- //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- /// \file 
- /// 
- /// This file defines a set of templates that efficiently compute a dominator 
- /// tree over a generic graph. This is used typically in LLVM for fast 
- /// dominance queries on the CFG, but is fully generic w.r.t. the underlying 
- /// graph types. 
- /// 
- /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements 
- /// on the graph's NodeRef. The NodeRef should be a pointer and, 
- /// either NodeRef->getParent() must return the parent node that is also a 
- /// pointer or DomTreeNodeTraits needs to be specialized. 
- /// 
- /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. 
- /// 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_SUPPORT_GENERICDOMTREE_H 
- #define LLVM_SUPPORT_GENERICDOMTREE_H 
-   
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/GraphTraits.h" 
- #include "llvm/ADT/STLExtras.h" 
- #include "llvm/ADT/SmallPtrSet.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/Support/CFGDiff.h" 
- #include "llvm/Support/CFGUpdate.h" 
- #include "llvm/Support/raw_ostream.h" 
- #include <algorithm> 
- #include <cassert> 
- #include <cstddef> 
- #include <iterator> 
- #include <memory> 
- #include <type_traits> 
- #include <utility> 
-   
- namespace llvm { 
-   
- template <typename NodeT, bool IsPostDom> 
- class DominatorTreeBase; 
-   
- namespace DomTreeBuilder { 
- template <typename DomTreeT> 
- struct SemiNCAInfo; 
- }  // namespace DomTreeBuilder 
-   
- /// Base class for the actual dominator tree node. 
- template <class NodeT> class DomTreeNodeBase { 
-   friend class PostDominatorTree; 
-   friend class DominatorTreeBase<NodeT, false>; 
-   friend class DominatorTreeBase<NodeT, true>; 
-   friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>; 
-   friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>; 
-   
-   NodeT *TheBB; 
-   DomTreeNodeBase *IDom; 
-   unsigned Level; 
-   SmallVector<DomTreeNodeBase *, 4> Children; 
-   mutable unsigned DFSNumIn = ~0; 
-   mutable unsigned DFSNumOut = ~0; 
-   
-  public: 
-   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) 
-       : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {} 
-   
-   using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator; 
-   using const_iterator = 
-       typename SmallVector<DomTreeNodeBase *, 4>::const_iterator; 
-   
-   iterator begin() { return Children.begin(); } 
-   iterator end() { return Children.end(); } 
-   const_iterator begin() const { return Children.begin(); } 
-   const_iterator end() const { return Children.end(); } 
-   
-   DomTreeNodeBase *const &back() const { return Children.back(); } 
-   DomTreeNodeBase *&back() { return Children.back(); } 
-   
-   iterator_range<iterator> children() { return make_range(begin(), end()); } 
-   iterator_range<const_iterator> children() const { 
-     return make_range(begin(), end()); 
-   } 
-   
-   NodeT *getBlock() const { return TheBB; } 
-   DomTreeNodeBase *getIDom() const { return IDom; } 
-   unsigned getLevel() const { return Level; } 
-   
-   std::unique_ptr<DomTreeNodeBase> addChild( 
-       std::unique_ptr<DomTreeNodeBase> C) { 
-     Children.push_back(C.get()); 
-     return C; 
-   } 
-   
-   bool isLeaf() const { return Children.empty(); } 
-   size_t getNumChildren() const { return Children.size(); } 
-   
-   void clearAllChildren() { Children.clear(); } 
-   
-   bool compare(const DomTreeNodeBase *Other) const { 
-     if (getNumChildren() != Other->getNumChildren()) 
-       return true; 
-   
-     if (Level != Other->Level) return true; 
-   
-     SmallPtrSet<const NodeT *, 4> OtherChildren; 
-     for (const DomTreeNodeBase *I : *Other) { 
-       const NodeT *Nd = I->getBlock(); 
-       OtherChildren.insert(Nd); 
-     } 
-   
-     for (const DomTreeNodeBase *I : *this) { 
-       const NodeT *N = I->getBlock(); 
-       if (OtherChildren.count(N) == 0) 
-         return true; 
-     } 
-     return false; 
-   } 
-   
-   void setIDom(DomTreeNodeBase *NewIDom) { 
-     assert(IDom && "No immediate dominator?"); 
-     if (IDom == NewIDom) return; 
-   
-     auto I = find(IDom->Children, this); 
-     assert(I != IDom->Children.end() && 
-            "Not in immediate dominator children set!"); 
-     // I am no longer your child... 
-     IDom->Children.erase(I); 
-   
-     // Switch to new dominator 
-     IDom = NewIDom; 
-     IDom->Children.push_back(this); 
-   
-     UpdateLevel(); 
-   } 
-   
-   /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes 
-   /// in the dominator tree. They are only guaranteed valid if 
-   /// updateDFSNumbers() has been called. 
-   unsigned getDFSNumIn() const { return DFSNumIn; } 
-   unsigned getDFSNumOut() const { return DFSNumOut; } 
-   
- private: 
-   // Return true if this node is dominated by other. Use this only if DFS info 
-   // is valid. 
-   bool DominatedBy(const DomTreeNodeBase *other) const { 
-     return this->DFSNumIn >= other->DFSNumIn && 
-            this->DFSNumOut <= other->DFSNumOut; 
-   } 
-   
-   void UpdateLevel() { 
-     assert(IDom); 
-     if (Level == IDom->Level + 1) return; 
-   
-     SmallVector<DomTreeNodeBase *, 64> WorkStack = {this}; 
-   
-     while (!WorkStack.empty()) { 
-       DomTreeNodeBase *Current = WorkStack.pop_back_val(); 
-       Current->Level = Current->IDom->Level + 1; 
-   
-       for (DomTreeNodeBase *C : *Current) { 
-         assert(C->IDom); 
-         if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C); 
-       } 
-     } 
-   } 
- }; 
-   
- template <class NodeT> 
- raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) { 
-   if (Node->getBlock()) 
-     Node->getBlock()->printAsOperand(O, false); 
-   else 
-     O << " <<exit node>>"; 
-   
-   O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} [" 
-     << Node->getLevel() << "]\n"; 
-   
-   return O; 
- } 
-   
- template <class NodeT> 
- void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O, 
-                   unsigned Lev) { 
-   O.indent(2 * Lev) << "[" << Lev << "] " << N; 
-   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), 
-                                                        E = N->end(); 
-        I != E; ++I) 
-     PrintDomTree<NodeT>(*I, O, Lev + 1); 
- } 
-   
- namespace DomTreeBuilder { 
- // The routines below are provided in a separate header but referenced here. 
- template <typename DomTreeT> 
- void Calculate(DomTreeT &DT); 
-   
- template <typename DomTreeT> 
- void CalculateWithUpdates(DomTreeT &DT, 
-                           ArrayRef<typename DomTreeT::UpdateType> Updates); 
-   
- template <typename DomTreeT> 
- void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, 
-                 typename DomTreeT::NodePtr To); 
-   
- template <typename DomTreeT> 
- void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, 
-                 typename DomTreeT::NodePtr To); 
-   
- template <typename DomTreeT> 
- void ApplyUpdates(DomTreeT &DT, 
-                   GraphDiff<typename DomTreeT::NodePtr, 
-                             DomTreeT::IsPostDominator> &PreViewCFG, 
-                   GraphDiff<typename DomTreeT::NodePtr, 
-                             DomTreeT::IsPostDominator> *PostViewCFG); 
-   
- template <typename DomTreeT> 
- bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL); 
- }  // namespace DomTreeBuilder 
-   
- /// Default DomTreeNode traits for NodeT. The default implementation assume a 
- /// Function-like NodeT. Can be specialized to support different node types. 
- template <typename NodeT> struct DomTreeNodeTraits { 
-   using NodeType = NodeT; 
-   using NodePtr = NodeT *; 
-   using ParentPtr = decltype(std::declval<NodePtr>()->getParent()); 
-   static_assert(std::is_pointer<ParentPtr>::value, 
-                 "Currently NodeT's parent must be a pointer type"); 
-   using ParentType = std::remove_pointer_t<ParentPtr>; 
-   
-   static NodeT *getEntryNode(ParentPtr Parent) { return &Parent->front(); } 
-   static ParentPtr getParent(NodePtr BB) { return BB->getParent(); } 
- }; 
-   
- /// Core dominator tree base class. 
- /// 
- /// This class is a generic template over graph nodes. It is instantiated for 
- /// various graphs in the LLVM IR or in the code generator. 
- template <typename NodeT, bool IsPostDom> 
- class DominatorTreeBase { 
-  public: 
-   static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value, 
-                 "Currently DominatorTreeBase supports only pointer nodes"); 
-   using NodeTrait = DomTreeNodeTraits<NodeT>; 
-   using NodeType = typename NodeTrait::NodeType; 
-   using NodePtr = typename NodeTrait::NodePtr; 
-   using ParentPtr = typename NodeTrait::ParentPtr; 
-   static_assert(std::is_pointer<ParentPtr>::value, 
-                 "Currently NodeT's parent must be a pointer type"); 
-   using ParentType = std::remove_pointer_t<ParentPtr>; 
-   static constexpr bool IsPostDominator = IsPostDom; 
-   
-   using UpdateType = cfg::Update<NodePtr>; 
-   using UpdateKind = cfg::UpdateKind; 
-   static constexpr UpdateKind Insert = UpdateKind::Insert; 
-   static constexpr UpdateKind Delete = UpdateKind::Delete; 
-   
-   enum class VerificationLevel { Fast, Basic, Full }; 
-   
- protected: 
-   // Dominators always have a single root, postdominators can have more. 
-   SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots; 
-   
-   using DomTreeNodeMapType = 
-      DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>; 
-   DomTreeNodeMapType DomTreeNodes; 
-   DomTreeNodeBase<NodeT> *RootNode = nullptr; 
-   ParentPtr Parent = nullptr; 
-   
-   mutable bool DFSInfoValid = false; 
-   mutable unsigned int SlowQueries = 0; 
-   
-   friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>; 
-   
-  public: 
-   DominatorTreeBase() = default; 
-   
-   DominatorTreeBase(DominatorTreeBase &&Arg) 
-       : Roots(std::move(Arg.Roots)), 
-         DomTreeNodes(std::move(Arg.DomTreeNodes)), 
-         RootNode(Arg.RootNode), 
-         Parent(Arg.Parent), 
-         DFSInfoValid(Arg.DFSInfoValid), 
-         SlowQueries(Arg.SlowQueries) { 
-     Arg.wipe(); 
-   } 
-   
-   DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { 
-     Roots = std::move(RHS.Roots); 
-     DomTreeNodes = std::move(RHS.DomTreeNodes); 
-     RootNode = RHS.RootNode; 
-     Parent = RHS.Parent; 
-     DFSInfoValid = RHS.DFSInfoValid; 
-     SlowQueries = RHS.SlowQueries; 
-     RHS.wipe(); 
-     return *this; 
-   } 
-   
-   DominatorTreeBase(const DominatorTreeBase &) = delete; 
-   DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; 
-   
-   /// Iteration over roots. 
-   /// 
-   /// This may include multiple blocks if we are computing post dominators. 
-   /// For forward dominators, this will always be a single block (the entry 
-   /// block). 
-   using root_iterator = typename SmallVectorImpl<NodeT *>::iterator; 
-   using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator; 
-   
-   root_iterator root_begin() { return Roots.begin(); } 
-   const_root_iterator root_begin() const { return Roots.begin(); } 
-   root_iterator root_end() { return Roots.end(); } 
-   const_root_iterator root_end() const { return Roots.end(); } 
-   
-   size_t root_size() const { return Roots.size(); } 
-   
-   iterator_range<root_iterator> roots() { 
-     return make_range(root_begin(), root_end()); 
-   } 
-   iterator_range<const_root_iterator> roots() const { 
-     return make_range(root_begin(), root_end()); 
-   } 
-   
-   /// isPostDominator - Returns true if analysis based of postdoms 
-   /// 
-   bool isPostDominator() const { return IsPostDominator; } 
-   
-   /// compare - Return false if the other dominator tree base matches this 
-   /// dominator tree base. Otherwise return true. 
-   bool compare(const DominatorTreeBase &Other) const { 
-     if (Parent != Other.Parent) return true; 
-   
-     if (Roots.size() != Other.Roots.size()) 
-       return true; 
-   
-     if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin())) 
-       return true; 
-   
-     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; 
-     if (DomTreeNodes.size() != OtherDomTreeNodes.size()) 
-       return true; 
-   
-     for (const auto &DomTreeNode : DomTreeNodes) { 
-       NodeT *BB = DomTreeNode.first; 
-       typename DomTreeNodeMapType::const_iterator OI = 
-           OtherDomTreeNodes.find(BB); 
-       if (OI == OtherDomTreeNodes.end()) 
-         return true; 
-   
-       DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second; 
-       DomTreeNodeBase<NodeT> &OtherNd = *OI->second; 
-   
-       if (MyNd.compare(&OtherNd)) 
-         return true; 
-     } 
-   
-     return false; 
-   } 
-   
-   /// getNode - return the (Post)DominatorTree node for the specified basic 
-   /// block.  This is the same as using operator[] on this class.  The result 
-   /// may (but is not required to) be null for a forward (backwards) 
-   /// statically unreachable block. 
-   DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const { 
-     auto I = DomTreeNodes.find(BB); 
-     if (I != DomTreeNodes.end()) 
-       return I->second.get(); 
-     return nullptr; 
-   } 
-   
-   /// See getNode. 
-   DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const { 
-     return getNode(BB); 
-   } 
-   
-   /// getRootNode - This returns the entry node for the CFG of the function.  If 
-   /// this tree represents the post-dominance relations for a function, however, 
-   /// this root may be a node with the block == NULL.  This is the case when 
-   /// there are multiple exit nodes from a particular function.  Consumers of 
-   /// post-dominance information must be capable of dealing with this 
-   /// possibility. 
-   /// 
-   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } 
-   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } 
-   
-   /// Get all nodes dominated by R, including R itself. 
-   void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { 
-     Result.clear(); 
-     const DomTreeNodeBase<NodeT> *RN = getNode(R); 
-     if (!RN) 
-       return; // If R is unreachable, it will not be present in the DOM tree. 
-     SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; 
-     WL.push_back(RN); 
-   
-     while (!WL.empty()) { 
-       const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); 
-       Result.push_back(N->getBlock()); 
-       WL.append(N->begin(), N->end()); 
-     } 
-   } 
-   
-   /// properlyDominates - Returns true iff A dominates B and A != B. 
-   /// Note that this is not a constant time operation! 
-   /// 
-   bool properlyDominates(const DomTreeNodeBase<NodeT> *A, 
-                          const DomTreeNodeBase<NodeT> *B) const { 
-     if (!A || !B) 
-       return false; 
-     if (A == B) 
-       return false; 
-     return dominates(A, B); 
-   } 
-   
-   bool properlyDominates(const NodeT *A, const NodeT *B) const; 
-   
-   /// isReachableFromEntry - Return true if A is dominated by the entry 
-   /// block of the function containing it. 
-   bool isReachableFromEntry(const NodeT *A) const { 
-     assert(!this->isPostDominator() && 
-            "This is not implemented for post dominators"); 
-     return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); 
-   } 
-   
-   bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } 
-   
-   /// dominates - Returns true iff A dominates B.  Note that this is not a 
-   /// constant time operation! 
-   /// 
-   bool dominates(const DomTreeNodeBase<NodeT> *A, 
-                  const DomTreeNodeBase<NodeT> *B) const { 
-     // A node trivially dominates itself. 
-     if (B == A) 
-       return true; 
-   
-     // An unreachable node is dominated by anything. 
-     if (!isReachableFromEntry(B)) 
-       return true; 
-   
-     // And dominates nothing. 
-     if (!isReachableFromEntry(A)) 
-       return false; 
-   
-     if (B->getIDom() == A) return true; 
-   
-     if (A->getIDom() == B) return false; 
-   
-     // A can only dominate B if it is higher in the tree. 
-     if (A->getLevel() >= B->getLevel()) return false; 
-   
-     // Compare the result of the tree walk and the dfs numbers, if expensive 
-     // checks are enabled. 
- #ifdef EXPENSIVE_CHECKS 
-     assert((!DFSInfoValid || 
-             (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && 
-            "Tree walk disagrees with dfs numbers!"); 
- #endif 
-   
-     if (DFSInfoValid) 
-       return B->DominatedBy(A); 
-   
-     // If we end up with too many slow queries, just update the 
-     // DFS numbers on the theory that we are going to keep querying. 
-     SlowQueries++; 
-     if (SlowQueries > 32) { 
-       updateDFSNumbers(); 
-       return B->DominatedBy(A); 
-     } 
-   
-     return dominatedBySlowTreeWalk(A, B); 
-   } 
-   
-   bool dominates(const NodeT *A, const NodeT *B) const; 
-   
-   NodeT *getRoot() const { 
-     assert(this->Roots.size() == 1 && "Should always have entry node!"); 
-     return this->Roots[0]; 
-   } 
-   
-   /// Find nearest common dominator basic block for basic block A and B. A and B 
-   /// must have tree nodes. 
-   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const { 
-     assert(A && B && "Pointers are not valid"); 
-     assert(NodeTrait::getParent(A) == NodeTrait::getParent(B) && 
-            "Two blocks are not in same function"); 
-   
-     // If either A or B is a entry block then it is nearest common dominator 
-     // (for forward-dominators). 
-     if (!isPostDominator()) { 
-       NodeT &Entry = 
-           *DomTreeNodeTraits<NodeT>::getEntryNode(NodeTrait::getParent(A)); 
-       if (A == &Entry || B == &Entry) 
-         return &Entry; 
-     } 
-   
-     DomTreeNodeBase<NodeT> *NodeA = getNode(A); 
-     DomTreeNodeBase<NodeT> *NodeB = getNode(B); 
-     assert(NodeA && "A must be in the tree"); 
-     assert(NodeB && "B must be in the tree"); 
-   
-     // Use level information to go up the tree until the levels match. Then 
-     // continue going up til we arrive at the same node. 
-     while (NodeA != NodeB) { 
-       if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB); 
-   
-       NodeA = NodeA->IDom; 
-     } 
-   
-     return NodeA->getBlock(); 
-   } 
-   
-   const NodeT *findNearestCommonDominator(const NodeT *A, 
-                                           const NodeT *B) const { 
-     // Cast away the const qualifiers here. This is ok since 
-     // const is re-introduced on the return type. 
-     return findNearestCommonDominator(const_cast<NodeT *>(A), 
-                                       const_cast<NodeT *>(B)); 
-   } 
-   
-   bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const { 
-     return isPostDominator() && !A->getBlock(); 
-   } 
-   
-   //===--------------------------------------------------------------------===// 
-   // API to update (Post)DominatorTree information based on modifications to 
-   // the CFG... 
-   
-   /// Inform the dominator tree about a sequence of CFG edge insertions and 
-   /// deletions and perform a batch update on the tree. 
-   /// 
-   /// This function should be used when there were multiple CFG updates after 
-   /// the last dominator tree update. It takes care of performing the updates 
-   /// in sync with the CFG and optimizes away the redundant operations that 
-   /// cancel each other. 
-   /// The functions expects the sequence of updates to be balanced. Eg.: 
-   ///  - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because 
-   ///    logically it results in a single insertions. 
-   ///  - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make 
-   ///    sense to insert the same edge twice. 
-   /// 
-   /// What's more, the functions assumes that it's safe to ask every node in the 
-   /// CFG about its children and inverse children. This implies that deletions 
-   /// of CFG edges must not delete the CFG nodes before calling this function. 
-   /// 
-   /// The applyUpdates function can reorder the updates and remove redundant 
-   /// ones internally (as long as it is done in a deterministic fashion). The 
-   /// batch updater is also able to detect sequences of zero and exactly one 
-   /// update -- it's optimized to do less work in these cases. 
-   /// 
-   /// Note that for postdominators it automatically takes care of applying 
-   /// updates on reverse edges internally (so there's no need to swap the 
-   /// From and To pointers when constructing DominatorTree::UpdateType). 
-   /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T> 
-   /// with the same template parameter T. 
-   /// 
-   /// \param Updates An ordered sequence of updates to perform. The current CFG 
-   /// and the reverse of these updates provides the pre-view of the CFG. 
-   /// 
-   void applyUpdates(ArrayRef<UpdateType> Updates) { 
-     GraphDiff<NodePtr, IsPostDominator> PreViewCFG( 
-         Updates, /*ReverseApplyUpdates=*/true); 
-     DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr); 
-   } 
-   
-   /// \param Updates An ordered sequence of updates to perform. The current CFG 
-   /// and the reverse of these updates provides the pre-view of the CFG. 
-   /// \param PostViewUpdates An ordered sequence of update to perform in order 
-   /// to obtain a post-view of the CFG. The DT will be updated assuming the 
-   /// obtained PostViewCFG is the desired end state. 
-   void applyUpdates(ArrayRef<UpdateType> Updates, 
-                     ArrayRef<UpdateType> PostViewUpdates) { 
-     if (Updates.empty()) { 
-       GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); 
-       DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG); 
-     } else { 
-       // PreViewCFG needs to merge Updates and PostViewCFG. The updates in 
-       // Updates need to be reversed, and match the direction in PostViewCFG. 
-       // The PostViewCFG is created with updates reversed (equivalent to changes 
-       // made to the CFG), so the PreViewCFG needs all the updates reverse 
-       // applied. 
-       SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end()); 
-       append_range(AllUpdates, PostViewUpdates); 
-       GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates, 
-                                                /*ReverseApplyUpdates=*/true); 
-       GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); 
-       DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG); 
-     } 
-   } 
-   
-   /// Inform the dominator tree about a CFG edge insertion and update the tree. 
-   /// 
-   /// This function has to be called just before or just after making the update 
-   /// on the actual CFG. There cannot be any other updates that the dominator 
-   /// tree doesn't know about. 
-   /// 
-   /// Note that for postdominators it automatically takes care of inserting 
-   /// a reverse edge internally (so there's no need to swap the parameters). 
-   /// 
-   void insertEdge(NodeT *From, NodeT *To) { 
-     assert(From); 
-     assert(To); 
-     assert(NodeTrait::getParent(From) == Parent); 
-     assert(NodeTrait::getParent(To) == Parent); 
-     DomTreeBuilder::InsertEdge(*this, From, To); 
-   } 
-   
-   /// Inform the dominator tree about a CFG edge deletion and update the tree. 
-   /// 
-   /// This function has to be called just after making the update on the actual 
-   /// CFG. An internal functions checks if the edge doesn't exist in the CFG in 
-   /// DEBUG mode. There cannot be any other updates that the 
-   /// dominator tree doesn't know about. 
-   /// 
-   /// Note that for postdominators it automatically takes care of deleting 
-   /// a reverse edge internally (so there's no need to swap the parameters). 
-   /// 
-   void deleteEdge(NodeT *From, NodeT *To) { 
-     assert(From); 
-     assert(To); 
-     assert(NodeTrait::getParent(From) == Parent); 
-     assert(NodeTrait::getParent(To) == Parent); 
-     DomTreeBuilder::DeleteEdge(*this, From, To); 
-   } 
-   
-   /// Add a new node to the dominator tree information. 
-   /// 
-   /// This creates a new node as a child of DomBB dominator node, linking it 
-   /// into the children list of the immediate dominator. 
-   /// 
-   /// \param BB New node in CFG. 
-   /// \param DomBB CFG node that is dominator for BB. 
-   /// \returns New dominator tree node that represents new CFG node. 
-   /// 
-   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { 
-     assert(getNode(BB) == nullptr && "Block already in dominator tree!"); 
-     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); 
-     assert(IDomNode && "Not immediate dominator specified for block!"); 
-     DFSInfoValid = false; 
-     return createChild(BB, IDomNode); 
-   } 
-   
-   /// Add a new node to the forward dominator tree and make it a new root. 
-   /// 
-   /// \param BB New node in CFG. 
-   /// \returns New dominator tree node that represents new CFG node. 
-   /// 
-   DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) { 
-     assert(getNode(BB) == nullptr && "Block already in dominator tree!"); 
-     assert(!this->isPostDominator() && 
-            "Cannot change root of post-dominator tree"); 
-     DFSInfoValid = false; 
-     DomTreeNodeBase<NodeT> *NewNode = createNode(BB); 
-     if (Roots.empty()) { 
-       addRoot(BB); 
-     } else { 
-       assert(Roots.size() == 1); 
-       NodeT *OldRoot = Roots.front(); 
-       auto &OldNode = DomTreeNodes[OldRoot]; 
-       OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); 
-       OldNode->IDom = NewNode; 
-       OldNode->UpdateLevel(); 
-       Roots[0] = BB; 
-     } 
-     return RootNode = NewNode; 
-   } 
-   
-   /// changeImmediateDominator - This method is used to update the dominator 
-   /// tree information when a node's immediate dominator changes. 
-   /// 
-   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, 
-                                 DomTreeNodeBase<NodeT> *NewIDom) { 
-     assert(N && NewIDom && "Cannot change null node pointers!"); 
-     DFSInfoValid = false; 
-     N->setIDom(NewIDom); 
-   } 
-   
-   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { 
-     changeImmediateDominator(getNode(BB), getNode(NewBB)); 
-   } 
-   
-   /// eraseNode - Removes a node from the dominator tree. Block must not 
-   /// dominate any other blocks. Removes node from its immediate dominator's 
-   /// children list. Deletes dominator node associated with basic block BB. 
-   void eraseNode(NodeT *BB) { 
-     DomTreeNodeBase<NodeT> *Node = getNode(BB); 
-     assert(Node && "Removing node that isn't in dominator tree."); 
-     assert(Node->isLeaf() && "Node is not a leaf node."); 
-   
-     DFSInfoValid = false; 
-   
-     // Remove node from immediate dominator's children list. 
-     DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); 
-     if (IDom) { 
-       const auto I = find(IDom->Children, Node); 
-       assert(I != IDom->Children.end() && 
-              "Not in immediate dominator children set!"); 
-       // I am no longer your child... 
-       IDom->Children.erase(I); 
-     } 
-   
-     DomTreeNodes.erase(BB); 
-   
-     if (!IsPostDom) return; 
-   
-     // Remember to update PostDominatorTree roots. 
-     auto RIt = llvm::find(Roots, BB); 
-     if (RIt != Roots.end()) { 
-       std::swap(*RIt, Roots.back()); 
-       Roots.pop_back(); 
-     } 
-   } 
-   
-   /// splitBlock - BB is split and now it has one successor. Update dominator 
-   /// tree to reflect this change. 
-   void splitBlock(NodeT *NewBB) { 
-     if (IsPostDominator) 
-       Split<Inverse<NodeT *>>(NewBB); 
-     else 
-       Split<NodeT *>(NewBB); 
-   } 
-   
-   /// print - Convert to human readable form 
-   /// 
-   void print(raw_ostream &O) const { 
-     O << "=============================--------------------------------\n"; 
-     if (IsPostDominator) 
-       O << "Inorder PostDominator Tree: "; 
-     else 
-       O << "Inorder Dominator Tree: "; 
-     if (!DFSInfoValid) 
-       O << "DFSNumbers invalid: " << SlowQueries << " slow queries."; 
-     O << "\n"; 
-   
-     // The postdom tree can have a null root if there are no returns. 
-     if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1); 
-     O << "Roots: "; 
-     for (const NodePtr Block : Roots) { 
-       Block->printAsOperand(O, false); 
-       O << " "; 
-     } 
-     O << "\n"; 
-   } 
-   
- public: 
-   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking 
-   /// dominator tree in dfs order. 
-   void updateDFSNumbers() const { 
-     if (DFSInfoValid) { 
-       SlowQueries = 0; 
-       return; 
-     } 
-   
-     SmallVector<std::pair<const DomTreeNodeBase<NodeT> *, 
-                           typename DomTreeNodeBase<NodeT>::const_iterator>, 
-                 32> WorkStack; 
-   
-     const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); 
-     assert((!Parent || ThisRoot) && "Empty constructed DomTree"); 
-     if (!ThisRoot) 
-       return; 
-   
-     // Both dominators and postdominators have a single root node. In the case 
-     // case of PostDominatorTree, this node is a virtual root. 
-     WorkStack.push_back({ThisRoot, ThisRoot->begin()}); 
-   
-     unsigned DFSNum = 0; 
-     ThisRoot->DFSNumIn = DFSNum++; 
-   
-     while (!WorkStack.empty()) { 
-       const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; 
-       const auto ChildIt = WorkStack.back().second; 
-   
-       // If we visited all of the children of this node, "recurse" back up the 
-       // stack setting the DFOutNum. 
-       if (ChildIt == Node->end()) { 
-         Node->DFSNumOut = DFSNum++; 
-         WorkStack.pop_back(); 
-       } else { 
-         // Otherwise, recursively visit this child. 
-         const DomTreeNodeBase<NodeT> *Child = *ChildIt; 
-         ++WorkStack.back().second; 
-   
-         WorkStack.push_back({Child, Child->begin()}); 
-         Child->DFSNumIn = DFSNum++; 
-       } 
-     } 
-   
-     SlowQueries = 0; 
-     DFSInfoValid = true; 
-   } 
-   
-   /// recalculate - compute a dominator tree for the given function 
-   void recalculate(ParentType &Func) { 
-     Parent = &Func; 
-     DomTreeBuilder::Calculate(*this); 
-   } 
-   
-   void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) { 
-     Parent = &Func; 
-     DomTreeBuilder::CalculateWithUpdates(*this, Updates); 
-   } 
-   
-   /// verify - checks if the tree is correct. There are 3 level of verification: 
-   ///  - Full --  verifies if the tree is correct by making sure all the 
-   ///             properties (including the parent and the sibling property) 
-   ///             hold. 
-   ///             Takes O(N^3) time. 
-   /// 
-   ///  - Basic -- checks if the tree is correct, but compares it to a freshly 
-   ///             constructed tree instead of checking the sibling property. 
-   ///             Takes O(N^2) time. 
-   /// 
-   ///  - Fast  -- checks basic tree structure and compares it with a freshly 
-   ///             constructed tree. 
-   ///             Takes O(N^2) time worst case, but is faster in practise (same 
-   ///             as tree construction). 
-   bool verify(VerificationLevel VL = VerificationLevel::Full) const { 
-     return DomTreeBuilder::Verify(*this, VL); 
-   } 
-   
-   void reset() { 
-     DomTreeNodes.clear(); 
-     Roots.clear(); 
-     RootNode = nullptr; 
-     Parent = nullptr; 
-     DFSInfoValid = false; 
-     SlowQueries = 0; 
-   } 
-   
- protected: 
-   void addRoot(NodeT *BB) { this->Roots.push_back(BB); } 
-   
-   DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) { 
-     return (DomTreeNodes[BB] = IDom->addChild( 
-                 std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom))) 
-         .get(); 
-   } 
-   
-   DomTreeNodeBase<NodeT> *createNode(NodeT *BB) { 
-     return (DomTreeNodes[BB] = 
-                 std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)) 
-         .get(); 
-   } 
-   
-   // NewBB is split and now it has one successor. Update dominator tree to 
-   // reflect this change. 
-   template <class N> 
-   void Split(typename GraphTraits<N>::NodeRef NewBB) { 
-     using GraphT = GraphTraits<N>; 
-     using NodeRef = typename GraphT::NodeRef; 
-     assert(std::distance(GraphT::child_begin(NewBB), 
-                          GraphT::child_end(NewBB)) == 1 && 
-            "NewBB should have a single successor!"); 
-     NodeRef NewBBSucc = *GraphT::child_begin(NewBB); 
-   
-     SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB)); 
-   
-     assert(!PredBlocks.empty() && "No predblocks?"); 
-   
-     bool NewBBDominatesNewBBSucc = true; 
-     for (auto *Pred : children<Inverse<N>>(NewBBSucc)) { 
-       if (Pred != NewBB && !dominates(NewBBSucc, Pred) && 
-           isReachableFromEntry(Pred)) { 
-         NewBBDominatesNewBBSucc = false; 
-         break; 
-       } 
-     } 
-   
-     // Find NewBB's immediate dominator and create new dominator tree node for 
-     // NewBB. 
-     NodeT *NewBBIDom = nullptr; 
-     unsigned i = 0; 
-     for (i = 0; i < PredBlocks.size(); ++i) 
-       if (isReachableFromEntry(PredBlocks[i])) { 
-         NewBBIDom = PredBlocks[i]; 
-         break; 
-       } 
-   
-     // It's possible that none of the predecessors of NewBB are reachable; 
-     // in that case, NewBB itself is unreachable, so nothing needs to be 
-     // changed. 
-     if (!NewBBIDom) return; 
-   
-     for (i = i + 1; i < PredBlocks.size(); ++i) { 
-       if (isReachableFromEntry(PredBlocks[i])) 
-         NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); 
-     } 
-   
-     // Create the new dominator tree node... and set the idom of NewBB. 
-     DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom); 
-   
-     // If NewBB strictly dominates other blocks, then it is now the immediate 
-     // dominator of NewBBSucc.  Update the dominator tree as appropriate. 
-     if (NewBBDominatesNewBBSucc) { 
-       DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc); 
-       changeImmediateDominator(NewBBSuccNode, NewBBNode); 
-     } 
-   } 
-   
-  private: 
-   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, 
-                                const DomTreeNodeBase<NodeT> *B) const { 
-     assert(A != B); 
-     assert(isReachableFromEntry(B)); 
-     assert(isReachableFromEntry(A)); 
-   
-     const unsigned ALevel = A->getLevel(); 
-     const DomTreeNodeBase<NodeT> *IDom; 
-   
-     // Don't walk nodes above A's subtree. When we reach A's level, we must 
-     // either find A or be in some other subtree not dominated by A. 
-     while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel) 
-       B = IDom;  // Walk up the tree 
-   
-     return B == A; 
-   } 
-   
-   /// Wipe this tree's state without releasing any resources. 
-   /// 
-   /// This is essentially a post-move helper only. It leaves the object in an 
-   /// assignable and destroyable state, but otherwise invalid. 
-   void wipe() { 
-     DomTreeNodes.clear(); 
-     RootNode = nullptr; 
-     Parent = nullptr; 
-   } 
- }; 
-   
- template <typename T> 
- using DomTreeBase = DominatorTreeBase<T, false>; 
-   
- template <typename T> 
- using PostDomTreeBase = DominatorTreeBase<T, true>; 
-   
- // These two functions are declared out of line as a workaround for building 
- // with old (< r147295) versions of clang because of pr11642. 
- template <typename NodeT, bool IsPostDom> 
- bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A, 
-                                                     const NodeT *B) const { 
-   if (A == B) 
-     return true; 
-   
-   // Cast away the const qualifiers here. This is ok since 
-   // this function doesn't actually return the values returned 
-   // from getNode. 
-   return dominates(getNode(const_cast<NodeT *>(A)), 
-                    getNode(const_cast<NodeT *>(B))); 
- } 
- template <typename NodeT, bool IsPostDom> 
- bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates( 
-     const NodeT *A, const NodeT *B) const { 
-   if (A == B) 
-     return false; 
-   
-   // Cast away the const qualifiers here. This is ok since 
-   // this function doesn't actually return the values returned 
-   // from getNode. 
-   return dominates(getNode(const_cast<NodeT *>(A)), 
-                    getNode(const_cast<NodeT *>(B))); 
- } 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_SUPPORT_GENERICDOMTREE_H 
-