
 
 
 
} // namespace hashbuilder_detail
 
 
 
/// Declares the hasher member, and functions forwarding directly to the hasher.
 
template <typename HasherT> class HashBuilderBase {
 
public:
 
  template <typename HasherT_ = HasherT>
 
  using HashResultTy = decltype(std::declval<HasherT_ &>().final());
 
 
 
  HasherT &getHasher() { return Hasher; }
 
 
 
  /// Forward to `HasherT::update(ArrayRef<uint8_t>)`.
 
  ///
 
  /// This may not take the size of `Data` into account.
 
  /// Users of this function should pay attention to respect endianness
 
  /// contraints.
 
  void update(ArrayRef<uint8_t> Data) { this->getHasher().update(Data); }
 
 
 
  /// Forward to `HasherT::update(ArrayRef<uint8_t>)`.
 
  ///
 
  /// This may not take the size of `Data` into account.
 
  /// Users of this function should pay attention to respect endianness
 
  /// contraints.
 
  void update(StringRef Data) {
 
    update(
 
        ArrayRef(reinterpret_cast<const uint8_t *>(Data.data()), Data.size()));
 
  }
 
 
 
  /// Forward to `HasherT::final()` if available.
 
  template <typename HasherT_ = HasherT> HashResultTy<HasherT_> final() {
 
    return this->getHasher().final();
 
  }
 
 
 
  /// Forward to `HasherT::result()` if available.
 
  template <typename HasherT_ = HasherT> HashResultTy<HasherT_> result() {
 
    return this->getHasher().result();
 
  }
 
 
 
protected:
 
  explicit HashBuilderBase(HasherT &Hasher) : Hasher(Hasher) {}
 
 
 
  template <typename... ArgTypes>
 
  explicit HashBuilderBase(ArgTypes &&...Args)
 
      : OptionalHasher(std::in_place, std::forward<ArgTypes>(Args)...),
 
        Hasher(*OptionalHasher) {}
 
 
 
private:
 
  std::optional<HasherT> OptionalHasher;
 
  HasherT &Hasher;
 
};
 
 
 
/// Implementation of the `HashBuilder` interface.
 
///
 
/// `support::endianness::native` is not supported. `HashBuilder` is
 
/// expected to canonicalize `support::endianness::native` to one of
 
/// `support::endianness::big` or `support::endianness::little`.
 
template <typename HasherT, support::endianness Endianness>
 
class HashBuilderImpl : public HashBuilderBase<HasherT> {
 
  static_assert(Endianness != support::endianness::native,
 
                "HashBuilder should canonicalize endianness");
 
 
 
public:
 
  explicit HashBuilderImpl(HasherT &Hasher)
 
      : HashBuilderBase<HasherT>(Hasher) {}
 
  template <typename... ArgTypes>
 
  explicit HashBuilderImpl(ArgTypes &&...Args)
 
      : HashBuilderBase<HasherT>(Args...) {}
 
 
 
  /// Implement hashing for hashable data types, e.g. integral or enum values.
 
  template <typename T>
 
  std::enable_if_t<hashbuilder_detail::IsHashableData<T>::value,
 
                   HashBuilderImpl &>
 
  add(T Value) {
 
    return adjustForEndiannessAndAdd(Value);
 
  }
 
 
 
  /// Support hashing `ArrayRef`.
 
  ///
 
  /// `Value.size()` is taken into account to ensure cases like
 
  /// ```
 
  /// builder.add({1});
 
  /// builder.add({2, 3});
 
  /// ```
 
  /// and
 
  /// ```
 
  /// builder.add({1, 2});
 
  /// builder.add({3});
 
  /// ```
 
  /// do not collide.
 
  template <typename T> HashBuilderImpl &add(ArrayRef<T> Value) {
 
    // As of implementation time, simply calling `addRange(Value)` would also go
 
    // through the `update` fast path. But that would rely on the implementation
 
    // details of `ArrayRef::begin()` and `ArrayRef::end()`. Explicitly call
 
    // `update` to guarantee the fast path.
 
    add(Value.size());
 
    if (hashbuilder_detail::IsHashableData<T>::value &&
 
        Endianness == support::endian::system_endianness()) {
 
      this->update(ArrayRef(reinterpret_cast<const uint8_t *>(Value.begin()),
 
                            Value.size() * sizeof(T)));
 
    } else {
 
      for (auto &V : Value)
 
        add(V);
 
    }
 
    return *this;
 
  }
 
 
 
  /// Support hashing `StringRef`.
 
  ///
 
  /// `Value.size()` is taken into account to ensure cases like
 
  /// ```
 
  /// builder.add("a");
 
  /// builder.add("bc");
 
  /// ```
 
  /// and
 
  /// ```
 
  /// builder.add("ab");
 
  /// builder.add("c");
 
  /// ```
 
  /// do not collide.
 
  HashBuilderImpl &add(StringRef Value) {
 
    // As of implementation time, simply calling `addRange(Value)` would also go
 
    // through `update`. But that would rely on the implementation of
 
    // `StringRef::begin()` and `StringRef::end()`. Explicitly call `update` to
 
    // guarantee the fast path.
 
    add(Value.size());
 
    this->update(ArrayRef(reinterpret_cast<const uint8_t *>(Value.begin()),
 
                          Value.size()));
 
    return *this;
 
  }
 
 
 
  template <typename T>
 
  using HasAddHashT =
 
      decltype(addHash(std::declval<HashBuilderImpl &>(), std::declval<T &>()));
 
  /// Implement hashing for user-defined `struct`s.
 
  ///
 
  /// Any user-define `struct` can participate in hashing via `HashBuilder` by
 
  /// providing a `addHash` templated function.
 
  ///
 
  /// ```
 
  /// template <typename HasherT, support::endianness Endianness>
 
  /// void addHash(HashBuilder<HasherT, Endianness> &HBuilder,
 
  ///              const UserDefinedStruct &Value);
 
  /// ```
 
  ///
 
  /// For example:
 
  /// ```
 
  /// struct SimpleStruct {
 
  ///   char c;
 
  ///   int i;
 
  /// };
 
  ///
 
  /// template <typename HasherT, support::endianness Endianness>
 
  /// void addHash(HashBuilderImpl<HasherT, Endianness> &HBuilder,
 
  ///              const SimpleStruct &Value) {
 
  ///   HBuilder.add(Value.c);
 
  ///   HBuilder.add(Value.i);
 
  /// }
 
  /// ```
 
  ///
 
  /// To avoid endianness issues, specializations of `addHash` should
 
  /// generally rely on exising `add`, `addRange`, and `addRangeElements`
 
  /// functions. If directly using `update`, an implementation must correctly
 
  /// handle endianness.
 
  ///
 
  /// ```
 
  /// struct __attribute__ ((packed)) StructWithFastHash {
 
  ///   int I;
 
  ///   char C;
 
  ///
 
  ///   // If possible, we want to hash both `I` and `C` in a single
 
  ///   // `update` call for performance concerns.
 
  ///   template <typename HasherT, support::endianness Endianness>
 
  ///   friend void addHash(HashBuilderImpl<HasherT, Endianness> &HBuilder,
 
  ///                       const StructWithFastHash &Value) {
 
  ///     if (Endianness == support::endian::system_endianness()) {
 
  ///       HBuilder.update(ArrayRef(
 
  ///           reinterpret_cast<const uint8_t *>(&Value), sizeof(Value)));
 
  ///     } else {
 
  ///       // Rely on existing `add` methods to handle endianness.
 
  ///       HBuilder.add(Value.I);
 
  ///       HBuilder.add(Value.C);
 
  ///     }
 
  ///   }
 
  /// };
 
  /// ```
 
  ///
 
  /// To avoid collisions, specialization of `addHash` for variable-size
 
  /// types must take the size into account.
 
  ///
 
  /// For example:
 
  /// ```
 
  /// struct CustomContainer {
 
  /// private:
 
  ///   size_t Size;
 
  ///   int Elements[100];
 
  ///
 
  /// public:
 
  ///   CustomContainer(size_t Size) : Size(Size) {
 
  ///     for (size_t I = 0; I != Size; ++I)
 
  ///       Elements[I] = I;
 
  ///   }
 
  ///   template <typename HasherT, support::endianness Endianness>
 
  ///   friend void addHash(HashBuilderImpl<HasherT, Endianness> &HBuilder,
 
  ///                       const CustomContainer &Value) {
 
  ///     if (Endianness == support::endian::system_endianness()) {
 
  ///       HBuilder.update(ArrayRef(
 
  ///           reinterpret_cast<const uint8_t *>(&Value.Size),
 
  ///           sizeof(Value.Size) + Value.Size * sizeof(Value.Elements[0])));
 
  ///     } else {
 
  ///       // `addRange` will take care of encoding the size.
 
  ///       HBuilder.addRange(&Value.Elements[0], &Value.Elements[0] +
 
  ///       Value.Size);
 
  ///     }
 
  ///   }
 
  /// };
 
  /// ```
 
  template <typename T>
 
  std::enable_if_t<is_detected<HasAddHashT, T>::value &&
 
                       !hashbuilder_detail::IsHashableData<T>::value,
 
                   HashBuilderImpl &>
 
  add(const T &Value) {
 
    addHash(*this, Value);
 
    return *this;
 
  }
 
 
 
  template <typename T1, typename T2>
 
  HashBuilderImpl &add(const std::pair<T1, T2> &Value) {
 
    return add(Value.first, Value.second);
 
  }
 
 
 
  template <typename... Ts> HashBuilderImpl &add(const std::tuple<Ts...> &Arg) {
 
    std::apply([this](const auto &...Args) { this->add(Args...); }, Arg);
 
    return *this;
 
  }
 
 
 
  /// A convenenience variadic helper.
 
  /// It simply iterates over its arguments, in order.
 
  /// ```
 
  /// add(Arg1, Arg2);
 
  /// ```
 
  /// is equivalent to
 
  /// ```
 
  /// add(Arg1)
 
  /// add(Arg2)
 
  /// ```
 
  template <typename... Ts>
 
  std::enable_if_t<(sizeof...(Ts) > 1), HashBuilderImpl &>
 
  add(const Ts &...Args) {
 
    return (add(Args), ...);
 
  }
 
 
 
  template <typename ForwardIteratorT>
 
  HashBuilderImpl &addRange(ForwardIteratorT First, ForwardIteratorT Last) {
 
    add(std::distance(First, Last));
 
    return addRangeElements(First, Last);
 
  }
 
 
 
  template <typename RangeT> HashBuilderImpl &addRange(const RangeT &Range) {
 
    return addRange(adl_begin(Range), adl_end(Range));
 
  }
 
 
 
  template <typename ForwardIteratorT>
 
  HashBuilderImpl &addRangeElements(ForwardIteratorT First,
 
                                    ForwardIteratorT Last) {
 
    return addRangeElementsImpl(
 
        First, Last,
 
        typename std::iterator_traits<ForwardIteratorT>::iterator_category());
 
  }
 
 
 
  template <typename RangeT>
 
  HashBuilderImpl &addRangeElements(const RangeT &Range) {
 
    return addRangeElements(adl_begin(Range), adl_end(Range));
 
  }
 
 
 
  template <typename T>
 
  using HasByteSwapT = decltype(support::endian::byte_swap(
 
      std::declval<T &>(), support::endianness::little));
 
  /// Adjust `Value` for the target endianness and add it to the hash.
 
  template <typename T>
 
  std::enable_if_t<is_detected<HasByteSwapT, T>::value, HashBuilderImpl &>
 
  adjustForEndiannessAndAdd(const T &Value) {
 
    T SwappedValue = support::endian::byte_swap(Value, Endianness);
 
    this->update(ArrayRef(reinterpret_cast<const uint8_t *>(&SwappedValue),
 
                          sizeof(SwappedValue)));
 
    return *this;
 
  }
 
 
 
private:
 
  // FIXME: Once available, specialize this function for `contiguous_iterator`s,
 
  // and use it for `ArrayRef` and `StringRef`.
 
  template <typename ForwardIteratorT>
 
  HashBuilderImpl &addRangeElementsImpl(ForwardIteratorT First,
 
                                        ForwardIteratorT Last,
 
                                        std::forward_iterator_tag) {
 
    for (auto It = First; It != Last; ++It)
 
      add(*It);
 
    return *this;
 
  }
 
 
 
  template <typename T>
 
  std::enable_if_t<hashbuilder_detail::IsHashableData<T>::value &&
 
                       Endianness == support::endian::system_endianness(),
 
                   HashBuilderImpl &>
 
  addRangeElementsImpl(T *First, T *Last, std::forward_iterator_tag) {
 
    this->update(ArrayRef(reinterpret_cast<const uint8_t *>(First),
 
                          (Last - First) * sizeof(T)));
 
    return *this;
 
  }
 
};
 
 
 
/// Interface to help hash various types through a hasher type.
 
///
 
/// Via provided specializations of `add`, `addRange`, and `addRangeElements`
 
/// functions, various types (e.g. `ArrayRef`, `StringRef`, etc.) can be hashed
 
/// without requiring any knowledge of hashed types from the hasher type.
 
///
 
/// The only method expected from the templated hasher type `HasherT` is:
 
/// * void update(ArrayRef<uint8_t> Data)
 
///
 
/// Additionally, the following methods will be forwarded to the hasher type:
 
/// * decltype(std::declval<HasherT &>().final()) final()
 
/// * decltype(std::declval<HasherT &>().result()) result()
 
///
 
/// From a user point of view, the interface provides the following:
 
/// * `template<typename T> add(const T &Value)`
 
///   The `add` function implements hashing of various types.
 
/// * `template <typename ItT> void addRange(ItT First, ItT Last)`
 
///   The `addRange` function is designed to aid hashing a range of values.
 
///   It explicitly adds the size of the range in the hash.
 
/// * `template <typename ItT> void addRangeElements(ItT First, ItT Last)`
 
///   The `addRangeElements` function is also designed to aid hashing a range of
 
///   values. In contrast to `addRange`, it **ignores** the size of the range,
 
///   behaving as if elements were added one at a time with `add`.
 
///
 
/// User-defined `struct` types can participate in this interface by providing
 
/// an `addHash` templated function. See the associated template specialization
 
/// for details.
 
///
 
/// This interface does not impose requirements on the hasher
 
/// `update(ArrayRef<uint8_t> Data)` method. We want to avoid collisions for
 
/// variable-size types; for example for
 
/// ```
 
/// builder.add({1});
 
/// builder.add({2, 3});
 
/// ```
 
/// and
 
/// ```
 
/// builder.add({1, 2});
 
/// builder.add({3});
 
/// ```
 
/// . Thus, specializations of `add` and `addHash` for variable-size types must
 
/// not assume that the hasher type considers the size as part of the hash; they
 
/// must explicitly add the size to the hash. See for example specializations
 
/// for `ArrayRef` and `StringRef`.
 
///
 
/// Additionally, since types are eventually forwarded to the hasher's
 
/// `void update(ArrayRef<uint8_t>)` method, endianness plays a role in the hash
 
/// computation (for example when computing `add((int)123)`).
 
/// Specifiying a non-`native` `Endianness` template parameter allows to compute
 
/// stable hash across platforms with different endianness.
 
template <class HasherT, support::endianness Endianness>
 
using HashBuilder =
 
    HashBuilderImpl<HasherT, (Endianness == support::endianness::native
 
                                  ? support::endian::system_endianness()
 
                                  : Endianness)>;
 
 
 
namespace hashbuilder_detail {
 
class HashCodeHasher {
 
public:
 
  HashCodeHasher() : Code(0) {}
 
  void update(ArrayRef<uint8_t> Data) {
 
    hash_code DataCode = hash_value(Data);
 
    Code = hash_combine(Code, DataCode);
 
  }
 
  hash_code Code;
 
};
 
 
 
using HashCodeHashBuilder = HashBuilder<hashbuilder_detail::HashCodeHasher,
 
                                        support::endianness::native>;
 
} // namespace hashbuilder_detail
 
 
 
/// Provide a default implementation of `hash_value` when `addHash(const T &)`
 
/// is supported.
 
template <typename T>
 
std::enable_if_t<
 
    is_detected<hashbuilder_detail::HashCodeHashBuilder::HasAddHashT, T>::value,
 
    hash_code>
 
hash_value(const T &Value) {
 
  hashbuilder_detail::HashCodeHashBuilder HBuilder;
 
  HBuilder.add(Value);
 
  return HBuilder.getHasher().Code;
 
}
 
} // end namespace llvm
 
 
 
#endif // LLVM_SUPPORT_HASHBUILDER_H