Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. /// \file
  9. ///
  10. /// Generic dominator tree construction - this file provides routines to
  11. /// construct immediate dominator information for a flow-graph based on the
  12. /// Semi-NCA algorithm described in this dissertation:
  13. ///
  14. ///   [1] Linear-Time Algorithms for Dominators and Related Problems
  15. ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
  16. ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
  17. ///
  18. /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
  19. /// faster than Simple Lengauer-Tarjan in practice.
  20. ///
  21. /// O(n^2) worst cases happen when the computation of nearest common ancestors
  22. /// requires O(n) average time, which is very unlikely in real world. If this
  23. /// ever turns out to be an issue, consider implementing a hybrid algorithm
  24. /// that uses SLT to perform full constructions and SemiNCA for incremental
  25. /// updates.
  26. ///
  27. /// The file uses the Depth Based Search algorithm to perform incremental
  28. /// updates (insertion and deletions). The implemented algorithm is based on
  29. /// this publication:
  30. ///
  31. ///   [2] An Experimental Study of Dynamic Dominators
  32. ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
  33. ///   https://arxiv.org/pdf/1604.02711.pdf
  34. ///
  35. //===----------------------------------------------------------------------===//
  36.  
  37. #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
  38. #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
  39.  
  40. #include "llvm/ADT/ArrayRef.h"
  41. #include "llvm/ADT/DenseSet.h"
  42. #include "llvm/ADT/DepthFirstIterator.h"
  43. #include "llvm/ADT/PointerIntPair.h"
  44. #include "llvm/ADT/SmallPtrSet.h"
  45. #include "llvm/Support/Debug.h"
  46. #include "llvm/Support/GenericDomTree.h"
  47. #include <optional>
  48. #include <queue>
  49.  
  50. #define DEBUG_TYPE "dom-tree-builder"
  51.  
  52. namespace llvm {
  53. namespace DomTreeBuilder {
  54.  
  55. template <typename DomTreeT>
  56. struct SemiNCAInfo {
  57.   using NodePtr = typename DomTreeT::NodePtr;
  58.   using NodeT = typename DomTreeT::NodeType;
  59.   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
  60.   using RootsT = decltype(DomTreeT::Roots);
  61.   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
  62.   using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
  63.  
  64.   // Information record used by Semi-NCA during tree construction.
  65.   struct InfoRec {
  66.     unsigned DFSNum = 0;
  67.     unsigned Parent = 0;
  68.     unsigned Semi = 0;
  69.     NodePtr Label = nullptr;
  70.     NodePtr IDom = nullptr;
  71.     SmallVector<NodePtr, 2> ReverseChildren;
  72.   };
  73.  
  74.   // Number to node mapping is 1-based. Initialize the mapping to start with
  75.   // a dummy element.
  76.   std::vector<NodePtr> NumToNode = {nullptr};
  77.   DenseMap<NodePtr, InfoRec> NodeToInfo;
  78.  
  79.   using UpdateT = typename DomTreeT::UpdateType;
  80.   using UpdateKind = typename DomTreeT::UpdateKind;
  81.   struct BatchUpdateInfo {
  82.     // Note: Updates inside PreViewCFG are already legalized.
  83.     BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
  84.         : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
  85.           NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
  86.  
  87.     // Remembers if the whole tree was recalculated at some point during the
  88.     // current batch update.
  89.     bool IsRecalculated = false;
  90.     GraphDiffT &PreViewCFG;
  91.     GraphDiffT *PostViewCFG;
  92.     const size_t NumLegalized;
  93.   };
  94.  
  95.   BatchUpdateInfo *BatchUpdates;
  96.   using BatchUpdatePtr = BatchUpdateInfo *;
  97.  
  98.   // If BUI is a nullptr, then there's no batch update in progress.
  99.   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
  100.  
  101.   void clear() {
  102.     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
  103.     NodeToInfo.clear();
  104.     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
  105.     // in progress, we need this information to continue it.
  106.   }
  107.  
  108.   template <bool Inversed>
  109.   static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
  110.     if (BUI)
  111.       return BUI->PreViewCFG.template getChildren<Inversed>(N);
  112.     return getChildren<Inversed>(N);
  113.   }
  114.  
  115.   template <bool Inversed>
  116.   static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
  117.     using DirectedNodeT =
  118.         std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
  119.     auto R = children<DirectedNodeT>(N);
  120.     SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
  121.  
  122.     // Remove nullptr children for clang.
  123.     llvm::erase_value(Res, nullptr);
  124.     return Res;
  125.   }
  126.  
  127.   NodePtr getIDom(NodePtr BB) const {
  128.     auto InfoIt = NodeToInfo.find(BB);
  129.     if (InfoIt == NodeToInfo.end()) return nullptr;
  130.  
  131.     return InfoIt->second.IDom;
  132.   }
  133.  
  134.   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
  135.     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
  136.  
  137.     // Haven't calculated this node yet?  Get or calculate the node for the
  138.     // immediate dominator.
  139.     NodePtr IDom = getIDom(BB);
  140.  
  141.     assert(IDom || DT.DomTreeNodes[nullptr]);
  142.     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
  143.  
  144.     // Add a new tree node for this NodeT, and link it as a child of
  145.     // IDomNode
  146.     return DT.createChild(BB, IDomNode);
  147.   }
  148.  
  149.   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
  150.  
  151.   struct BlockNamePrinter {
  152.     NodePtr N;
  153.  
  154.     BlockNamePrinter(NodePtr Block) : N(Block) {}
  155.     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
  156.  
  157.     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
  158.       if (!BP.N)
  159.         O << "nullptr";
  160.       else
  161.         BP.N->printAsOperand(O, false);
  162.  
  163.       return O;
  164.     }
  165.   };
  166.  
  167.   using NodeOrderMap = DenseMap<NodePtr, unsigned>;
  168.  
  169.   // Custom DFS implementation which can skip nodes based on a provided
  170.   // predicate. It also collects ReverseChildren so that we don't have to spend
  171.   // time getting predecessors in SemiNCA.
  172.   //
  173.   // If IsReverse is set to true, the DFS walk will be performed backwards
  174.   // relative to IsPostDom -- using reverse edges for dominators and forward
  175.   // edges for postdominators.
  176.   //
  177.   // If SuccOrder is specified then in this order the DFS traverses the children
  178.   // otherwise the order is implied by the results of getChildren().
  179.   template <bool IsReverse = false, typename DescendCondition>
  180.   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
  181.                   unsigned AttachToNum,
  182.                   const NodeOrderMap *SuccOrder = nullptr) {
  183.     assert(V);
  184.     SmallVector<NodePtr, 64> WorkList = {V};
  185.     if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
  186.  
  187.     while (!WorkList.empty()) {
  188.       const NodePtr BB = WorkList.pop_back_val();
  189.       auto &BBInfo = NodeToInfo[BB];
  190.  
  191.       // Visited nodes always have positive DFS numbers.
  192.       if (BBInfo.DFSNum != 0) continue;
  193.       BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
  194.       BBInfo.Label = BB;
  195.       NumToNode.push_back(BB);
  196.  
  197.       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
  198.       auto Successors = getChildren<Direction>(BB, BatchUpdates);
  199.       if (SuccOrder && Successors.size() > 1)
  200.         llvm::sort(
  201.             Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
  202.               return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
  203.             });
  204.  
  205.       for (const NodePtr Succ : Successors) {
  206.         const auto SIT = NodeToInfo.find(Succ);
  207.         // Don't visit nodes more than once but remember to collect
  208.         // ReverseChildren.
  209.         if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
  210.           if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
  211.           continue;
  212.         }
  213.  
  214.         if (!Condition(BB, Succ)) continue;
  215.  
  216.         // It's fine to add Succ to the map, because we know that it will be
  217.         // visited later.
  218.         auto &SuccInfo = NodeToInfo[Succ];
  219.         WorkList.push_back(Succ);
  220.         SuccInfo.Parent = LastNum;
  221.         SuccInfo.ReverseChildren.push_back(BB);
  222.       }
  223.     }
  224.  
  225.     return LastNum;
  226.   }
  227.  
  228.   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
  229.   // of sdom(U), where U > W and there is a virtual forest path from U to V. The
  230.   // virtual forest consists of linked edges of processed vertices.
  231.   //
  232.   // We can follow Parent pointers (virtual forest edges) to determine the
  233.   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
  234.   // compression technique to speed up to O(m*log(n)). Theoretically the virtual
  235.   // forest can be organized as balanced trees to achieve almost linear
  236.   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
  237.   // and Child) and is unlikely to be faster than the simple implementation.
  238.   //
  239.   // For each vertex V, its Label points to the vertex with the minimal sdom(U)
  240.   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
  241.   NodePtr eval(NodePtr V, unsigned LastLinked,
  242.                SmallVectorImpl<InfoRec *> &Stack) {
  243.     InfoRec *VInfo = &NodeToInfo[V];
  244.     if (VInfo->Parent < LastLinked)
  245.       return VInfo->Label;
  246.  
  247.     // Store ancestors except the last (root of a virtual tree) into a stack.
  248.     assert(Stack.empty());
  249.     do {
  250.       Stack.push_back(VInfo);
  251.       VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
  252.     } while (VInfo->Parent >= LastLinked);
  253.  
  254.     // Path compression. Point each vertex's Parent to the root and update its
  255.     // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
  256.     const InfoRec *PInfo = VInfo;
  257.     const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
  258.     do {
  259.       VInfo = Stack.pop_back_val();
  260.       VInfo->Parent = PInfo->Parent;
  261.       const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
  262.       if (PLabelInfo->Semi < VLabelInfo->Semi)
  263.         VInfo->Label = PInfo->Label;
  264.       else
  265.         PLabelInfo = VLabelInfo;
  266.       PInfo = VInfo;
  267.     } while (!Stack.empty());
  268.     return VInfo->Label;
  269.   }
  270.  
  271.   // This function requires DFS to be run before calling it.
  272.   void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
  273.     const unsigned NextDFSNum(NumToNode.size());
  274.     // Initialize IDoms to spanning tree parents.
  275.     for (unsigned i = 1; i < NextDFSNum; ++i) {
  276.       const NodePtr V = NumToNode[i];
  277.       auto &VInfo = NodeToInfo[V];
  278.       VInfo.IDom = NumToNode[VInfo.Parent];
  279.     }
  280.  
  281.     // Step #1: Calculate the semidominators of all vertices.
  282.     SmallVector<InfoRec *, 32> EvalStack;
  283.     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
  284.       NodePtr W = NumToNode[i];
  285.       auto &WInfo = NodeToInfo[W];
  286.  
  287.       // Initialize the semi dominator to point to the parent node.
  288.       WInfo.Semi = WInfo.Parent;
  289.       for (const auto &N : WInfo.ReverseChildren) {
  290.         if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
  291.           continue;
  292.  
  293.         const TreeNodePtr TN = DT.getNode(N);
  294.         // Skip predecessors whose level is above the subtree we are processing.
  295.         if (TN && TN->getLevel() < MinLevel)
  296.           continue;
  297.  
  298.         unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
  299.         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
  300.       }
  301.     }
  302.  
  303.     // Step #2: Explicitly define the immediate dominator of each vertex.
  304.     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
  305.     // Note that the parents were stored in IDoms and later got invalidated
  306.     // during path compression in Eval.
  307.     for (unsigned i = 2; i < NextDFSNum; ++i) {
  308.       const NodePtr W = NumToNode[i];
  309.       auto &WInfo = NodeToInfo[W];
  310.       const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
  311.       NodePtr WIDomCandidate = WInfo.IDom;
  312.       while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
  313.         WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
  314.  
  315.       WInfo.IDom = WIDomCandidate;
  316.     }
  317.   }
  318.  
  319.   // PostDominatorTree always has a virtual root that represents a virtual CFG
  320.   // node that serves as a single exit from the function. All the other exits
  321.   // (CFG nodes with terminators and nodes in infinite loops are logically
  322.   // connected to this virtual CFG exit node).
  323.   // This functions maps a nullptr CFG node to the virtual root tree node.
  324.   void addVirtualRoot() {
  325.     assert(IsPostDom && "Only postdominators have a virtual root");
  326.     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
  327.  
  328.     auto &BBInfo = NodeToInfo[nullptr];
  329.     BBInfo.DFSNum = BBInfo.Semi = 1;
  330.     BBInfo.Label = nullptr;
  331.  
  332.     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
  333.   }
  334.  
  335.   // For postdominators, nodes with no forward successors are trivial roots that
  336.   // are always selected as tree roots. Roots with forward successors correspond
  337.   // to CFG nodes within infinite loops.
  338.   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
  339.     assert(N && "N must be a valid node");
  340.     return !getChildren<false>(N, BUI).empty();
  341.   }
  342.  
  343.   static NodePtr GetEntryNode(const DomTreeT &DT) {
  344.     assert(DT.Parent && "Parent not set");
  345.     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
  346.   }
  347.  
  348.   // Finds all roots without relaying on the set of roots already stored in the
  349.   // tree.
  350.   // We define roots to be some non-redundant set of the CFG nodes
  351.   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
  352.     assert(DT.Parent && "Parent pointer is not set");
  353.     RootsT Roots;
  354.  
  355.     // For dominators, function entry CFG node is always a tree root node.
  356.     if (!IsPostDom) {
  357.       Roots.push_back(GetEntryNode(DT));
  358.       return Roots;
  359.     }
  360.  
  361.     SemiNCAInfo SNCA(BUI);
  362.  
  363.     // PostDominatorTree always has a virtual root.
  364.     SNCA.addVirtualRoot();
  365.     unsigned Num = 1;
  366.  
  367.     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
  368.  
  369.     // Step #1: Find all the trivial roots that are going to will definitely
  370.     // remain tree roots.
  371.     unsigned Total = 0;
  372.     // It may happen that there are some new nodes in the CFG that are result of
  373.     // the ongoing batch update, but we cannot really pretend that they don't
  374.     // exist -- we won't see any outgoing or incoming edges to them, so it's
  375.     // fine to discover them here, as they would end up appearing in the CFG at
  376.     // some point anyway.
  377.     for (const NodePtr N : nodes(DT.Parent)) {
  378.       ++Total;
  379.       // If it has no *successors*, it is definitely a root.
  380.       if (!HasForwardSuccessors(N, BUI)) {
  381.         Roots.push_back(N);
  382.         // Run DFS not to walk this part of CFG later.
  383.         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
  384.         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
  385.                           << "\n");
  386.         LLVM_DEBUG(dbgs() << "Last visited node: "
  387.                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
  388.       }
  389.     }
  390.  
  391.     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
  392.  
  393.     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
  394.     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
  395.     // nodes in infinite loops).
  396.     bool HasNonTrivialRoots = false;
  397.     // Accounting for the virtual exit, see if we had any reverse-unreachable
  398.     // nodes.
  399.     if (Total + 1 != Num) {
  400.       HasNonTrivialRoots = true;
  401.  
  402.       // SuccOrder is the order of blocks in the function. It is needed to make
  403.       // the calculation of the FurthestAway node and the whole PostDomTree
  404.       // immune to swap successors transformation (e.g. canonicalizing branch
  405.       // predicates). SuccOrder is initialized lazily only for successors of
  406.       // reverse unreachable nodes.
  407.       std::optional<NodeOrderMap> SuccOrder;
  408.       auto InitSuccOrderOnce = [&]() {
  409.         SuccOrder = NodeOrderMap();
  410.         for (const auto Node : nodes(DT.Parent))
  411.           if (SNCA.NodeToInfo.count(Node) == 0)
  412.             for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
  413.               SuccOrder->try_emplace(Succ, 0);
  414.  
  415.         // Add mapping for all entries of SuccOrder.
  416.         unsigned NodeNum = 0;
  417.         for (const auto Node : nodes(DT.Parent)) {
  418.           ++NodeNum;
  419.           auto Order = SuccOrder->find(Node);
  420.           if (Order != SuccOrder->end()) {
  421.             assert(Order->second == 0);
  422.             Order->second = NodeNum;
  423.           }
  424.         }
  425.       };
  426.  
  427.       // Make another DFS pass over all other nodes to find the
  428.       // reverse-unreachable blocks, and find the furthest paths we'll be able
  429.       // to make.
  430.       // Note that this looks N^2, but it's really 2N worst case, if every node
  431.       // is unreachable. This is because we are still going to only visit each
  432.       // unreachable node once, we may just visit it in two directions,
  433.       // depending on how lucky we get.
  434.       for (const NodePtr I : nodes(DT.Parent)) {
  435.         if (SNCA.NodeToInfo.count(I) == 0) {
  436.           LLVM_DEBUG(dbgs()
  437.                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
  438.           // Find the furthest away we can get by following successors, then
  439.           // follow them in reverse.  This gives us some reasonable answer about
  440.           // the post-dom tree inside any infinite loop. In particular, it
  441.           // guarantees we get to the farthest away point along *some*
  442.           // path. This also matches the GCC's behavior.
  443.           // If we really wanted a totally complete picture of dominance inside
  444.           // this infinite loop, we could do it with SCC-like algorithms to find
  445.           // the lowest and highest points in the infinite loop.  In theory, it
  446.           // would be nice to give the canonical backedge for the loop, but it's
  447.           // expensive and does not always lead to a minimal set of roots.
  448.           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
  449.  
  450.           if (!SuccOrder)
  451.             InitSuccOrderOnce();
  452.           assert(SuccOrder);
  453.  
  454.           const unsigned NewNum =
  455.               SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
  456.           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
  457.           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
  458.                             << "(non-trivial root): "
  459.                             << BlockNamePrinter(FurthestAway) << "\n");
  460.           Roots.push_back(FurthestAway);
  461.           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
  462.                             << NewNum << "\n\t\t\tRemoving DFS info\n");
  463.           for (unsigned i = NewNum; i > Num; --i) {
  464.             const NodePtr N = SNCA.NumToNode[i];
  465.             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
  466.                               << BlockNamePrinter(N) << "\n");
  467.             SNCA.NodeToInfo.erase(N);
  468.             SNCA.NumToNode.pop_back();
  469.           }
  470.           const unsigned PrevNum = Num;
  471.           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
  472.           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
  473.           for (unsigned i = PrevNum + 1; i <= Num; ++i)
  474.             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
  475.                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
  476.         }
  477.       }
  478.     }
  479.  
  480.     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
  481.     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
  482.     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
  483.                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
  484.  
  485.     assert((Total + 1 == Num) && "Everything should have been visited");
  486.  
  487.     // Step #3: If we found some non-trivial roots, make them non-redundant.
  488.     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
  489.  
  490.     LLVM_DEBUG(dbgs() << "Found roots: ");
  491.     LLVM_DEBUG(for (auto *Root
  492.                     : Roots) dbgs()
  493.                << BlockNamePrinter(Root) << " ");
  494.     LLVM_DEBUG(dbgs() << "\n");
  495.  
  496.     return Roots;
  497.   }
  498.  
  499.   // This function only makes sense for postdominators.
  500.   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
  501.   // to start in order to visit all the CFG nodes (including the
  502.   // reverse-unreachable ones).
  503.   // When the search for non-trivial roots is done it may happen that some of
  504.   // the non-trivial roots are reverse-reachable from other non-trivial roots,
  505.   // which makes them redundant. This function removes them from the set of
  506.   // input roots.
  507.   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
  508.                                    RootsT &Roots) {
  509.     assert(IsPostDom && "This function is for postdominators only");
  510.     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
  511.  
  512.     SemiNCAInfo SNCA(BUI);
  513.  
  514.     for (unsigned i = 0; i < Roots.size(); ++i) {
  515.       auto &Root = Roots[i];
  516.       // Trivial roots are always non-redundant.
  517.       if (!HasForwardSuccessors(Root, BUI)) continue;
  518.       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
  519.                         << " remains a root\n");
  520.       SNCA.clear();
  521.       // Do a forward walk looking for the other roots.
  522.       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
  523.       // Skip the start node and begin from the second one (note that DFS uses
  524.       // 1-based indexing).
  525.       for (unsigned x = 2; x <= Num; ++x) {
  526.         const NodePtr N = SNCA.NumToNode[x];
  527.         // If we wound another root in a (forward) DFS walk, remove the current
  528.         // root from the set of roots, as it is reverse-reachable from the other
  529.         // one.
  530.         if (llvm::is_contained(Roots, N)) {
  531.           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
  532.                             << BlockNamePrinter(N) << "\n\tRemoving root "
  533.                             << BlockNamePrinter(Root) << "\n");
  534.           std::swap(Root, Roots.back());
  535.           Roots.pop_back();
  536.  
  537.           // Root at the back takes the current root's place.
  538.           // Start the next loop iteration with the same index.
  539.           --i;
  540.           break;
  541.         }
  542.       }
  543.     }
  544.   }
  545.  
  546.   template <typename DescendCondition>
  547.   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
  548.     if (!IsPostDom) {
  549.       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
  550.       runDFS(DT.Roots[0], 0, DC, 0);
  551.       return;
  552.     }
  553.  
  554.     addVirtualRoot();
  555.     unsigned Num = 1;
  556.     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
  557.   }
  558.  
  559.   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
  560.     auto *Parent = DT.Parent;
  561.     DT.reset();
  562.     DT.Parent = Parent;
  563.     // If the update is using the actual CFG, BUI is null. If it's using a view,
  564.     // BUI is non-null and the PreCFGView is used. When calculating from
  565.     // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
  566.     BatchUpdatePtr PostViewBUI = nullptr;
  567.     if (BUI && BUI->PostViewCFG) {
  568.       BUI->PreViewCFG = *BUI->PostViewCFG;
  569.       PostViewBUI = BUI;
  570.     }
  571.     // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
  572.     // used in case the caller needs a DT update with a CFGView.
  573.     SemiNCAInfo SNCA(PostViewBUI);
  574.  
  575.     // Step #0: Number blocks in depth-first order and initialize variables used
  576.     // in later stages of the algorithm.
  577.     DT.Roots = FindRoots(DT, PostViewBUI);
  578.     SNCA.doFullDFSWalk(DT, AlwaysDescend);
  579.  
  580.     SNCA.runSemiNCA(DT);
  581.     if (BUI) {
  582.       BUI->IsRecalculated = true;
  583.       LLVM_DEBUG(
  584.           dbgs() << "DomTree recalculated, skipping future batch updates\n");
  585.     }
  586.  
  587.     if (DT.Roots.empty()) return;
  588.  
  589.     // Add a node for the root. If the tree is a PostDominatorTree it will be
  590.     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
  591.     // all real exits (including multiple exit blocks, infinite loops).
  592.     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
  593.  
  594.     DT.RootNode = DT.createNode(Root);
  595.     SNCA.attachNewSubtree(DT, DT.RootNode);
  596.   }
  597.  
  598.   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
  599.     // Attach the first unreachable block to AttachTo.
  600.     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
  601.     // Loop over all of the discovered blocks in the function...
  602.     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
  603.       NodePtr W = NumToNode[i];
  604.  
  605.       // Don't replace this with 'count', the insertion side effect is important
  606.       if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
  607.  
  608.       NodePtr ImmDom = getIDom(W);
  609.  
  610.       // Get or calculate the node for the immediate dominator.
  611.       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
  612.  
  613.       // Add a new tree node for this BasicBlock, and link it as a child of
  614.       // IDomNode.
  615.       DT.createChild(W, IDomNode);
  616.     }
  617.   }
  618.  
  619.   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
  620.     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
  621.     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
  622.       const NodePtr N = NumToNode[i];
  623.       const TreeNodePtr TN = DT.getNode(N);
  624.       assert(TN);
  625.       const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
  626.       TN->setIDom(NewIDom);
  627.     }
  628.   }
  629.  
  630.   // Helper struct used during edge insertions.
  631.   struct InsertionInfo {
  632.     struct Compare {
  633.       bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
  634.         return LHS->getLevel() < RHS->getLevel();
  635.       }
  636.     };
  637.  
  638.     // Bucket queue of tree nodes ordered by descending level. For simplicity,
  639.     // we use a priority_queue here.
  640.     std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
  641.                         Compare>
  642.         Bucket;
  643.     SmallDenseSet<TreeNodePtr, 8> Visited;
  644.     SmallVector<TreeNodePtr, 8> Affected;
  645. #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
  646.     SmallVector<TreeNodePtr, 8> VisitedUnaffected;
  647. #endif
  648.   };
  649.  
  650.   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
  651.                          const NodePtr From, const NodePtr To) {
  652.     assert((From || IsPostDom) &&
  653.            "From has to be a valid CFG node or a virtual root");
  654.     assert(To && "Cannot be a nullptr");
  655.     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
  656.                       << BlockNamePrinter(To) << "\n");
  657.     TreeNodePtr FromTN = DT.getNode(From);
  658.  
  659.     if (!FromTN) {
  660.       // Ignore edges from unreachable nodes for (forward) dominators.
  661.       if (!IsPostDom) return;
  662.  
  663.       // The unreachable node becomes a new root -- a tree node for it.
  664.       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
  665.       FromTN = DT.createChild(From, VirtualRoot);
  666.       DT.Roots.push_back(From);
  667.     }
  668.  
  669.     DT.DFSInfoValid = false;
  670.  
  671.     const TreeNodePtr ToTN = DT.getNode(To);
  672.     if (!ToTN)
  673.       InsertUnreachable(DT, BUI, FromTN, To);
  674.     else
  675.       InsertReachable(DT, BUI, FromTN, ToTN);
  676.   }
  677.  
  678.   // Determines if some existing root becomes reverse-reachable after the
  679.   // insertion. Rebuilds the whole tree if that situation happens.
  680.   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
  681.                                          const TreeNodePtr From,
  682.                                          const TreeNodePtr To) {
  683.     assert(IsPostDom && "This function is only for postdominators");
  684.     // Destination node is not attached to the virtual root, so it cannot be a
  685.     // root.
  686.     if (!DT.isVirtualRoot(To->getIDom())) return false;
  687.  
  688.     if (!llvm::is_contained(DT.Roots, To->getBlock()))
  689.       return false;  // To is not a root, nothing to update.
  690.  
  691.     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
  692.                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
  693.  
  694.     CalculateFromScratch(DT, BUI);
  695.     return true;
  696.   }
  697.  
  698.   static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
  699.                             const SmallVectorImpl<NodePtr> &B) {
  700.     if (A.size() != B.size())
  701.       return false;
  702.     SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
  703.     for (NodePtr N : B)
  704.       if (Set.count(N) == 0)
  705.         return false;
  706.     return true;
  707.   }
  708.  
  709.   // Updates the set of roots after insertion or deletion. This ensures that
  710.   // roots are the same when after a series of updates and when the tree would
  711.   // be built from scratch.
  712.   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
  713.     assert(IsPostDom && "This function is only for postdominators");
  714.  
  715.     // The tree has only trivial roots -- nothing to update.
  716.     if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) {
  717.           return HasForwardSuccessors(N, BUI);
  718.         }))
  719.       return;
  720.  
  721.     // Recalculate the set of roots.
  722.     RootsT Roots = FindRoots(DT, BUI);
  723.     if (!isPermutation(DT.Roots, Roots)) {
  724.       // The roots chosen in the CFG have changed. This is because the
  725.       // incremental algorithm does not really know or use the set of roots and
  726.       // can make a different (implicit) decision about which node within an
  727.       // infinite loop becomes a root.
  728.  
  729.       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
  730.                         << "The entire tree needs to be rebuilt\n");
  731.       // It may be possible to update the tree without recalculating it, but
  732.       // we do not know yet how to do it, and it happens rarely in practice.
  733.       CalculateFromScratch(DT, BUI);
  734.     }
  735.   }
  736.  
  737.   // Handles insertion to a node already in the dominator tree.
  738.   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
  739.                               const TreeNodePtr From, const TreeNodePtr To) {
  740.     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
  741.                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
  742.     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
  743.     // DT.findNCD expects both pointers to be valid. When From is a virtual
  744.     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
  745.     // the NCD manually.
  746.     const NodePtr NCDBlock =
  747.         (From->getBlock() && To->getBlock())
  748.             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
  749.             : nullptr;
  750.     assert(NCDBlock || DT.isPostDominator());
  751.     const TreeNodePtr NCD = DT.getNode(NCDBlock);
  752.     assert(NCD);
  753.  
  754.     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
  755.     const unsigned NCDLevel = NCD->getLevel();
  756.  
  757.     // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
  758.     // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
  759.     // w on P s.t. depth(v) <= depth(w)
  760.     //
  761.     // This reduces to a widest path problem (maximizing the depth of the
  762.     // minimum vertex in the path) which can be solved by a modified version of
  763.     // Dijkstra with a bucket queue (named depth-based search in [2]).
  764.  
  765.     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
  766.     // affected if this does not hold.
  767.     if (NCDLevel + 1 >= To->getLevel())
  768.       return;
  769.  
  770.     InsertionInfo II;
  771.     SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
  772.     II.Bucket.push(To);
  773.     II.Visited.insert(To);
  774.  
  775.     while (!II.Bucket.empty()) {
  776.       TreeNodePtr TN = II.Bucket.top();
  777.       II.Bucket.pop();
  778.       II.Affected.push_back(TN);
  779.  
  780.       const unsigned CurrentLevel = TN->getLevel();
  781.       LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
  782.                  "as affected, CurrentLevel " << CurrentLevel << "\n");
  783.  
  784.       assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
  785.  
  786.       while (true) {
  787.         // Unlike regular Dijkstra, we have an inner loop to expand more
  788.         // vertices. The first iteration is for the (affected) vertex popped
  789.         // from II.Bucket and the rest are for vertices in
  790.         // UnaffectedOnCurrentLevel, which may eventually expand to affected
  791.         // vertices.
  792.         //
  793.         // Invariant: there is an optimal path from `To` to TN with the minimum
  794.         // depth being CurrentLevel.
  795.         for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
  796.           const TreeNodePtr SuccTN = DT.getNode(Succ);
  797.           assert(SuccTN &&
  798.                  "Unreachable successor found at reachable insertion");
  799.           const unsigned SuccLevel = SuccTN->getLevel();
  800.  
  801.           LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
  802.                             << ", level = " << SuccLevel << "\n");
  803.  
  804.           // There is an optimal path from `To` to Succ with the minimum depth
  805.           // being min(CurrentLevel, SuccLevel).
  806.           //
  807.           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
  808.           // and no affected vertex may be reached by a path passing through it.
  809.           // Stop here. Also, Succ may be visited by other predecessors but the
  810.           // first visit has the optimal path. Stop if Succ has been visited.
  811.           if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
  812.             continue;
  813.  
  814.           if (SuccLevel > CurrentLevel) {
  815.             // Succ is unaffected but it may (transitively) expand to affected
  816.             // vertices. Store it in UnaffectedOnCurrentLevel.
  817.             LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
  818.                               << BlockNamePrinter(Succ) << "\n");
  819.             UnaffectedOnCurrentLevel.push_back(SuccTN);
  820. #ifndef NDEBUG
  821.             II.VisitedUnaffected.push_back(SuccTN);
  822. #endif
  823.           } else {
  824.             // The condition is satisfied (Succ is affected). Add Succ to the
  825.             // bucket queue.
  826.             LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
  827.                               << " to a Bucket\n");
  828.             II.Bucket.push(SuccTN);
  829.           }
  830.         }
  831.  
  832.         if (UnaffectedOnCurrentLevel.empty())
  833.           break;
  834.         TN = UnaffectedOnCurrentLevel.pop_back_val();
  835.         LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
  836.       }
  837.     }
  838.  
  839.     // Finish by updating immediate dominators and levels.
  840.     UpdateInsertion(DT, BUI, NCD, II);
  841.   }
  842.  
  843.   // Updates immediate dominators and levels after insertion.
  844.   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
  845.                               const TreeNodePtr NCD, InsertionInfo &II) {
  846.     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
  847.  
  848.     for (const TreeNodePtr TN : II.Affected) {
  849.       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
  850.                         << ") = " << BlockNamePrinter(NCD) << "\n");
  851.       TN->setIDom(NCD);
  852.     }
  853.  
  854. #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG)
  855.     for (const TreeNodePtr TN : II.VisitedUnaffected)
  856.       assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
  857.              "TN should have been updated by an affected ancestor");
  858. #endif
  859.  
  860.     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
  861.   }
  862.  
  863.   // Handles insertion to previously unreachable nodes.
  864.   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
  865.                                 const TreeNodePtr From, const NodePtr To) {
  866.     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
  867.                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
  868.  
  869.     // Collect discovered edges to already reachable nodes.
  870.     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
  871.     // Discover and connect nodes that became reachable with the insertion.
  872.     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
  873.  
  874.     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
  875.                       << " -> (prev unreachable) " << BlockNamePrinter(To)
  876.                       << "\n");
  877.  
  878.     // Used the discovered edges and inset discovered connecting (incoming)
  879.     // edges.
  880.     for (const auto &Edge : DiscoveredEdgesToReachable) {
  881.       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
  882.                         << BlockNamePrinter(Edge.first) << " -> "
  883.                         << BlockNamePrinter(Edge.second) << "\n");
  884.       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
  885.     }
  886.   }
  887.  
  888.   // Connects nodes that become reachable with an insertion.
  889.   static void ComputeUnreachableDominators(
  890.       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
  891.       const TreeNodePtr Incoming,
  892.       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
  893.           &DiscoveredConnectingEdges) {
  894.     assert(!DT.getNode(Root) && "Root must not be reachable");
  895.  
  896.     // Visit only previously unreachable nodes.
  897.     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
  898.                                                                   NodePtr To) {
  899.       const TreeNodePtr ToTN = DT.getNode(To);
  900.       if (!ToTN) return true;
  901.  
  902.       DiscoveredConnectingEdges.push_back({From, ToTN});
  903.       return false;
  904.     };
  905.  
  906.     SemiNCAInfo SNCA(BUI);
  907.     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
  908.     SNCA.runSemiNCA(DT);
  909.     SNCA.attachNewSubtree(DT, Incoming);
  910.  
  911.     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
  912.   }
  913.  
  914.   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
  915.                          const NodePtr From, const NodePtr To) {
  916.     assert(From && To && "Cannot disconnect nullptrs");
  917.     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
  918.                       << BlockNamePrinter(To) << "\n");
  919.  
  920. #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
  921.     // Ensure that the edge was in fact deleted from the CFG before informing
  922.     // the DomTree about it.
  923.     // The check is O(N), so run it only in debug configuration.
  924.     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
  925.       auto Successors = getChildren<IsPostDom>(Of, BUI);
  926.       return llvm::is_contained(Successors, SuccCandidate);
  927.     };
  928.     (void)IsSuccessor;
  929.     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
  930. #endif
  931.  
  932.     const TreeNodePtr FromTN = DT.getNode(From);
  933.     // Deletion in an unreachable subtree -- nothing to do.
  934.     if (!FromTN) return;
  935.  
  936.     const TreeNodePtr ToTN = DT.getNode(To);
  937.     if (!ToTN) {
  938.       LLVM_DEBUG(
  939.           dbgs() << "\tTo (" << BlockNamePrinter(To)
  940.                  << ") already unreachable -- there is no edge to delete\n");
  941.       return;
  942.     }
  943.  
  944.     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
  945.     const TreeNodePtr NCD = DT.getNode(NCDBlock);
  946.  
  947.     // If To dominates From -- nothing to do.
  948.     if (ToTN != NCD) {
  949.       DT.DFSInfoValid = false;
  950.  
  951.       const TreeNodePtr ToIDom = ToTN->getIDom();
  952.       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
  953.                         << BlockNamePrinter(ToIDom) << "\n");
  954.  
  955.       // To remains reachable after deletion.
  956.       // (Based on the caption under Figure 4. from [2].)
  957.       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
  958.         DeleteReachable(DT, BUI, FromTN, ToTN);
  959.       else
  960.         DeleteUnreachable(DT, BUI, ToTN);
  961.     }
  962.  
  963.     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
  964.   }
  965.  
  966.   // Handles deletions that leave destination nodes reachable.
  967.   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
  968.                               const TreeNodePtr FromTN,
  969.                               const TreeNodePtr ToTN) {
  970.     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
  971.                       << " -> " << BlockNamePrinter(ToTN) << "\n");
  972.     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
  973.  
  974.     // Find the top of the subtree that needs to be rebuilt.
  975.     // (Based on the lemma 2.6 from [2].)
  976.     const NodePtr ToIDom =
  977.         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
  978.     assert(ToIDom || DT.isPostDominator());
  979.     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
  980.     assert(ToIDomTN);
  981.     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
  982.     // Top of the subtree to rebuild is the root node. Rebuild the tree from
  983.     // scratch.
  984.     if (!PrevIDomSubTree) {
  985.       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
  986.       CalculateFromScratch(DT, BUI);
  987.       return;
  988.     }
  989.  
  990.     // Only visit nodes in the subtree starting at To.
  991.     const unsigned Level = ToIDomTN->getLevel();
  992.     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
  993.       return DT.getNode(To)->getLevel() > Level;
  994.     };
  995.  
  996.     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
  997.                       << "\n");
  998.  
  999.     SemiNCAInfo SNCA(BUI);
  1000.     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
  1001.     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
  1002.     SNCA.runSemiNCA(DT, Level);
  1003.     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
  1004.   }
  1005.  
  1006.   // Checks if a node has proper support, as defined on the page 3 and later
  1007.   // explained on the page 7 of [2].
  1008.   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
  1009.                                const TreeNodePtr TN) {
  1010.     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
  1011.                       << "\n");
  1012.     auto TNB = TN->getBlock();
  1013.     for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
  1014.       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
  1015.       if (!DT.getNode(Pred)) continue;
  1016.  
  1017.       const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
  1018.       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
  1019.       if (Support != TNB) {
  1020.         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
  1021.                           << " is reachable from support "
  1022.                           << BlockNamePrinter(Support) << "\n");
  1023.         return true;
  1024.       }
  1025.     }
  1026.  
  1027.     return false;
  1028.   }
  1029.  
  1030.   // Handle deletions that make destination node unreachable.
  1031.   // (Based on the lemma 2.7 from the [2].)
  1032.   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
  1033.                                 const TreeNodePtr ToTN) {
  1034.     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
  1035.                       << BlockNamePrinter(ToTN) << "\n");
  1036.     assert(ToTN);
  1037.     assert(ToTN->getBlock());
  1038.  
  1039.     if (IsPostDom) {
  1040.       // Deletion makes a region reverse-unreachable and creates a new root.
  1041.       // Simulate that by inserting an edge from the virtual root to ToTN and
  1042.       // adding it as a new root.
  1043.       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
  1044.       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
  1045.                         << "\n");
  1046.       DT.Roots.push_back(ToTN->getBlock());
  1047.       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
  1048.       return;
  1049.     }
  1050.  
  1051.     SmallVector<NodePtr, 16> AffectedQueue;
  1052.     const unsigned Level = ToTN->getLevel();
  1053.  
  1054.     // Traverse destination node's descendants with greater level in the tree
  1055.     // and collect visited nodes.
  1056.     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
  1057.       const TreeNodePtr TN = DT.getNode(To);
  1058.       assert(TN);
  1059.       if (TN->getLevel() > Level) return true;
  1060.       if (!llvm::is_contained(AffectedQueue, To))
  1061.         AffectedQueue.push_back(To);
  1062.  
  1063.       return false;
  1064.     };
  1065.  
  1066.     SemiNCAInfo SNCA(BUI);
  1067.     unsigned LastDFSNum =
  1068.         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
  1069.  
  1070.     TreeNodePtr MinNode = ToTN;
  1071.  
  1072.     // Identify the top of the subtree to rebuild by finding the NCD of all
  1073.     // the affected nodes.
  1074.     for (const NodePtr N : AffectedQueue) {
  1075.       const TreeNodePtr TN = DT.getNode(N);
  1076.       const NodePtr NCDBlock =
  1077.           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
  1078.       assert(NCDBlock || DT.isPostDominator());
  1079.       const TreeNodePtr NCD = DT.getNode(NCDBlock);
  1080.       assert(NCD);
  1081.  
  1082.       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
  1083.                         << " with NCD = " << BlockNamePrinter(NCD)
  1084.                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
  1085.       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
  1086.     }
  1087.  
  1088.     // Root reached, rebuild the whole tree from scratch.
  1089.     if (!MinNode->getIDom()) {
  1090.       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
  1091.       CalculateFromScratch(DT, BUI);
  1092.       return;
  1093.     }
  1094.  
  1095.     // Erase the unreachable subtree in reverse preorder to process all children
  1096.     // before deleting their parent.
  1097.     for (unsigned i = LastDFSNum; i > 0; --i) {
  1098.       const NodePtr N = SNCA.NumToNode[i];
  1099.       const TreeNodePtr TN = DT.getNode(N);
  1100.       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
  1101.  
  1102.       EraseNode(DT, TN);
  1103.     }
  1104.  
  1105.     // The affected subtree start at the To node -- there's no extra work to do.
  1106.     if (MinNode == ToTN) return;
  1107.  
  1108.     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
  1109.                       << BlockNamePrinter(MinNode) << "\n");
  1110.     const unsigned MinLevel = MinNode->getLevel();
  1111.     const TreeNodePtr PrevIDom = MinNode->getIDom();
  1112.     assert(PrevIDom);
  1113.     SNCA.clear();
  1114.  
  1115.     // Identify nodes that remain in the affected subtree.
  1116.     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
  1117.       const TreeNodePtr ToTN = DT.getNode(To);
  1118.       return ToTN && ToTN->getLevel() > MinLevel;
  1119.     };
  1120.     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
  1121.  
  1122.     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
  1123.                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
  1124.  
  1125.     // Rebuild the remaining part of affected subtree.
  1126.     SNCA.runSemiNCA(DT, MinLevel);
  1127.     SNCA.reattachExistingSubtree(DT, PrevIDom);
  1128.   }
  1129.  
  1130.   // Removes leaf tree nodes from the dominator tree.
  1131.   static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
  1132.     assert(TN);
  1133.     assert(TN->getNumChildren() == 0 && "Not a tree leaf");
  1134.  
  1135.     const TreeNodePtr IDom = TN->getIDom();
  1136.     assert(IDom);
  1137.  
  1138.     auto ChIt = llvm::find(IDom->Children, TN);
  1139.     assert(ChIt != IDom->Children.end());
  1140.     std::swap(*ChIt, IDom->Children.back());
  1141.     IDom->Children.pop_back();
  1142.  
  1143.     DT.DomTreeNodes.erase(TN->getBlock());
  1144.   }
  1145.  
  1146.   //~~
  1147.   //===--------------------- DomTree Batch Updater --------------------------===
  1148.   //~~
  1149.  
  1150.   static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
  1151.                            GraphDiffT *PostViewCFG) {
  1152.     // Note: the PostViewCFG is only used when computing from scratch. It's data
  1153.     // should already included in the PreViewCFG for incremental updates.
  1154.     const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
  1155.     if (NumUpdates == 0)
  1156.       return;
  1157.  
  1158.     // Take the fast path for a single update and avoid running the batch update
  1159.     // machinery.
  1160.     if (NumUpdates == 1) {
  1161.       UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
  1162.       if (!PostViewCFG) {
  1163.         if (Update.getKind() == UpdateKind::Insert)
  1164.           InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
  1165.         else
  1166.           DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
  1167.       } else {
  1168.         BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
  1169.         if (Update.getKind() == UpdateKind::Insert)
  1170.           InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
  1171.         else
  1172.           DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
  1173.       }
  1174.       return;
  1175.     }
  1176.  
  1177.     BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
  1178.     // Recalculate the DominatorTree when the number of updates
  1179.     // exceeds a threshold, which usually makes direct updating slower than
  1180.     // recalculation. We select this threshold proportional to the
  1181.     // size of the DominatorTree. The constant is selected
  1182.     // by choosing the one with an acceptable performance on some real-world
  1183.     // inputs.
  1184.  
  1185.     // Make unittests of the incremental algorithm work
  1186.     if (DT.DomTreeNodes.size() <= 100) {
  1187.       if (BUI.NumLegalized > DT.DomTreeNodes.size())
  1188.         CalculateFromScratch(DT, &BUI);
  1189.     } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
  1190.       CalculateFromScratch(DT, &BUI);
  1191.  
  1192.     // If the DominatorTree was recalculated at some point, stop the batch
  1193.     // updates. Full recalculations ignore batch updates and look at the actual
  1194.     // CFG.
  1195.     for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
  1196.       ApplyNextUpdate(DT, BUI);
  1197.   }
  1198.  
  1199.   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
  1200.     // Popping the next update, will move the PreViewCFG to the next snapshot.
  1201.     UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
  1202. #if 0
  1203.     // FIXME: The LLVM_DEBUG macro only plays well with a modular
  1204.     // build of LLVM when the header is marked as textual, but doing
  1205.     // so causes redefinition errors.
  1206.     LLVM_DEBUG(dbgs() << "Applying update: ");
  1207.     LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
  1208. #endif
  1209.  
  1210.     if (CurrentUpdate.getKind() == UpdateKind::Insert)
  1211.       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
  1212.     else
  1213.       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
  1214.   }
  1215.  
  1216.   //~~
  1217.   //===--------------- DomTree correctness verification ---------------------===
  1218.   //~~
  1219.  
  1220.   // Check if the tree has correct roots. A DominatorTree always has a single
  1221.   // root which is the function's entry node. A PostDominatorTree can have
  1222.   // multiple roots - one for each node with no successors and for infinite
  1223.   // loops.
  1224.   // Running time: O(N).
  1225.   bool verifyRoots(const DomTreeT &DT) {
  1226.     if (!DT.Parent && !DT.Roots.empty()) {
  1227.       errs() << "Tree has no parent but has roots!\n";
  1228.       errs().flush();
  1229.       return false;
  1230.     }
  1231.  
  1232.     if (!IsPostDom) {
  1233.       if (DT.Roots.empty()) {
  1234.         errs() << "Tree doesn't have a root!\n";
  1235.         errs().flush();
  1236.         return false;
  1237.       }
  1238.  
  1239.       if (DT.getRoot() != GetEntryNode(DT)) {
  1240.         errs() << "Tree's root is not its parent's entry node!\n";
  1241.         errs().flush();
  1242.         return false;
  1243.       }
  1244.     }
  1245.  
  1246.     RootsT ComputedRoots = FindRoots(DT, nullptr);
  1247.     if (!isPermutation(DT.Roots, ComputedRoots)) {
  1248.       errs() << "Tree has different roots than freshly computed ones!\n";
  1249.       errs() << "\tPDT roots: ";
  1250.       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
  1251.       errs() << "\n\tComputed roots: ";
  1252.       for (const NodePtr N : ComputedRoots)
  1253.         errs() << BlockNamePrinter(N) << ", ";
  1254.       errs() << "\n";
  1255.       errs().flush();
  1256.       return false;
  1257.     }
  1258.  
  1259.     return true;
  1260.   }
  1261.  
  1262.   // Checks if the tree contains all reachable nodes in the input graph.
  1263.   // Running time: O(N).
  1264.   bool verifyReachability(const DomTreeT &DT) {
  1265.     clear();
  1266.     doFullDFSWalk(DT, AlwaysDescend);
  1267.  
  1268.     for (auto &NodeToTN : DT.DomTreeNodes) {
  1269.       const TreeNodePtr TN = NodeToTN.second.get();
  1270.       const NodePtr BB = TN->getBlock();
  1271.  
  1272.       // Virtual root has a corresponding virtual CFG node.
  1273.       if (DT.isVirtualRoot(TN)) continue;
  1274.  
  1275.       if (NodeToInfo.count(BB) == 0) {
  1276.         errs() << "DomTree node " << BlockNamePrinter(BB)
  1277.                << " not found by DFS walk!\n";
  1278.         errs().flush();
  1279.  
  1280.         return false;
  1281.       }
  1282.     }
  1283.  
  1284.     for (const NodePtr N : NumToNode) {
  1285.       if (N && !DT.getNode(N)) {
  1286.         errs() << "CFG node " << BlockNamePrinter(N)
  1287.                << " not found in the DomTree!\n";
  1288.         errs().flush();
  1289.  
  1290.         return false;
  1291.       }
  1292.     }
  1293.  
  1294.     return true;
  1295.   }
  1296.  
  1297.   // Check if for every parent with a level L in the tree all of its children
  1298.   // have level L + 1.
  1299.   // Running time: O(N).
  1300.   static bool VerifyLevels(const DomTreeT &DT) {
  1301.     for (auto &NodeToTN : DT.DomTreeNodes) {
  1302.       const TreeNodePtr TN = NodeToTN.second.get();
  1303.       const NodePtr BB = TN->getBlock();
  1304.       if (!BB) continue;
  1305.  
  1306.       const TreeNodePtr IDom = TN->getIDom();
  1307.       if (!IDom && TN->getLevel() != 0) {
  1308.         errs() << "Node without an IDom " << BlockNamePrinter(BB)
  1309.                << " has a nonzero level " << TN->getLevel() << "!\n";
  1310.         errs().flush();
  1311.  
  1312.         return false;
  1313.       }
  1314.  
  1315.       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
  1316.         errs() << "Node " << BlockNamePrinter(BB) << " has level "
  1317.                << TN->getLevel() << " while its IDom "
  1318.                << BlockNamePrinter(IDom->getBlock()) << " has level "
  1319.                << IDom->getLevel() << "!\n";
  1320.         errs().flush();
  1321.  
  1322.         return false;
  1323.       }
  1324.     }
  1325.  
  1326.     return true;
  1327.   }
  1328.  
  1329.   // Check if the computed DFS numbers are correct. Note that DFS info may not
  1330.   // be valid, and when that is the case, we don't verify the numbers.
  1331.   // Running time: O(N log(N)).
  1332.   static bool VerifyDFSNumbers(const DomTreeT &DT) {
  1333.     if (!DT.DFSInfoValid || !DT.Parent)
  1334.       return true;
  1335.  
  1336.     const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
  1337.     const TreeNodePtr Root = DT.getNode(RootBB);
  1338.  
  1339.     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
  1340.       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
  1341.              << TN->getDFSNumOut() << '}';
  1342.     };
  1343.  
  1344.     // Verify the root's DFS In number. Although DFS numbering would also work
  1345.     // if we started from some other value, we assume 0-based numbering.
  1346.     if (Root->getDFSNumIn() != 0) {
  1347.       errs() << "DFSIn number for the tree root is not:\n\t";
  1348.       PrintNodeAndDFSNums(Root);
  1349.       errs() << '\n';
  1350.       errs().flush();
  1351.       return false;
  1352.     }
  1353.  
  1354.     // For each tree node verify if children's DFS numbers cover their parent's
  1355.     // DFS numbers with no gaps.
  1356.     for (const auto &NodeToTN : DT.DomTreeNodes) {
  1357.       const TreeNodePtr Node = NodeToTN.second.get();
  1358.  
  1359.       // Handle tree leaves.
  1360.       if (Node->isLeaf()) {
  1361.         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
  1362.           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
  1363.           PrintNodeAndDFSNums(Node);
  1364.           errs() << '\n';
  1365.           errs().flush();
  1366.           return false;
  1367.         }
  1368.  
  1369.         continue;
  1370.       }
  1371.  
  1372.       // Make a copy and sort it such that it is possible to check if there are
  1373.       // no gaps between DFS numbers of adjacent children.
  1374.       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
  1375.       llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
  1376.         return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
  1377.       });
  1378.  
  1379.       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
  1380.           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
  1381.         assert(FirstCh);
  1382.  
  1383.         errs() << "Incorrect DFS numbers for:\n\tParent ";
  1384.         PrintNodeAndDFSNums(Node);
  1385.  
  1386.         errs() << "\n\tChild ";
  1387.         PrintNodeAndDFSNums(FirstCh);
  1388.  
  1389.         if (SecondCh) {
  1390.           errs() << "\n\tSecond child ";
  1391.           PrintNodeAndDFSNums(SecondCh);
  1392.         }
  1393.  
  1394.         errs() << "\nAll children: ";
  1395.         for (const TreeNodePtr Ch : Children) {
  1396.           PrintNodeAndDFSNums(Ch);
  1397.           errs() << ", ";
  1398.         }
  1399.  
  1400.         errs() << '\n';
  1401.         errs().flush();
  1402.       };
  1403.  
  1404.       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
  1405.         PrintChildrenError(Children.front(), nullptr);
  1406.         return false;
  1407.       }
  1408.  
  1409.       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
  1410.         PrintChildrenError(Children.back(), nullptr);
  1411.         return false;
  1412.       }
  1413.  
  1414.       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
  1415.         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
  1416.           PrintChildrenError(Children[i], Children[i + 1]);
  1417.           return false;
  1418.         }
  1419.       }
  1420.     }
  1421.  
  1422.     return true;
  1423.   }
  1424.  
  1425.   // The below routines verify the correctness of the dominator tree relative to
  1426.   // the CFG it's coming from.  A tree is a dominator tree iff it has two
  1427.   // properties, called the parent property and the sibling property.  Tarjan
  1428.   // and Lengauer prove (but don't explicitly name) the properties as part of
  1429.   // the proofs in their 1972 paper, but the proofs are mostly part of proving
  1430.   // things about semidominators and idoms, and some of them are simply asserted
  1431.   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
  1432.   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
  1433.   // directed bipolar orders, and independent spanning trees" by Loukas
  1434.   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
  1435.   // and Vertex-Disjoint Paths " by the same authors.
  1436.  
  1437.   // A very simple and direct explanation of these properties can be found in
  1438.   // "An Experimental Study of Dynamic Dominators", found at
  1439.   // https://arxiv.org/abs/1604.02711
  1440.  
  1441.   // The easiest way to think of the parent property is that it's a requirement
  1442.   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
  1443.   // be an immediate dominator of CHILD, all paths in the CFG must go through
  1444.   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
  1445.   // out of the CFG, there should be no paths to CHILD that are reachable.  If
  1446.   // there are, then you now have a path from PARENT to CHILD that goes around
  1447.   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
  1448.   // a dominator of CHILD (let alone an immediate one).
  1449.  
  1450.   // The sibling property is similar.  It says that for each pair of sibling
  1451.   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
  1452.   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
  1453.   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
  1454.   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
  1455.   // RIGHT, not a sibling.
  1456.  
  1457.   // It is possible to verify the parent and sibling properties in linear time,
  1458.   // but the algorithms are complex. Instead, we do it in a straightforward
  1459.   // N^2 and N^3 way below, using direct path reachability.
  1460.  
  1461.   // Checks if the tree has the parent property: if for all edges from V to W in
  1462.   // the input graph, such that V is reachable, the parent of W in the tree is
  1463.   // an ancestor of V in the tree.
  1464.   // Running time: O(N^2).
  1465.   //
  1466.   // This means that if a node gets disconnected from the graph, then all of
  1467.   // the nodes it dominated previously will now become unreachable.
  1468.   bool verifyParentProperty(const DomTreeT &DT) {
  1469.     for (auto &NodeToTN : DT.DomTreeNodes) {
  1470.       const TreeNodePtr TN = NodeToTN.second.get();
  1471.       const NodePtr BB = TN->getBlock();
  1472.       if (!BB || TN->isLeaf())
  1473.         continue;
  1474.  
  1475.       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
  1476.                         << BlockNamePrinter(TN) << "\n");
  1477.       clear();
  1478.       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
  1479.         return From != BB && To != BB;
  1480.       });
  1481.  
  1482.       for (TreeNodePtr Child : TN->children())
  1483.         if (NodeToInfo.count(Child->getBlock()) != 0) {
  1484.           errs() << "Child " << BlockNamePrinter(Child)
  1485.                  << " reachable after its parent " << BlockNamePrinter(BB)
  1486.                  << " is removed!\n";
  1487.           errs().flush();
  1488.  
  1489.           return false;
  1490.         }
  1491.     }
  1492.  
  1493.     return true;
  1494.   }
  1495.  
  1496.   // Check if the tree has sibling property: if a node V does not dominate a
  1497.   // node W for all siblings V and W in the tree.
  1498.   // Running time: O(N^3).
  1499.   //
  1500.   // This means that if a node gets disconnected from the graph, then all of its
  1501.   // siblings will now still be reachable.
  1502.   bool verifySiblingProperty(const DomTreeT &DT) {
  1503.     for (auto &NodeToTN : DT.DomTreeNodes) {
  1504.       const TreeNodePtr TN = NodeToTN.second.get();
  1505.       const NodePtr BB = TN->getBlock();
  1506.       if (!BB || TN->isLeaf())
  1507.         continue;
  1508.  
  1509.       for (const TreeNodePtr N : TN->children()) {
  1510.         clear();
  1511.         NodePtr BBN = N->getBlock();
  1512.         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
  1513.           return From != BBN && To != BBN;
  1514.         });
  1515.  
  1516.         for (const TreeNodePtr S : TN->children()) {
  1517.           if (S == N) continue;
  1518.  
  1519.           if (NodeToInfo.count(S->getBlock()) == 0) {
  1520.             errs() << "Node " << BlockNamePrinter(S)
  1521.                    << " not reachable when its sibling " << BlockNamePrinter(N)
  1522.                    << " is removed!\n";
  1523.             errs().flush();
  1524.  
  1525.             return false;
  1526.           }
  1527.         }
  1528.       }
  1529.     }
  1530.  
  1531.     return true;
  1532.   }
  1533.  
  1534.   // Check if the given tree is the same as a freshly computed one for the same
  1535.   // Parent.
  1536.   // Running time: O(N^2), but faster in practice (same as tree construction).
  1537.   //
  1538.   // Note that this does not check if that the tree construction algorithm is
  1539.   // correct and should be only used for fast (but possibly unsound)
  1540.   // verification.
  1541.   static bool IsSameAsFreshTree(const DomTreeT &DT) {
  1542.     DomTreeT FreshTree;
  1543.     FreshTree.recalculate(*DT.Parent);
  1544.     const bool Different = DT.compare(FreshTree);
  1545.  
  1546.     if (Different) {
  1547.       errs() << (DT.isPostDominator() ? "Post" : "")
  1548.              << "DominatorTree is different than a freshly computed one!\n"
  1549.              << "\tCurrent:\n";
  1550.       DT.print(errs());
  1551.       errs() << "\n\tFreshly computed tree:\n";
  1552.       FreshTree.print(errs());
  1553.       errs().flush();
  1554.     }
  1555.  
  1556.     return !Different;
  1557.   }
  1558. };
  1559.  
  1560. template <class DomTreeT>
  1561. void Calculate(DomTreeT &DT) {
  1562.   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
  1563. }
  1564.  
  1565. template <typename DomTreeT>
  1566. void CalculateWithUpdates(DomTreeT &DT,
  1567.                           ArrayRef<typename DomTreeT::UpdateType> Updates) {
  1568.   // FIXME: Updated to use the PreViewCFG and behave the same as until now.
  1569.   // This behavior is however incorrect; this actually needs the PostViewCFG.
  1570.   GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
  1571.       Updates, /*ReverseApplyUpdates=*/true);
  1572.   typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
  1573.   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
  1574. }
  1575.  
  1576. template <class DomTreeT>
  1577. void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
  1578.                 typename DomTreeT::NodePtr To) {
  1579.   if (DT.isPostDominator()) std::swap(From, To);
  1580.   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
  1581. }
  1582.  
  1583. template <class DomTreeT>
  1584. void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
  1585.                 typename DomTreeT::NodePtr To) {
  1586.   if (DT.isPostDominator()) std::swap(From, To);
  1587.   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
  1588. }
  1589.  
  1590. template <class DomTreeT>
  1591. void ApplyUpdates(DomTreeT &DT,
  1592.                   GraphDiff<typename DomTreeT::NodePtr,
  1593.                             DomTreeT::IsPostDominator> &PreViewCFG,
  1594.                   GraphDiff<typename DomTreeT::NodePtr,
  1595.                             DomTreeT::IsPostDominator> *PostViewCFG) {
  1596.   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
  1597. }
  1598.  
  1599. template <class DomTreeT>
  1600. bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
  1601.   SemiNCAInfo<DomTreeT> SNCA(nullptr);
  1602.  
  1603.   // Simplist check is to compare against a new tree. This will also
  1604.   // usefully print the old and new trees, if they are different.
  1605.   if (!SNCA.IsSameAsFreshTree(DT))
  1606.     return false;
  1607.  
  1608.   // Common checks to verify the properties of the tree. O(N log N) at worst.
  1609.   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
  1610.       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
  1611.     return false;
  1612.  
  1613.   // Extra checks depending on VerificationLevel. Up to O(N^3).
  1614.   if (VL == DomTreeT::VerificationLevel::Basic ||
  1615.       VL == DomTreeT::VerificationLevel::Full)
  1616.     if (!SNCA.verifyParentProperty(DT))
  1617.       return false;
  1618.   if (VL == DomTreeT::VerificationLevel::Full)
  1619.     if (!SNCA.verifySiblingProperty(DT))
  1620.       return false;
  1621.  
  1622.   return true;
  1623. }
  1624.  
  1625. }  // namespace DomTreeBuilder
  1626. }  // namespace llvm
  1627.  
  1628. #undef DEBUG_TYPE
  1629.  
  1630. #endif
  1631.