//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
///
 
/// Generic dominator tree construction - this file provides routines to
 
/// construct immediate dominator information for a flow-graph based on the
 
/// Semi-NCA algorithm described in this dissertation:
 
///
 
///   [1] Linear-Time Algorithms for Dominators and Related Problems
 
///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
 
///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
 
///
 
/// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
 
/// faster than Simple Lengauer-Tarjan in practice.
 
///
 
/// O(n^2) worst cases happen when the computation of nearest common ancestors
 
/// requires O(n) average time, which is very unlikely in real world. If this
 
/// ever turns out to be an issue, consider implementing a hybrid algorithm
 
/// that uses SLT to perform full constructions and SemiNCA for incremental
 
/// updates.
 
///
 
/// The file uses the Depth Based Search algorithm to perform incremental
 
/// updates (insertion and deletions). The implemented algorithm is based on
 
/// this publication:
 
///
 
///   [2] An Experimental Study of Dynamic Dominators
 
///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
 
///   https://arxiv.org/pdf/1604.02711.pdf
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
 
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/DepthFirstIterator.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/Support/Debug.h"
 
#include "llvm/Support/GenericDomTree.h"
 
#include <optional>
 
#include <queue>
 
 
 
#define DEBUG_TYPE "dom-tree-builder"
 
 
 
namespace llvm {
 
namespace DomTreeBuilder {
 
 
 
template <typename DomTreeT>
 
struct SemiNCAInfo {
 
  using NodePtr = typename DomTreeT::NodePtr;
 
  using NodeT = typename DomTreeT::NodeType;
 
  using TreeNodePtr = DomTreeNodeBase<NodeT> *;
 
  using RootsT = decltype(DomTreeT::Roots);
 
  static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
 
  using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
 
 
 
  // Information record used by Semi-NCA during tree construction.
 
  struct InfoRec {
 
    unsigned DFSNum = 0;
 
    unsigned Parent = 0;
 
    unsigned Semi = 0;
 
    NodePtr Label = nullptr;
 
    NodePtr IDom = nullptr;
 
    SmallVector<NodePtr, 2> ReverseChildren;
 
  };
 
 
 
  // Number to node mapping is 1-based. Initialize the mapping to start with
 
  // a dummy element.
 
  std::vector<NodePtr> NumToNode = {nullptr};
 
  DenseMap<NodePtr, InfoRec> NodeToInfo;
 
 
 
  using UpdateT = typename DomTreeT::UpdateType;
 
  using UpdateKind = typename DomTreeT::UpdateKind;
 
  struct BatchUpdateInfo {
 
    // Note: Updates inside PreViewCFG are already legalized.
 
    BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
 
        : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
 
          NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
 
 
 
    // Remembers if the whole tree was recalculated at some point during the
 
    // current batch update.
 
    bool IsRecalculated = false;
 
    GraphDiffT &PreViewCFG;
 
    GraphDiffT *PostViewCFG;
 
    const size_t NumLegalized;
 
  };
 
 
 
  BatchUpdateInfo *BatchUpdates;
 
  using BatchUpdatePtr = BatchUpdateInfo *;
 
 
 
  // If BUI is a nullptr, then there's no batch update in progress.
 
  SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
 
 
 
  void clear() {
 
    NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
 
    NodeToInfo.clear();
 
    // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
 
    // in progress, we need this information to continue it.
 
  }
 
 
 
  template <bool Inversed>
 
  static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
 
    if (BUI)
 
      return BUI->PreViewCFG.template getChildren<Inversed>(N);
 
    return getChildren<Inversed>(N);
 
  }
 
 
 
  template <bool Inversed>
 
  static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
 
    using DirectedNodeT =
 
        std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
 
    auto R = children<DirectedNodeT>(N);
 
    SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
 
 
 
    // Remove nullptr children for clang.
 
    llvm::erase_value(Res, nullptr);
 
    return Res;
 
  }
 
 
 
  NodePtr getIDom(NodePtr BB) const {
 
    auto InfoIt = NodeToInfo.find(BB);
 
    if (InfoIt == NodeToInfo.end()) return nullptr;
 
 
 
    return InfoIt->second.IDom;
 
  }
 
 
 
  TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
 
    if (TreeNodePtr Node = DT.getNode(BB)) return Node;
 
 
 
    // Haven't calculated this node yet?  Get or calculate the node for the
 
    // immediate dominator.
 
    NodePtr IDom = getIDom(BB);
 
 
 
    assert(IDom || DT.DomTreeNodes[nullptr]);
 
    TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
 
 
 
    // Add a new tree node for this NodeT, and link it as a child of
 
    // IDomNode
 
    return DT.createChild(BB, IDomNode);
 
  }
 
 
 
  static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
 
 
 
  struct BlockNamePrinter {
 
    NodePtr N;
 
 
 
    BlockNamePrinter(NodePtr Block) : N(Block) {}
 
    BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
 
 
 
    friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
 
      if (!BP.N)
 
        O << "nullptr";
 
      else
 
        BP.N->printAsOperand(O, false);
 
 
 
      return O;
 
    }
 
  };
 
 
 
  using NodeOrderMap = DenseMap<NodePtr, unsigned>;
 
 
 
  // Custom DFS implementation which can skip nodes based on a provided
 
  // predicate. It also collects ReverseChildren so that we don't have to spend
 
  // time getting predecessors in SemiNCA.
 
  //
 
  // If IsReverse is set to true, the DFS walk will be performed backwards
 
  // relative to IsPostDom -- using reverse edges for dominators and forward
 
  // edges for postdominators.
 
  //
 
  // If SuccOrder is specified then in this order the DFS traverses the children
 
  // otherwise the order is implied by the results of getChildren().
 
  template <bool IsReverse = false, typename DescendCondition>
 
  unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
 
                  unsigned AttachToNum,
 
                  const NodeOrderMap *SuccOrder = nullptr) {
 
    assert(V);
 
    SmallVector<NodePtr, 64> WorkList = {V};
 
    if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
 
 
 
    while (!WorkList.empty()) {
 
      const NodePtr BB = WorkList.pop_back_val();
 
      auto &BBInfo = NodeToInfo[BB];
 
 
 
      // Visited nodes always have positive DFS numbers.
 
      if (BBInfo.DFSNum != 0) continue;
 
      BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
 
      BBInfo.Label = BB;
 
      NumToNode.push_back(BB);
 
 
 
      constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
 
      auto Successors = getChildren<Direction>(BB, BatchUpdates);
 
      if (SuccOrder && Successors.size() > 1)
 
        llvm::sort(
 
            Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
 
              return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
 
            });
 
 
 
      for (const NodePtr Succ : Successors) {
 
        const auto SIT = NodeToInfo.find(Succ);
 
        // Don't visit nodes more than once but remember to collect
 
        // ReverseChildren.
 
        if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
 
          if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
 
          continue;
 
        }
 
 
 
        if (!Condition(BB, Succ)) continue;
 
 
 
        // It's fine to add Succ to the map, because we know that it will be
 
        // visited later.
 
        auto &SuccInfo = NodeToInfo[Succ];
 
        WorkList.push_back(Succ);
 
        SuccInfo.Parent = LastNum;
 
        SuccInfo.ReverseChildren.push_back(BB);
 
      }
 
    }
 
 
 
    return LastNum;
 
  }
 
 
 
  // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
 
  // of sdom(U), where U > W and there is a virtual forest path from U to V. The
 
  // virtual forest consists of linked edges of processed vertices.
 
  //
 
  // We can follow Parent pointers (virtual forest edges) to determine the
 
  // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
 
  // compression technique to speed up to O(m*log(n)). Theoretically the virtual
 
  // forest can be organized as balanced trees to achieve almost linear
 
  // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
 
  // and Child) and is unlikely to be faster than the simple implementation.
 
  //
 
  // For each vertex V, its Label points to the vertex with the minimal sdom(U)
 
  // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
 
  NodePtr eval(NodePtr V, unsigned LastLinked,
 
               SmallVectorImpl<InfoRec *> &Stack) {
 
    InfoRec *VInfo = &NodeToInfo[V];
 
    if (VInfo->Parent < LastLinked)
 
      return VInfo->Label;
 
 
 
    // Store ancestors except the last (root of a virtual tree) into a stack.
 
    assert(Stack.empty());
 
    do {
 
      Stack.push_back(VInfo);
 
      VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
 
    } while (VInfo->Parent >= LastLinked);
 
 
 
    // Path compression. Point each vertex's Parent to the root and update its
 
    // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
 
    const InfoRec *PInfo = VInfo;
 
    const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
 
    do {
 
      VInfo = Stack.pop_back_val();
 
      VInfo->Parent = PInfo->Parent;
 
      const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
 
      if (PLabelInfo->Semi < VLabelInfo->Semi)
 
        VInfo->Label = PInfo->Label;
 
      else
 
        PLabelInfo = VLabelInfo;
 
      PInfo = VInfo;
 
    } while (!Stack.empty());
 
    return VInfo->Label;
 
  }
 
 
 
  // This function requires DFS to be run before calling it.
 
  void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
 
    const unsigned NextDFSNum(NumToNode.size());
 
    // Initialize IDoms to spanning tree parents.
 
    for (unsigned i = 1; i < NextDFSNum; ++i) {
 
      const NodePtr V = NumToNode[i];
 
      auto &VInfo = NodeToInfo[V];
 
      VInfo.IDom = NumToNode[VInfo.Parent];
 
    }
 
 
 
    // Step #1: Calculate the semidominators of all vertices.
 
    SmallVector<InfoRec *, 32> EvalStack;
 
    for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
 
      NodePtr W = NumToNode[i];
 
      auto &WInfo = NodeToInfo[W];
 
 
 
      // Initialize the semi dominator to point to the parent node.
 
      WInfo.Semi = WInfo.Parent;
 
      for (const auto &N : WInfo.ReverseChildren) {
 
        if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
 
          continue;
 
 
 
        const TreeNodePtr TN = DT.getNode(N);
 
        // Skip predecessors whose level is above the subtree we are processing.
 
        if (TN && TN->getLevel() < MinLevel)
 
          continue;
 
 
 
        unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
 
        if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
 
      }
 
    }
 
 
 
    // Step #2: Explicitly define the immediate dominator of each vertex.
 
    //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
 
    // Note that the parents were stored in IDoms and later got invalidated
 
    // during path compression in Eval.
 
    for (unsigned i = 2; i < NextDFSNum; ++i) {
 
      const NodePtr W = NumToNode[i];
 
      auto &WInfo = NodeToInfo[W];
 
      const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
 
      NodePtr WIDomCandidate = WInfo.IDom;
 
      while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
 
        WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
 
 
 
      WInfo.IDom = WIDomCandidate;
 
    }
 
  }
 
 
 
  // PostDominatorTree always has a virtual root that represents a virtual CFG
 
  // node that serves as a single exit from the function. All the other exits
 
  // (CFG nodes with terminators and nodes in infinite loops are logically
 
  // connected to this virtual CFG exit node).
 
  // This functions maps a nullptr CFG node to the virtual root tree node.
 
  void addVirtualRoot() {
 
    assert(IsPostDom && "Only postdominators have a virtual root");
 
    assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
 
 
 
    auto &BBInfo = NodeToInfo[nullptr];
 
    BBInfo.DFSNum = BBInfo.Semi = 1;
 
    BBInfo.Label = nullptr;
 
 
 
    NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
 
  }
 
 
 
  // For postdominators, nodes with no forward successors are trivial roots that
 
  // are always selected as tree roots. Roots with forward successors correspond
 
  // to CFG nodes within infinite loops.
 
  static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
 
    assert(N && "N must be a valid node");
 
    return !getChildren<false>(N, BUI).empty();
 
  }
 
 
 
  static NodePtr GetEntryNode(const DomTreeT &DT) {
 
    assert(DT.Parent && "Parent not set");
 
    return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
 
  }
 
 
 
  // Finds all roots without relaying on the set of roots already stored in the
 
  // tree.
 
  // We define roots to be some non-redundant set of the CFG nodes
 
  static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
 
    assert(DT.Parent && "Parent pointer is not set");
 
    RootsT Roots;
 
 
 
    // For dominators, function entry CFG node is always a tree root node.
 
    if (!IsPostDom) {
 
      Roots.push_back(GetEntryNode(DT));
 
      return Roots;
 
    }
 
 
 
    SemiNCAInfo SNCA(BUI);
 
 
 
    // PostDominatorTree always has a virtual root.
 
    SNCA.addVirtualRoot();
 
    unsigned Num = 1;
 
 
 
    LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
 
 
 
    // Step #1: Find all the trivial roots that are going to will definitely
 
    // remain tree roots.
 
    unsigned Total = 0;
 
    // It may happen that there are some new nodes in the CFG that are result of
 
    // the ongoing batch update, but we cannot really pretend that they don't
 
    // exist -- we won't see any outgoing or incoming edges to them, so it's
 
    // fine to discover them here, as they would end up appearing in the CFG at
 
    // some point anyway.
 
    for (const NodePtr N : nodes(DT.Parent)) {
 
      ++Total;
 
      // If it has no *successors*, it is definitely a root.
 
      if (!HasForwardSuccessors(N, BUI)) {
 
        Roots.push_back(N);
 
        // Run DFS not to walk this part of CFG later.
 
        Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
 
        LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
 
                          << "\n");
 
        LLVM_DEBUG(dbgs() << "Last visited node: "
 
                          << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
 
      }
 
    }
 
 
 
    LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
 
 
 
    // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
 
    // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
 
    // nodes in infinite loops).
 
    bool HasNonTrivialRoots = false;
 
    // Accounting for the virtual exit, see if we had any reverse-unreachable
 
    // nodes.
 
    if (Total + 1 != Num) {
 
      HasNonTrivialRoots = true;
 
 
 
      // SuccOrder is the order of blocks in the function. It is needed to make
 
      // the calculation of the FurthestAway node and the whole PostDomTree
 
      // immune to swap successors transformation (e.g. canonicalizing branch
 
      // predicates). SuccOrder is initialized lazily only for successors of
 
      // reverse unreachable nodes.
 
      std::optional<NodeOrderMap> SuccOrder;
 
      auto InitSuccOrderOnce = [&]() {
 
        SuccOrder = NodeOrderMap();
 
        for (const auto Node : nodes(DT.Parent))
 
          if (SNCA.NodeToInfo.count(Node) == 0)
 
            for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
 
              SuccOrder->try_emplace(Succ, 0);
 
 
 
        // Add mapping for all entries of SuccOrder.
 
        unsigned NodeNum = 0;
 
        for (const auto Node : nodes(DT.Parent)) {
 
          ++NodeNum;
 
          auto Order = SuccOrder->find(Node);
 
          if (Order != SuccOrder->end()) {
 
            assert(Order->second == 0);
 
            Order->second = NodeNum;
 
          }
 
        }
 
      };
 
 
 
      // Make another DFS pass over all other nodes to find the
 
      // reverse-unreachable blocks, and find the furthest paths we'll be able
 
      // to make.
 
      // Note that this looks N^2, but it's really 2N worst case, if every node
 
      // is unreachable. This is because we are still going to only visit each
 
      // unreachable node once, we may just visit it in two directions,
 
      // depending on how lucky we get.
 
      for (const NodePtr I : nodes(DT.Parent)) {
 
        if (SNCA.NodeToInfo.count(I) == 0) {
 
          LLVM_DEBUG(dbgs()
 
                     << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
 
          // Find the furthest away we can get by following successors, then
 
          // follow them in reverse.  This gives us some reasonable answer about
 
          // the post-dom tree inside any infinite loop. In particular, it
 
          // guarantees we get to the farthest away point along *some*
 
          // path. This also matches the GCC's behavior.
 
          // If we really wanted a totally complete picture of dominance inside
 
          // this infinite loop, we could do it with SCC-like algorithms to find
 
          // the lowest and highest points in the infinite loop.  In theory, it
 
          // would be nice to give the canonical backedge for the loop, but it's
 
          // expensive and does not always lead to a minimal set of roots.
 
          LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
 
 
 
          if (!SuccOrder)
 
            InitSuccOrderOnce();
 
          assert(SuccOrder);
 
 
 
          const unsigned NewNum =
 
              SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
 
          const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
 
          LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
 
                            << "(non-trivial root): "
 
                            << BlockNamePrinter(FurthestAway) << "\n");
 
          Roots.push_back(FurthestAway);
 
          LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
 
                            << NewNum << "\n\t\t\tRemoving DFS info\n");
 
          for (unsigned i = NewNum; i > Num; --i) {
 
            const NodePtr N = SNCA.NumToNode[i];
 
            LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
 
                              << BlockNamePrinter(N) << "\n");
 
            SNCA.NodeToInfo.erase(N);
 
            SNCA.NumToNode.pop_back();
 
          }
 
          const unsigned PrevNum = Num;
 
          LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
 
          Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
 
          for (unsigned i = PrevNum + 1; i <= Num; ++i)
 
            LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
 
                              << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
 
        }
 
      }
 
    }
 
 
 
    LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
 
    LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
 
    LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
 
               << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
 
 
 
    assert((Total + 1 == Num) && "Everything should have been visited");
 
 
 
    // Step #3: If we found some non-trivial roots, make them non-redundant.
 
    if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
 
 
 
    LLVM_DEBUG(dbgs() << "Found roots: ");
 
    LLVM_DEBUG(for (auto *Root
 
                    : Roots) dbgs()
 
               << BlockNamePrinter(Root) << " ");
 
    LLVM_DEBUG(dbgs() << "\n");
 
 
 
    return Roots;
 
  }
 
 
 
  // This function only makes sense for postdominators.
 
  // We define roots to be some set of CFG nodes where (reverse) DFS walks have
 
  // to start in order to visit all the CFG nodes (including the
 
  // reverse-unreachable ones).
 
  // When the search for non-trivial roots is done it may happen that some of
 
  // the non-trivial roots are reverse-reachable from other non-trivial roots,
 
  // which makes them redundant. This function removes them from the set of
 
  // input roots.
 
  static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
 
                                   RootsT &Roots) {
 
    assert(IsPostDom && "This function is for postdominators only");
 
    LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
 
 
 
    SemiNCAInfo SNCA(BUI);
 
 
 
    for (unsigned i = 0; i < Roots.size(); ++i) {
 
      auto &Root = Roots[i];
 
      // Trivial roots are always non-redundant.
 
      if (!HasForwardSuccessors(Root, BUI)) continue;
 
      LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
 
                        << " remains a root\n");
 
      SNCA.clear();
 
      // Do a forward walk looking for the other roots.
 
      const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
 
      // Skip the start node and begin from the second one (note that DFS uses
 
      // 1-based indexing).
 
      for (unsigned x = 2; x <= Num; ++x) {
 
        const NodePtr N = SNCA.NumToNode[x];
 
        // If we wound another root in a (forward) DFS walk, remove the current
 
        // root from the set of roots, as it is reverse-reachable from the other
 
        // one.
 
        if (llvm::is_contained(Roots, N)) {
 
          LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
 
                            << BlockNamePrinter(N) << "\n\tRemoving root "
 
                            << BlockNamePrinter(Root) << "\n");
 
          std::swap(Root, Roots.back());
 
          Roots.pop_back();
 
 
 
          // Root at the back takes the current root's place.
 
          // Start the next loop iteration with the same index.
 
          --i;
 
          break;
 
        }
 
      }
 
    }
 
  }
 
 
 
  template <typename DescendCondition>
 
  void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
 
    if (!IsPostDom) {
 
      assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
 
      runDFS(DT.Roots[0], 0, DC, 0);
 
      return;
 
    }
 
 
 
    addVirtualRoot();
 
    unsigned Num = 1;
 
    for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
 
  }
 
 
 
  static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
 
    auto *Parent = DT.Parent;
 
    DT.reset();
 
    DT.Parent = Parent;
 
    // If the update is using the actual CFG, BUI is null. If it's using a view,
 
    // BUI is non-null and the PreCFGView is used. When calculating from
 
    // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
 
    BatchUpdatePtr PostViewBUI = nullptr;
 
    if (BUI && BUI->PostViewCFG) {
 
      BUI->PreViewCFG = *BUI->PostViewCFG;
 
      PostViewBUI = BUI;
 
    }
 
    // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
 
    // used in case the caller needs a DT update with a CFGView.
 
    SemiNCAInfo SNCA(PostViewBUI);
 
 
 
    // Step #0: Number blocks in depth-first order and initialize variables used
 
    // in later stages of the algorithm.
 
    DT.Roots = FindRoots(DT, PostViewBUI);
 
    SNCA.doFullDFSWalk(DT, AlwaysDescend);
 
 
 
    SNCA.runSemiNCA(DT);
 
    if (BUI) {
 
      BUI->IsRecalculated = true;
 
      LLVM_DEBUG(
 
          dbgs() << "DomTree recalculated, skipping future batch updates\n");
 
    }
 
 
 
    if (DT.Roots.empty()) return;
 
 
 
    // Add a node for the root. If the tree is a PostDominatorTree it will be
 
    // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
 
    // all real exits (including multiple exit blocks, infinite loops).
 
    NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
 
 
 
    DT.RootNode = DT.createNode(Root);
 
    SNCA.attachNewSubtree(DT, DT.RootNode);
 
  }
 
 
 
  void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
 
    // Attach the first unreachable block to AttachTo.
 
    NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
 
    // Loop over all of the discovered blocks in the function...
 
    for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
 
      NodePtr W = NumToNode[i];
 
 
 
      // Don't replace this with 'count', the insertion side effect is important
 
      if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
 
 
 
      NodePtr ImmDom = getIDom(W);
 
 
 
      // Get or calculate the node for the immediate dominator.
 
      TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
 
 
 
      // Add a new tree node for this BasicBlock, and link it as a child of
 
      // IDomNode.
 
      DT.createChild(W, IDomNode);
 
    }
 
  }
 
 
 
  void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
 
    NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
 
    for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
 
      const NodePtr N = NumToNode[i];
 
      const TreeNodePtr TN = DT.getNode(N);
 
      assert(TN);
 
      const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
 
      TN->setIDom(NewIDom);
 
    }
 
  }
 
 
 
  // Helper struct used during edge insertions.
 
  struct InsertionInfo {
 
    struct Compare {
 
      bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
 
        return LHS->getLevel() < RHS->getLevel();
 
      }
 
    };
 
 
 
    // Bucket queue of tree nodes ordered by descending level. For simplicity,
 
    // we use a priority_queue here.
 
    std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
 
                        Compare>
 
        Bucket;
 
    SmallDenseSet<TreeNodePtr, 8> Visited;
 
    SmallVector<TreeNodePtr, 8> Affected;
 
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    SmallVector<TreeNodePtr, 8> VisitedUnaffected;
 
#endif
 
  };
 
 
 
  static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                         const NodePtr From, const NodePtr To) {
 
    assert((From || IsPostDom) &&
 
           "From has to be a valid CFG node or a virtual root");
 
    assert(To && "Cannot be a nullptr");
 
    LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
 
                      << BlockNamePrinter(To) << "\n");
 
    TreeNodePtr FromTN = DT.getNode(From);
 
 
 
    if (!FromTN) {
 
      // Ignore edges from unreachable nodes for (forward) dominators.
 
      if (!IsPostDom) return;
 
 
 
      // The unreachable node becomes a new root -- a tree node for it.
 
      TreeNodePtr VirtualRoot = DT.getNode(nullptr);
 
      FromTN = DT.createChild(From, VirtualRoot);
 
      DT.Roots.push_back(From);
 
    }
 
 
 
    DT.DFSInfoValid = false;
 
 
 
    const TreeNodePtr ToTN = DT.getNode(To);
 
    if (!ToTN)
 
      InsertUnreachable(DT, BUI, FromTN, To);
 
    else
 
      InsertReachable(DT, BUI, FromTN, ToTN);
 
  }
 
 
 
  // Determines if some existing root becomes reverse-reachable after the
 
  // insertion. Rebuilds the whole tree if that situation happens.
 
  static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                                         const TreeNodePtr From,
 
                                         const TreeNodePtr To) {
 
    assert(IsPostDom && "This function is only for postdominators");
 
    // Destination node is not attached to the virtual root, so it cannot be a
 
    // root.
 
    if (!DT.isVirtualRoot(To->getIDom())) return false;
 
 
 
    if (!llvm::is_contained(DT.Roots, To->getBlock()))
 
      return false;  // To is not a root, nothing to update.
 
 
 
    LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
 
                      << " is no longer a root\n\t\tRebuilding the tree!!!\n");
 
 
 
    CalculateFromScratch(DT, BUI);
 
    return true;
 
  }
 
 
 
  static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
 
                            const SmallVectorImpl<NodePtr> &B) {
 
    if (A.size() != B.size())
 
      return false;
 
    SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
 
    for (NodePtr N : B)
 
      if (Set.count(N) == 0)
 
        return false;
 
    return true;
 
  }
 
 
 
  // Updates the set of roots after insertion or deletion. This ensures that
 
  // roots are the same when after a series of updates and when the tree would
 
  // be built from scratch.
 
  static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
 
    assert(IsPostDom && "This function is only for postdominators");
 
 
 
    // The tree has only trivial roots -- nothing to update.
 
    if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) {
 
          return HasForwardSuccessors(N, BUI);
 
        }))
 
      return;
 
 
 
    // Recalculate the set of roots.
 
    RootsT Roots = FindRoots(DT, BUI);
 
    if (!isPermutation(DT.Roots, Roots)) {
 
      // The roots chosen in the CFG have changed. This is because the
 
      // incremental algorithm does not really know or use the set of roots and
 
      // can make a different (implicit) decision about which node within an
 
      // infinite loop becomes a root.
 
 
 
      LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
 
                        << "The entire tree needs to be rebuilt\n");
 
      // It may be possible to update the tree without recalculating it, but
 
      // we do not know yet how to do it, and it happens rarely in practice.
 
      CalculateFromScratch(DT, BUI);
 
    }
 
  }
 
 
 
  // Handles insertion to a node already in the dominator tree.
 
  static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                              const TreeNodePtr From, const TreeNodePtr To) {
 
    LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
 
                      << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
 
    if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
 
    // DT.findNCD expects both pointers to be valid. When From is a virtual
 
    // root, then its CFG block pointer is a nullptr, so we have to 'compute'
 
    // the NCD manually.
 
    const NodePtr NCDBlock =
 
        (From->getBlock() && To->getBlock())
 
            ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
 
            : nullptr;
 
    assert(NCDBlock || DT.isPostDominator());
 
    const TreeNodePtr NCD = DT.getNode(NCDBlock);
 
    assert(NCD);
 
 
 
    LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
 
    const unsigned NCDLevel = NCD->getLevel();
 
 
 
    // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
 
    // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
 
    // w on P s.t. depth(v) <= depth(w)
 
    //
 
    // This reduces to a widest path problem (maximizing the depth of the
 
    // minimum vertex in the path) which can be solved by a modified version of
 
    // Dijkstra with a bucket queue (named depth-based search in [2]).
 
 
 
    // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
 
    // affected if this does not hold.
 
    if (NCDLevel + 1 >= To->getLevel())
 
      return;
 
 
 
    InsertionInfo II;
 
    SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
 
    II.Bucket.push(To);
 
    II.Visited.insert(To);
 
 
 
    while (!II.Bucket.empty()) {
 
      TreeNodePtr TN = II.Bucket.top();
 
      II.Bucket.pop();
 
      II.Affected.push_back(TN);
 
 
 
      const unsigned CurrentLevel = TN->getLevel();
 
      LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
 
                 "as affected, CurrentLevel " << CurrentLevel << "\n");
 
 
 
      assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
 
 
 
      while (true) {
 
        // Unlike regular Dijkstra, we have an inner loop to expand more
 
        // vertices. The first iteration is for the (affected) vertex popped
 
        // from II.Bucket and the rest are for vertices in
 
        // UnaffectedOnCurrentLevel, which may eventually expand to affected
 
        // vertices.
 
        //
 
        // Invariant: there is an optimal path from `To` to TN with the minimum
 
        // depth being CurrentLevel.
 
        for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
 
          const TreeNodePtr SuccTN = DT.getNode(Succ);
 
          assert(SuccTN &&
 
                 "Unreachable successor found at reachable insertion");
 
          const unsigned SuccLevel = SuccTN->getLevel();
 
 
 
          LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
 
                            << ", level = " << SuccLevel << "\n");
 
 
 
          // There is an optimal path from `To` to Succ with the minimum depth
 
          // being min(CurrentLevel, SuccLevel).
 
          //
 
          // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
 
          // and no affected vertex may be reached by a path passing through it.
 
          // Stop here. Also, Succ may be visited by other predecessors but the
 
          // first visit has the optimal path. Stop if Succ has been visited.
 
          if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
 
            continue;
 
 
 
          if (SuccLevel > CurrentLevel) {
 
            // Succ is unaffected but it may (transitively) expand to affected
 
            // vertices. Store it in UnaffectedOnCurrentLevel.
 
            LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
 
                              << BlockNamePrinter(Succ) << "\n");
 
            UnaffectedOnCurrentLevel.push_back(SuccTN);
 
#ifndef NDEBUG
 
            II.VisitedUnaffected.push_back(SuccTN);
 
#endif
 
          } else {
 
            // The condition is satisfied (Succ is affected). Add Succ to the
 
            // bucket queue.
 
            LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
 
                              << " to a Bucket\n");
 
            II.Bucket.push(SuccTN);
 
          }
 
        }
 
 
 
        if (UnaffectedOnCurrentLevel.empty())
 
          break;
 
        TN = UnaffectedOnCurrentLevel.pop_back_val();
 
        LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
 
      }
 
    }
 
 
 
    // Finish by updating immediate dominators and levels.
 
    UpdateInsertion(DT, BUI, NCD, II);
 
  }
 
 
 
  // Updates immediate dominators and levels after insertion.
 
  static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                              const TreeNodePtr NCD, InsertionInfo &II) {
 
    LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
 
 
 
    for (const TreeNodePtr TN : II.Affected) {
 
      LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
 
                        << ") = " << BlockNamePrinter(NCD) << "\n");
 
      TN->setIDom(NCD);
 
    }
 
 
 
#if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG)
 
    for (const TreeNodePtr TN : II.VisitedUnaffected)
 
      assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
 
             "TN should have been updated by an affected ancestor");
 
#endif
 
 
 
    if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
 
  }
 
 
 
  // Handles insertion to previously unreachable nodes.
 
  static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                                const TreeNodePtr From, const NodePtr To) {
 
    LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
 
                      << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
 
 
 
    // Collect discovered edges to already reachable nodes.
 
    SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
 
    // Discover and connect nodes that became reachable with the insertion.
 
    ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
 
 
 
    LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
 
                      << " -> (prev unreachable) " << BlockNamePrinter(To)
 
                      << "\n");
 
 
 
    // Used the discovered edges and inset discovered connecting (incoming)
 
    // edges.
 
    for (const auto &Edge : DiscoveredEdgesToReachable) {
 
      LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
 
                        << BlockNamePrinter(Edge.first) << " -> "
 
                        << BlockNamePrinter(Edge.second) << "\n");
 
      InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
 
    }
 
  }
 
 
 
  // Connects nodes that become reachable with an insertion.
 
  static void ComputeUnreachableDominators(
 
      DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
 
      const TreeNodePtr Incoming,
 
      SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
 
          &DiscoveredConnectingEdges) {
 
    assert(!DT.getNode(Root) && "Root must not be reachable");
 
 
 
    // Visit only previously unreachable nodes.
 
    auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
 
                                                                  NodePtr To) {
 
      const TreeNodePtr ToTN = DT.getNode(To);
 
      if (!ToTN) return true;
 
 
 
      DiscoveredConnectingEdges.push_back({From, ToTN});
 
      return false;
 
    };
 
 
 
    SemiNCAInfo SNCA(BUI);
 
    SNCA.runDFS(Root, 0, UnreachableDescender, 0);
 
    SNCA.runSemiNCA(DT);
 
    SNCA.attachNewSubtree(DT, Incoming);
 
 
 
    LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
 
  }
 
 
 
  static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                         const NodePtr From, const NodePtr To) {
 
    assert(From && To && "Cannot disconnect nullptrs");
 
    LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
 
                      << BlockNamePrinter(To) << "\n");
 
 
 
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    // Ensure that the edge was in fact deleted from the CFG before informing
 
    // the DomTree about it.
 
    // The check is O(N), so run it only in debug configuration.
 
    auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
 
      auto Successors = getChildren<IsPostDom>(Of, BUI);
 
      return llvm::is_contained(Successors, SuccCandidate);
 
    };
 
    (void)IsSuccessor;
 
    assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
 
#endif
 
 
 
    const TreeNodePtr FromTN = DT.getNode(From);
 
    // Deletion in an unreachable subtree -- nothing to do.
 
    if (!FromTN) return;
 
 
 
    const TreeNodePtr ToTN = DT.getNode(To);
 
    if (!ToTN) {
 
      LLVM_DEBUG(
 
          dbgs() << "\tTo (" << BlockNamePrinter(To)
 
                 << ") already unreachable -- there is no edge to delete\n");
 
      return;
 
    }
 
 
 
    const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
 
    const TreeNodePtr NCD = DT.getNode(NCDBlock);
 
 
 
    // If To dominates From -- nothing to do.
 
    if (ToTN != NCD) {
 
      DT.DFSInfoValid = false;
 
 
 
      const TreeNodePtr ToIDom = ToTN->getIDom();
 
      LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
 
                        << BlockNamePrinter(ToIDom) << "\n");
 
 
 
      // To remains reachable after deletion.
 
      // (Based on the caption under Figure 4. from [2].)
 
      if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
 
        DeleteReachable(DT, BUI, FromTN, ToTN);
 
      else
 
        DeleteUnreachable(DT, BUI, ToTN);
 
    }
 
 
 
    if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
 
  }
 
 
 
  // Handles deletions that leave destination nodes reachable.
 
  static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                              const TreeNodePtr FromTN,
 
                              const TreeNodePtr ToTN) {
 
    LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
 
                      << " -> " << BlockNamePrinter(ToTN) << "\n");
 
    LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
 
 
 
    // Find the top of the subtree that needs to be rebuilt.
 
    // (Based on the lemma 2.6 from [2].)
 
    const NodePtr ToIDom =
 
        DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
 
    assert(ToIDom || DT.isPostDominator());
 
    const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
 
    assert(ToIDomTN);
 
    const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
 
    // Top of the subtree to rebuild is the root node. Rebuild the tree from
 
    // scratch.
 
    if (!PrevIDomSubTree) {
 
      LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
 
      CalculateFromScratch(DT, BUI);
 
      return;
 
    }
 
 
 
    // Only visit nodes in the subtree starting at To.
 
    const unsigned Level = ToIDomTN->getLevel();
 
    auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
 
      return DT.getNode(To)->getLevel() > Level;
 
    };
 
 
 
    LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
 
                      << "\n");
 
 
 
    SemiNCAInfo SNCA(BUI);
 
    SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
 
    LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
 
    SNCA.runSemiNCA(DT, Level);
 
    SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
 
  }
 
 
 
  // Checks if a node has proper support, as defined on the page 3 and later
 
  // explained on the page 7 of [2].
 
  static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                               const TreeNodePtr TN) {
 
    LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
 
                      << "\n");
 
    auto TNB = TN->getBlock();
 
    for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
 
      LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
 
      if (!DT.getNode(Pred)) continue;
 
 
 
      const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
 
      LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
 
      if (Support != TNB) {
 
        LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
 
                          << " is reachable from support "
 
                          << BlockNamePrinter(Support) << "\n");
 
        return true;
 
      }
 
    }
 
 
 
    return false;
 
  }
 
 
 
  // Handle deletions that make destination node unreachable.
 
  // (Based on the lemma 2.7 from the [2].)
 
  static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
 
                                const TreeNodePtr ToTN) {
 
    LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
 
                      << BlockNamePrinter(ToTN) << "\n");
 
    assert(ToTN);
 
    assert(ToTN->getBlock());
 
 
 
    if (IsPostDom) {
 
      // Deletion makes a region reverse-unreachable and creates a new root.
 
      // Simulate that by inserting an edge from the virtual root to ToTN and
 
      // adding it as a new root.
 
      LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
 
      LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
 
                        << "\n");
 
      DT.Roots.push_back(ToTN->getBlock());
 
      InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
 
      return;
 
    }
 
 
 
    SmallVector<NodePtr, 16> AffectedQueue;
 
    const unsigned Level = ToTN->getLevel();
 
 
 
    // Traverse destination node's descendants with greater level in the tree
 
    // and collect visited nodes.
 
    auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
 
      const TreeNodePtr TN = DT.getNode(To);
 
      assert(TN);
 
      if (TN->getLevel() > Level) return true;
 
      if (!llvm::is_contained(AffectedQueue, To))
 
        AffectedQueue.push_back(To);
 
 
 
      return false;
 
    };
 
 
 
    SemiNCAInfo SNCA(BUI);
 
    unsigned LastDFSNum =
 
        SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
 
 
 
    TreeNodePtr MinNode = ToTN;
 
 
 
    // Identify the top of the subtree to rebuild by finding the NCD of all
 
    // the affected nodes.
 
    for (const NodePtr N : AffectedQueue) {
 
      const TreeNodePtr TN = DT.getNode(N);
 
      const NodePtr NCDBlock =
 
          DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
 
      assert(NCDBlock || DT.isPostDominator());
 
      const TreeNodePtr NCD = DT.getNode(NCDBlock);
 
      assert(NCD);
 
 
 
      LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
 
                        << " with NCD = " << BlockNamePrinter(NCD)
 
                        << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
 
      if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
 
    }
 
 
 
    // Root reached, rebuild the whole tree from scratch.
 
    if (!MinNode->getIDom()) {
 
      LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
 
      CalculateFromScratch(DT, BUI);
 
      return;
 
    }
 
 
 
    // Erase the unreachable subtree in reverse preorder to process all children
 
    // before deleting their parent.
 
    for (unsigned i = LastDFSNum; i > 0; --i) {
 
      const NodePtr N = SNCA.NumToNode[i];
 
      const TreeNodePtr TN = DT.getNode(N);
 
      LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
 
 
 
      EraseNode(DT, TN);
 
    }
 
 
 
    // The affected subtree start at the To node -- there's no extra work to do.
 
    if (MinNode == ToTN) return;
 
 
 
    LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
 
                      << BlockNamePrinter(MinNode) << "\n");
 
    const unsigned MinLevel = MinNode->getLevel();
 
    const TreeNodePtr PrevIDom = MinNode->getIDom();
 
    assert(PrevIDom);
 
    SNCA.clear();
 
 
 
    // Identify nodes that remain in the affected subtree.
 
    auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
 
      const TreeNodePtr ToTN = DT.getNode(To);
 
      return ToTN && ToTN->getLevel() > MinLevel;
 
    };
 
    SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
 
 
 
    LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
 
                      << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
 
 
 
    // Rebuild the remaining part of affected subtree.
 
    SNCA.runSemiNCA(DT, MinLevel);
 
    SNCA.reattachExistingSubtree(DT, PrevIDom);
 
  }
 
 
 
  // Removes leaf tree nodes from the dominator tree.
 
  static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
 
    assert(TN);
 
    assert(TN->getNumChildren() == 0 && "Not a tree leaf");
 
 
 
    const TreeNodePtr IDom = TN->getIDom();
 
    assert(IDom);
 
 
 
    auto ChIt = llvm::find(IDom->Children, TN);
 
    assert(ChIt != IDom->Children.end());
 
    std::swap(*ChIt, IDom->Children.back());
 
    IDom->Children.pop_back();
 
 
 
    DT.DomTreeNodes.erase(TN->getBlock());
 
  }
 
 
 
  //~~
 
  //===--------------------- DomTree Batch Updater --------------------------===
 
  //~~
 
 
 
  static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
 
                           GraphDiffT *PostViewCFG) {
 
    // Note: the PostViewCFG is only used when computing from scratch. It's data
 
    // should already included in the PreViewCFG for incremental updates.
 
    const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
 
    if (NumUpdates == 0)
 
      return;
 
 
 
    // Take the fast path for a single update and avoid running the batch update
 
    // machinery.
 
    if (NumUpdates == 1) {
 
      UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
 
      if (!PostViewCFG) {
 
        if (Update.getKind() == UpdateKind::Insert)
 
          InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
 
        else
 
          DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
 
      } else {
 
        BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
 
        if (Update.getKind() == UpdateKind::Insert)
 
          InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
 
        else
 
          DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
 
      }
 
      return;
 
    }
 
 
 
    BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
 
    // Recalculate the DominatorTree when the number of updates
 
    // exceeds a threshold, which usually makes direct updating slower than
 
    // recalculation. We select this threshold proportional to the
 
    // size of the DominatorTree. The constant is selected
 
    // by choosing the one with an acceptable performance on some real-world
 
    // inputs.
 
 
 
    // Make unittests of the incremental algorithm work
 
    if (DT.DomTreeNodes.size() <= 100) {
 
      if (BUI.NumLegalized > DT.DomTreeNodes.size())
 
        CalculateFromScratch(DT, &BUI);
 
    } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
 
      CalculateFromScratch(DT, &BUI);
 
 
 
    // If the DominatorTree was recalculated at some point, stop the batch
 
    // updates. Full recalculations ignore batch updates and look at the actual
 
    // CFG.
 
    for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
 
      ApplyNextUpdate(DT, BUI);
 
  }
 
 
 
  static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
 
    // Popping the next update, will move the PreViewCFG to the next snapshot.
 
    UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
 
#if 0
 
    // FIXME: The LLVM_DEBUG macro only plays well with a modular
 
    // build of LLVM when the header is marked as textual, but doing
 
    // so causes redefinition errors.
 
    LLVM_DEBUG(dbgs() << "Applying update: ");
 
    LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
 
#endif
 
 
 
    if (CurrentUpdate.getKind() == UpdateKind::Insert)
 
      InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
 
    else
 
      DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
 
  }
 
 
 
  //~~
 
  //===--------------- DomTree correctness verification ---------------------===
 
  //~~
 
 
 
  // Check if the tree has correct roots. A DominatorTree always has a single
 
  // root which is the function's entry node. A PostDominatorTree can have
 
  // multiple roots - one for each node with no successors and for infinite
 
  // loops.
 
  // Running time: O(N).
 
  bool verifyRoots(const DomTreeT &DT) {
 
    if (!DT.Parent && !DT.Roots.empty()) {
 
      errs() << "Tree has no parent but has roots!\n";
 
      errs().flush();
 
      return false;
 
    }
 
 
 
    if (!IsPostDom) {
 
      if (DT.Roots.empty()) {
 
        errs() << "Tree doesn't have a root!\n";
 
        errs().flush();
 
        return false;
 
      }
 
 
 
      if (DT.getRoot() != GetEntryNode(DT)) {
 
        errs() << "Tree's root is not its parent's entry node!\n";
 
        errs().flush();
 
        return false;
 
      }
 
    }
 
 
 
    RootsT ComputedRoots = FindRoots(DT, nullptr);
 
    if (!isPermutation(DT.Roots, ComputedRoots)) {
 
      errs() << "Tree has different roots than freshly computed ones!\n";
 
      errs() << "\tPDT roots: ";
 
      for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
 
      errs() << "\n\tComputed roots: ";
 
      for (const NodePtr N : ComputedRoots)
 
        errs() << BlockNamePrinter(N) << ", ";
 
      errs() << "\n";
 
      errs().flush();
 
      return false;
 
    }
 
 
 
    return true;
 
  }
 
 
 
  // Checks if the tree contains all reachable nodes in the input graph.
 
  // Running time: O(N).
 
  bool verifyReachability(const DomTreeT &DT) {
 
    clear();
 
    doFullDFSWalk(DT, AlwaysDescend);
 
 
 
    for (auto &NodeToTN : DT.DomTreeNodes) {
 
      const TreeNodePtr TN = NodeToTN.second.get();
 
      const NodePtr BB = TN->getBlock();
 
 
 
      // Virtual root has a corresponding virtual CFG node.
 
      if (DT.isVirtualRoot(TN)) continue;
 
 
 
      if (NodeToInfo.count(BB) == 0) {
 
        errs() << "DomTree node " << BlockNamePrinter(BB)
 
               << " not found by DFS walk!\n";
 
        errs().flush();
 
 
 
        return false;
 
      }
 
    }
 
 
 
    for (const NodePtr N : NumToNode) {
 
      if (N && !DT.getNode(N)) {
 
        errs() << "CFG node " << BlockNamePrinter(N)
 
               << " not found in the DomTree!\n";
 
        errs().flush();
 
 
 
        return false;
 
      }
 
    }
 
 
 
    return true;
 
  }
 
 
 
  // Check if for every parent with a level L in the tree all of its children
 
  // have level L + 1.
 
  // Running time: O(N).
 
  static bool VerifyLevels(const DomTreeT &DT) {
 
    for (auto &NodeToTN : DT.DomTreeNodes) {
 
      const TreeNodePtr TN = NodeToTN.second.get();
 
      const NodePtr BB = TN->getBlock();
 
      if (!BB) continue;
 
 
 
      const TreeNodePtr IDom = TN->getIDom();
 
      if (!IDom && TN->getLevel() != 0) {
 
        errs() << "Node without an IDom " << BlockNamePrinter(BB)
 
               << " has a nonzero level " << TN->getLevel() << "!\n";
 
        errs().flush();
 
 
 
        return false;
 
      }
 
 
 
      if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
 
        errs() << "Node " << BlockNamePrinter(BB) << " has level "
 
               << TN->getLevel() << " while its IDom "
 
               << BlockNamePrinter(IDom->getBlock()) << " has level "
 
               << IDom->getLevel() << "!\n";
 
        errs().flush();
 
 
 
        return false;
 
      }
 
    }
 
 
 
    return true;
 
  }
 
 
 
  // Check if the computed DFS numbers are correct. Note that DFS info may not
 
  // be valid, and when that is the case, we don't verify the numbers.
 
  // Running time: O(N log(N)).
 
  static bool VerifyDFSNumbers(const DomTreeT &DT) {
 
    if (!DT.DFSInfoValid || !DT.Parent)
 
      return true;
 
 
 
    const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
 
    const TreeNodePtr Root = DT.getNode(RootBB);
 
 
 
    auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
 
      errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
 
             << TN->getDFSNumOut() << '}';
 
    };
 
 
 
    // Verify the root's DFS In number. Although DFS numbering would also work
 
    // if we started from some other value, we assume 0-based numbering.
 
    if (Root->getDFSNumIn() != 0) {
 
      errs() << "DFSIn number for the tree root is not:\n\t";
 
      PrintNodeAndDFSNums(Root);
 
      errs() << '\n';
 
      errs().flush();
 
      return false;
 
    }
 
 
 
    // For each tree node verify if children's DFS numbers cover their parent's
 
    // DFS numbers with no gaps.
 
    for (const auto &NodeToTN : DT.DomTreeNodes) {
 
      const TreeNodePtr Node = NodeToTN.second.get();
 
 
 
      // Handle tree leaves.
 
      if (Node->isLeaf()) {
 
        if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
 
          errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
 
          PrintNodeAndDFSNums(Node);
 
          errs() << '\n';
 
          errs().flush();
 
          return false;
 
        }
 
 
 
        continue;
 
      }
 
 
 
      // Make a copy and sort it such that it is possible to check if there are
 
      // no gaps between DFS numbers of adjacent children.
 
      SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
 
      llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
 
        return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
 
      });
 
 
 
      auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
 
          const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
 
        assert(FirstCh);
 
 
 
        errs() << "Incorrect DFS numbers for:\n\tParent ";
 
        PrintNodeAndDFSNums(Node);
 
 
 
        errs() << "\n\tChild ";
 
        PrintNodeAndDFSNums(FirstCh);
 
 
 
        if (SecondCh) {
 
          errs() << "\n\tSecond child ";
 
          PrintNodeAndDFSNums(SecondCh);
 
        }
 
 
 
        errs() << "\nAll children: ";
 
        for (const TreeNodePtr Ch : Children) {
 
          PrintNodeAndDFSNums(Ch);
 
          errs() << ", ";
 
        }
 
 
 
        errs() << '\n';
 
        errs().flush();
 
      };
 
 
 
      if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
 
        PrintChildrenError(Children.front(), nullptr);
 
        return false;
 
      }
 
 
 
      if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
 
        PrintChildrenError(Children.back(), nullptr);
 
        return false;
 
      }
 
 
 
      for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
 
        if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
 
          PrintChildrenError(Children[i], Children[i + 1]);
 
          return false;
 
        }
 
      }
 
    }
 
 
 
    return true;
 
  }
 
 
 
  // The below routines verify the correctness of the dominator tree relative to
 
  // the CFG it's coming from.  A tree is a dominator tree iff it has two
 
  // properties, called the parent property and the sibling property.  Tarjan
 
  // and Lengauer prove (but don't explicitly name) the properties as part of
 
  // the proofs in their 1972 paper, but the proofs are mostly part of proving
 
  // things about semidominators and idoms, and some of them are simply asserted
 
  // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
 
  // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
 
  // directed bipolar orders, and independent spanning trees" by Loukas
 
  // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
 
  // and Vertex-Disjoint Paths " by the same authors.
 
 
 
  // A very simple and direct explanation of these properties can be found in
 
  // "An Experimental Study of Dynamic Dominators", found at
 
  // https://arxiv.org/abs/1604.02711
 
 
 
  // The easiest way to think of the parent property is that it's a requirement
 
  // of being a dominator.  Let's just take immediate dominators.  For PARENT to
 
  // be an immediate dominator of CHILD, all paths in the CFG must go through
 
  // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
 
  // out of the CFG, there should be no paths to CHILD that are reachable.  If
 
  // there are, then you now have a path from PARENT to CHILD that goes around
 
  // PARENT and still reaches CHILD, which by definition, means PARENT can't be
 
  // a dominator of CHILD (let alone an immediate one).
 
 
 
  // The sibling property is similar.  It says that for each pair of sibling
 
  // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
 
  // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
 
  // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
 
  // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
 
  // RIGHT, not a sibling.
 
 
 
  // It is possible to verify the parent and sibling properties in linear time,
 
  // but the algorithms are complex. Instead, we do it in a straightforward
 
  // N^2 and N^3 way below, using direct path reachability.
 
 
 
  // Checks if the tree has the parent property: if for all edges from V to W in
 
  // the input graph, such that V is reachable, the parent of W in the tree is
 
  // an ancestor of V in the tree.
 
  // Running time: O(N^2).
 
  //
 
  // This means that if a node gets disconnected from the graph, then all of
 
  // the nodes it dominated previously will now become unreachable.
 
  bool verifyParentProperty(const DomTreeT &DT) {
 
    for (auto &NodeToTN : DT.DomTreeNodes) {
 
      const TreeNodePtr TN = NodeToTN.second.get();
 
      const NodePtr BB = TN->getBlock();
 
      if (!BB || TN->isLeaf())
 
        continue;
 
 
 
      LLVM_DEBUG(dbgs() << "Verifying parent property of node "
 
                        << BlockNamePrinter(TN) << "\n");
 
      clear();
 
      doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
 
        return From != BB && To != BB;
 
      });
 
 
 
      for (TreeNodePtr Child : TN->children())
 
        if (NodeToInfo.count(Child->getBlock()) != 0) {
 
          errs() << "Child " << BlockNamePrinter(Child)
 
                 << " reachable after its parent " << BlockNamePrinter(BB)
 
                 << " is removed!\n";
 
          errs().flush();
 
 
 
          return false;
 
        }
 
    }
 
 
 
    return true;
 
  }
 
 
 
  // Check if the tree has sibling property: if a node V does not dominate a
 
  // node W for all siblings V and W in the tree.
 
  // Running time: O(N^3).
 
  //
 
  // This means that if a node gets disconnected from the graph, then all of its
 
  // siblings will now still be reachable.
 
  bool verifySiblingProperty(const DomTreeT &DT) {
 
    for (auto &NodeToTN : DT.DomTreeNodes) {
 
      const TreeNodePtr TN = NodeToTN.second.get();
 
      const NodePtr BB = TN->getBlock();
 
      if (!BB || TN->isLeaf())
 
        continue;
 
 
 
      for (const TreeNodePtr N : TN->children()) {
 
        clear();
 
        NodePtr BBN = N->getBlock();
 
        doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
 
          return From != BBN && To != BBN;
 
        });
 
 
 
        for (const TreeNodePtr S : TN->children()) {
 
          if (S == N) continue;
 
 
 
          if (NodeToInfo.count(S->getBlock()) == 0) {
 
            errs() << "Node " << BlockNamePrinter(S)
 
                   << " not reachable when its sibling " << BlockNamePrinter(N)
 
                   << " is removed!\n";
 
            errs().flush();
 
 
 
            return false;
 
          }
 
        }
 
      }
 
    }
 
 
 
    return true;
 
  }
 
 
 
  // Check if the given tree is the same as a freshly computed one for the same
 
  // Parent.
 
  // Running time: O(N^2), but faster in practice (same as tree construction).
 
  //
 
  // Note that this does not check if that the tree construction algorithm is
 
  // correct and should be only used for fast (but possibly unsound)
 
  // verification.
 
  static bool IsSameAsFreshTree(const DomTreeT &DT) {
 
    DomTreeT FreshTree;
 
    FreshTree.recalculate(*DT.Parent);
 
    const bool Different = DT.compare(FreshTree);
 
 
 
    if (Different) {
 
      errs() << (DT.isPostDominator() ? "Post" : "")
 
             << "DominatorTree is different than a freshly computed one!\n"
 
             << "\tCurrent:\n";
 
      DT.print(errs());
 
      errs() << "\n\tFreshly computed tree:\n";
 
      FreshTree.print(errs());
 
      errs().flush();
 
    }
 
 
 
    return !Different;
 
  }
 
};
 
 
 
template <class DomTreeT>
 
void Calculate(DomTreeT &DT) {
 
  SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
 
}
 
 
 
template <typename DomTreeT>
 
void CalculateWithUpdates(DomTreeT &DT,
 
                          ArrayRef<typename DomTreeT::UpdateType> Updates) {
 
  // FIXME: Updated to use the PreViewCFG and behave the same as until now.
 
  // This behavior is however incorrect; this actually needs the PostViewCFG.
 
  GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
 
      Updates, /*ReverseApplyUpdates=*/true);
 
  typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
 
  SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
 
}
 
 
 
template <class DomTreeT>
 
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
 
                typename DomTreeT::NodePtr To) {
 
  if (DT.isPostDominator()) std::swap(From, To);
 
  SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
 
}
 
 
 
template <class DomTreeT>
 
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
 
                typename DomTreeT::NodePtr To) {
 
  if (DT.isPostDominator()) std::swap(From, To);
 
  SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
 
}
 
 
 
template <class DomTreeT>
 
void ApplyUpdates(DomTreeT &DT,
 
                  GraphDiff<typename DomTreeT::NodePtr,
 
                            DomTreeT::IsPostDominator> &PreViewCFG,
 
                  GraphDiff<typename DomTreeT::NodePtr,
 
                            DomTreeT::IsPostDominator> *PostViewCFG) {
 
  SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
 
}
 
 
 
template <class DomTreeT>
 
bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
 
  SemiNCAInfo<DomTreeT> SNCA(nullptr);
 
 
 
  // Simplist check is to compare against a new tree. This will also
 
  // usefully print the old and new trees, if they are different.
 
  if (!SNCA.IsSameAsFreshTree(DT))
 
    return false;
 
 
 
  // Common checks to verify the properties of the tree. O(N log N) at worst.
 
  if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
 
      !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
 
    return false;
 
 
 
  // Extra checks depending on VerificationLevel. Up to O(N^3).
 
  if (VL == DomTreeT::VerificationLevel::Basic ||
 
      VL == DomTreeT::VerificationLevel::Full)
 
    if (!SNCA.verifyParentProperty(DT))
 
      return false;
 
  if (VL == DomTreeT::VerificationLevel::Full)
 
    if (!SNCA.verifySiblingProperty(DT))
 
      return false;
 
 
 
  return true;
 
}
 
 
 
}  // namespace DomTreeBuilder
 
}  // namespace llvm
 
 
 
#undef DEBUG_TYPE
 
 
 
#endif