//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines an API used to report recoverable errors.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_ERROR_H
 
#define LLVM_SUPPORT_ERROR_H
 
 
 
#include "llvm-c/Error.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringExtras.h"
 
#include "llvm/ADT/Twine.h"
 
#include "llvm/Config/abi-breaking.h"
 
#include "llvm/Support/AlignOf.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/Debug.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include "llvm/Support/ErrorOr.h"
 
#include "llvm/Support/Format.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <cstdlib>
 
#include <functional>
 
#include <memory>
 
#include <new>
 
#include <optional>
 
#include <string>
 
#include <system_error>
 
#include <type_traits>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class ErrorSuccess;
 
 
 
/// Base class for error info classes. Do not extend this directly: Extend
 
/// the ErrorInfo template subclass instead.
 
class ErrorInfoBase {
 
public:
 
  virtual ~ErrorInfoBase() = default;
 
 
 
  /// Print an error message to an output stream.
 
  virtual void log(raw_ostream &OS) const = 0;
 
 
 
  /// Return the error message as a string.
 
  virtual std::string message() const {
 
    std::string Msg;
 
    raw_string_ostream OS(Msg);
 
    log(OS);
 
    return OS.str();
 
  }
 
 
 
  /// Convert this error to a std::error_code.
 
  ///
 
  /// This is a temporary crutch to enable interaction with code still
 
  /// using std::error_code. It will be removed in the future.
 
  virtual std::error_code convertToErrorCode() const = 0;
 
 
 
  // Returns the class ID for this type.
 
  static const void *classID() { return &ID; }
 
 
 
  // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
 
  virtual const void *dynamicClassID() const = 0;
 
 
 
  // Check whether this instance is a subclass of the class identified by
 
  // ClassID.
 
  virtual bool isA(const void *const ClassID) const {
 
    return ClassID == classID();
 
  }
 
 
 
  // Check whether this instance is a subclass of ErrorInfoT.
 
  template <typename ErrorInfoT> bool isA() const {
 
    return isA(ErrorInfoT::classID());
 
  }
 
 
 
private:
 
  virtual void anchor();
 
 
 
  static char ID;
 
};
 
 
 
/// Lightweight error class with error context and mandatory checking.
 
///
 
/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
 
/// are represented by setting the pointer to a ErrorInfoBase subclass
 
/// instance containing information describing the failure. Success is
 
/// represented by a null pointer value.
 
///
 
/// Instances of Error also contains a 'Checked' flag, which must be set
 
/// before the destructor is called, otherwise the destructor will trigger a
 
/// runtime error. This enforces at runtime the requirement that all Error
 
/// instances be checked or returned to the caller.
 
///
 
/// There are two ways to set the checked flag, depending on what state the
 
/// Error instance is in. For Error instances indicating success, it
 
/// is sufficient to invoke the boolean conversion operator. E.g.:
 
///
 
///   @code{.cpp}
 
///   Error foo(<...>);
 
///
 
///   if (auto E = foo(<...>))
 
///     return E; // <- Return E if it is in the error state.
 
///   // We have verified that E was in the success state. It can now be safely
 
///   // destroyed.
 
///   @endcode
 
///
 
/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
 
/// without testing the return value will raise a runtime error, even if foo
 
/// returns success.
 
///
 
/// For Error instances representing failure, you must use either the
 
/// handleErrors or handleAllErrors function with a typed handler. E.g.:
 
///
 
///   @code{.cpp}
 
///   class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
 
///     // Custom error info.
 
///   };
 
///
 
///   Error foo(<...>) { return make_error<MyErrorInfo>(...); }
 
///
 
///   auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
 
///   auto NewE =
 
///     handleErrors(E,
 
///       [](const MyErrorInfo &M) {
 
///         // Deal with the error.
 
///       },
 
///       [](std::unique_ptr<OtherError> M) -> Error {
 
///         if (canHandle(*M)) {
 
///           // handle error.
 
///           return Error::success();
 
///         }
 
///         // Couldn't handle this error instance. Pass it up the stack.
 
///         return Error(std::move(M));
 
///       );
 
///   // Note - we must check or return NewE in case any of the handlers
 
///   // returned a new error.
 
///   @endcode
 
///
 
/// The handleAllErrors function is identical to handleErrors, except
 
/// that it has a void return type, and requires all errors to be handled and
 
/// no new errors be returned. It prevents errors (assuming they can all be
 
/// handled) from having to be bubbled all the way to the top-level.
 
///
 
/// *All* Error instances must be checked before destruction, even if
 
/// they're moved-assigned or constructed from Success values that have already
 
/// been checked. This enforces checking through all levels of the call stack.
 
class [[nodiscard]] Error {
 
  // ErrorList needs to be able to yank ErrorInfoBase pointers out of Errors
 
  // to add to the error list. It can't rely on handleErrors for this, since
 
  // handleErrors does not support ErrorList handlers.
 
  friend class ErrorList;
 
 
 
  // handleErrors needs to be able to set the Checked flag.
 
  template <typename... HandlerTs>
 
  friend Error handleErrors(Error E, HandlerTs &&... Handlers);
 
 
 
  // Expected<T> needs to be able to steal the payload when constructed from an
 
  // error.
 
  template <typename T> friend class Expected;
 
 
 
  // wrap needs to be able to steal the payload.
 
  friend LLVMErrorRef wrap(Error);
 
 
 
protected:
 
  /// Create a success value. Prefer using 'Error::success()' for readability
 
  Error() {
 
    setPtr(nullptr);
 
    setChecked(false);
 
  }
 
 
 
public:
 
  /// Create a success value.
 
  static ErrorSuccess success();
 
 
 
  // Errors are not copy-constructable.
 
  Error(const Error &Other) = delete;
 
 
 
  /// Move-construct an error value. The newly constructed error is considered
 
  /// unchecked, even if the source error had been checked. The original error
 
  /// becomes a checked Success value, regardless of its original state.
 
  Error(Error &&Other) {
 
    setChecked(true);
 
    *this = std::move(Other);
 
  }
 
 
 
  /// Create an error value. Prefer using the 'make_error' function, but
 
  /// this constructor can be useful when "re-throwing" errors from handlers.
 
  Error(std::unique_ptr<ErrorInfoBase> Payload) {
 
    setPtr(Payload.release());
 
    setChecked(false);
 
  }
 
 
 
  // Errors are not copy-assignable.
 
  Error &operator=(const Error &Other) = delete;
 
 
 
  /// Move-assign an error value. The current error must represent success, you
 
  /// you cannot overwrite an unhandled error. The current error is then
 
  /// considered unchecked. The source error becomes a checked success value,
 
  /// regardless of its original state.
 
  Error &operator=(Error &&Other) {
 
    // Don't allow overwriting of unchecked values.
 
    assertIsChecked();
 
    setPtr(Other.getPtr());
 
 
 
    // This Error is unchecked, even if the source error was checked.
 
    setChecked(false);
 
 
 
    // Null out Other's payload and set its checked bit.
 
    Other.setPtr(nullptr);
 
    Other.setChecked(true);
 
 
 
    return *this;
 
  }
 
 
 
  /// Destroy a Error. Fails with a call to abort() if the error is
 
  /// unchecked.
 
  ~Error() {
 
    assertIsChecked();
 
    delete getPtr();
 
  }
 
 
 
  /// Bool conversion. Returns true if this Error is in a failure state,
 
  /// and false if it is in an accept state. If the error is in a Success state
 
  /// it will be considered checked.
 
  explicit operator bool() {
 
    setChecked(getPtr() == nullptr);
 
    return getPtr() != nullptr;
 
  }
 
 
 
  /// Check whether one error is a subclass of another.
 
  template <typename ErrT> bool isA() const {
 
    return getPtr() && getPtr()->isA(ErrT::classID());
 
  }
 
 
 
  /// Returns the dynamic class id of this error, or null if this is a success
 
  /// value.
 
  const void* dynamicClassID() const {
 
    if (!getPtr())
 
      return nullptr;
 
    return getPtr()->dynamicClassID();
 
  }
 
 
 
private:
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  // assertIsChecked() happens very frequently, but under normal circumstances
 
  // is supposed to be a no-op.  So we want it to be inlined, but having a bunch
 
  // of debug prints can cause the function to be too large for inlining.  So
 
  // it's important that we define this function out of line so that it can't be
 
  // inlined.
 
  [[noreturn]] void fatalUncheckedError() const;
 
#endif
 
 
 
  void assertIsChecked() {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    if (LLVM_UNLIKELY(!getChecked() || getPtr()))
 
      fatalUncheckedError();
 
#endif
 
  }
 
 
 
  ErrorInfoBase *getPtr() const {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    return reinterpret_cast<ErrorInfoBase*>(
 
             reinterpret_cast<uintptr_t>(Payload) &
 
             ~static_cast<uintptr_t>(0x1));
 
#else
 
    return Payload;
 
#endif
 
  }
 
 
 
  void setPtr(ErrorInfoBase *EI) {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    Payload = reinterpret_cast<ErrorInfoBase*>(
 
                (reinterpret_cast<uintptr_t>(EI) &
 
                 ~static_cast<uintptr_t>(0x1)) |
 
                (reinterpret_cast<uintptr_t>(Payload) & 0x1));
 
#else
 
    Payload = EI;
 
#endif
 
  }
 
 
 
  bool getChecked() const {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
 
#else
 
    return true;
 
#endif
 
  }
 
 
 
  void setChecked(bool V) {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    Payload = reinterpret_cast<ErrorInfoBase*>(
 
                (reinterpret_cast<uintptr_t>(Payload) &
 
                  ~static_cast<uintptr_t>(0x1)) |
 
                  (V ? 0 : 1));
 
#endif
 
  }
 
 
 
  std::unique_ptr<ErrorInfoBase> takePayload() {
 
    std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
 
    setPtr(nullptr);
 
    setChecked(true);
 
    return Tmp;
 
  }
 
 
 
  friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
 
    if (auto *P = E.getPtr())
 
      P->log(OS);
 
    else
 
      OS << "success";
 
    return OS;
 
  }
 
 
 
  ErrorInfoBase *Payload = nullptr;
 
};
 
 
 
/// Subclass of Error for the sole purpose of identifying the success path in
 
/// the type system. This allows to catch invalid conversion to Expected<T> at
 
/// compile time.
 
class ErrorSuccess final : public Error {};
 
 
 
inline ErrorSuccess Error::success() { return ErrorSuccess(); }
 
 
 
/// Make a Error instance representing failure using the given error info
 
/// type.
 
template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
 
  return Error(std::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
 
}
 
 
 
/// Base class for user error types. Users should declare their error types
 
/// like:
 
///
 
/// class MyError : public ErrorInfo<MyError> {
 
///   ....
 
/// };
 
///
 
/// This class provides an implementation of the ErrorInfoBase::kind
 
/// method, which is used by the Error RTTI system.
 
template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
 
class ErrorInfo : public ParentErrT {
 
public:
 
  using ParentErrT::ParentErrT; // inherit constructors
 
 
 
  static const void *classID() { return &ThisErrT::ID; }
 
 
 
  const void *dynamicClassID() const override { return &ThisErrT::ID; }
 
 
 
  bool isA(const void *const ClassID) const override {
 
    return ClassID == classID() || ParentErrT::isA(ClassID);
 
  }
 
};
 
 
 
/// Special ErrorInfo subclass representing a list of ErrorInfos.
 
/// Instances of this class are constructed by joinError.
 
class ErrorList final : public ErrorInfo<ErrorList> {
 
  // handleErrors needs to be able to iterate the payload list of an
 
  // ErrorList.
 
  template <typename... HandlerTs>
 
  friend Error handleErrors(Error E, HandlerTs &&... Handlers);
 
 
 
  // joinErrors is implemented in terms of join.
 
  friend Error joinErrors(Error, Error);
 
 
 
public:
 
  void log(raw_ostream &OS) const override {
 
    OS << "Multiple errors:\n";
 
    for (const auto &ErrPayload : Payloads) {
 
      ErrPayload->log(OS);
 
      OS << "\n";
 
    }
 
  }
 
 
 
  std::error_code convertToErrorCode() const override;
 
 
 
  // Used by ErrorInfo::classID.
 
  static char ID;
 
 
 
private:
 
  ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
 
            std::unique_ptr<ErrorInfoBase> Payload2) {
 
    assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&
 
           "ErrorList constructor payloads should be singleton errors");
 
    Payloads.push_back(std::move(Payload1));
 
    Payloads.push_back(std::move(Payload2));
 
  }
 
 
 
  static Error join(Error E1, Error E2) {
 
    if (!E1)
 
      return E2;
 
    if (!E2)
 
      return E1;
 
    if (E1.isA<ErrorList>()) {
 
      auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
 
      if (E2.isA<ErrorList>()) {
 
        auto E2Payload = E2.takePayload();
 
        auto &E2List = static_cast<ErrorList &>(*E2Payload);
 
        for (auto &Payload : E2List.Payloads)
 
          E1List.Payloads.push_back(std::move(Payload));
 
      } else
 
        E1List.Payloads.push_back(E2.takePayload());
 
 
 
      return E1;
 
    }
 
    if (E2.isA<ErrorList>()) {
 
      auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
 
      E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
 
      return E2;
 
    }
 
    return Error(std::unique_ptr<ErrorList>(
 
        new ErrorList(E1.takePayload(), E2.takePayload())));
 
  }
 
 
 
  std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
 
};
 
 
 
/// Concatenate errors. The resulting Error is unchecked, and contains the
 
/// ErrorInfo(s), if any, contained in E1, followed by the
 
/// ErrorInfo(s), if any, contained in E2.
 
inline Error joinErrors(Error E1, Error E2) {
 
  return ErrorList::join(std::move(E1), std::move(E2));
 
}
 
 
 
/// Tagged union holding either a T or a Error.
 
///
 
/// This class parallels ErrorOr, but replaces error_code with Error. Since
 
/// Error cannot be copied, this class replaces getError() with
 
/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
 
/// error class type.
 
///
 
/// Example usage of 'Expected<T>' as a function return type:
 
///
 
///   @code{.cpp}
 
///     Expected<int> myDivide(int A, int B) {
 
///       if (B == 0) {
 
///         // return an Error
 
///         return createStringError(inconvertibleErrorCode(),
 
///                                  "B must not be zero!");
 
///       }
 
///       // return an integer
 
///       return A / B;
 
///     }
 
///   @endcode
 
///
 
///   Checking the results of to a function returning 'Expected<T>':
 
///   @code{.cpp}
 
///     if (auto E = Result.takeError()) {
 
///       // We must consume the error. Typically one of:
 
///       // - return the error to our caller
 
///       // - toString(), when logging
 
///       // - consumeError(), to silently swallow the error
 
///       // - handleErrors(), to distinguish error types
 
///       errs() << "Problem with division " << toString(std::move(E)) << "\n";
 
///       return;
 
///     }
 
///     // use the result
 
///     outs() << "The answer is " << *Result << "\n";
 
///   @endcode
 
///
 
///  For unit-testing a function returning an 'Expected<T>', see the
 
///  'EXPECT_THAT_EXPECTED' macros in llvm/Testing/Support/Error.h
 
 
 
template <class T> class [[nodiscard]] Expected {
 
  template <class T1> friend class ExpectedAsOutParameter;
 
  template <class OtherT> friend class Expected;
 
 
 
  static constexpr bool isRef = std::is_reference<T>::value;
 
 
 
  using wrap = std::reference_wrapper<std::remove_reference_t<T>>;
 
 
 
  using error_type = std::unique_ptr<ErrorInfoBase>;
 
 
 
public:
 
  using storage_type = std::conditional_t<isRef, wrap, T>;
 
  using value_type = T;
 
 
 
private:
 
  using reference = std::remove_reference_t<T> &;
 
  using const_reference = const std::remove_reference_t<T> &;
 
  using pointer = std::remove_reference_t<T> *;
 
  using const_pointer = const std::remove_reference_t<T> *;
 
 
 
public:
 
  /// Create an Expected<T> error value from the given Error.
 
  Expected(Error Err)
 
      : HasError(true)
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
        // Expected is unchecked upon construction in Debug builds.
 
        , Unchecked(true)
 
#endif
 
  {
 
    assert(Err && "Cannot create Expected<T> from Error success value.");
 
    new (getErrorStorage()) error_type(Err.takePayload());
 
  }
 
 
 
  /// Forbid to convert from Error::success() implicitly, this avoids having
 
  /// Expected<T> foo() { return Error::success(); } which compiles otherwise
 
  /// but triggers the assertion above.
 
  Expected(ErrorSuccess) = delete;
 
 
 
  /// Create an Expected<T> success value from the given OtherT value, which
 
  /// must be convertible to T.
 
  template <typename OtherT>
 
  Expected(OtherT &&Val,
 
           std::enable_if_t<std::is_convertible_v<OtherT, T>> * = nullptr)
 
      : HasError(false)
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
        // Expected is unchecked upon construction in Debug builds.
 
        ,
 
        Unchecked(true)
 
#endif
 
  {
 
    new (getStorage()) storage_type(std::forward<OtherT>(Val));
 
  }
 
 
 
  /// Move construct an Expected<T> value.
 
  Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
 
 
 
  /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
 
  /// must be convertible to T.
 
  template <class OtherT>
 
  Expected(Expected<OtherT> &&Other,
 
           std::enable_if_t<std::is_convertible_v<OtherT, T>> * = nullptr) {
 
    moveConstruct(std::move(Other));
 
  }
 
 
 
  /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
 
  /// isn't convertible to T.
 
  template <class OtherT>
 
  explicit Expected(
 
      Expected<OtherT> &&Other,
 
      std::enable_if_t<!std::is_convertible_v<OtherT, T>> * = nullptr) {
 
    moveConstruct(std::move(Other));
 
  }
 
 
 
  /// Move-assign from another Expected<T>.
 
  Expected &operator=(Expected &&Other) {
 
    moveAssign(std::move(Other));
 
    return *this;
 
  }
 
 
 
  /// Destroy an Expected<T>.
 
  ~Expected() {
 
    assertIsChecked();
 
    if (!HasError)
 
      getStorage()->~storage_type();
 
    else
 
      getErrorStorage()->~error_type();
 
  }
 
 
 
  /// Return false if there is an error.
 
  explicit operator bool() {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    Unchecked = HasError;
 
#endif
 
    return !HasError;
 
  }
 
 
 
  /// Returns a reference to the stored T value.
 
  reference get() {
 
    assertIsChecked();
 
    return *getStorage();
 
  }
 
 
 
  /// Returns a const reference to the stored T value.
 
  const_reference get() const {
 
    assertIsChecked();
 
    return const_cast<Expected<T> *>(this)->get();
 
  }
 
 
 
  /// Returns \a takeError() after moving the held T (if any) into \p V.
 
  template <class OtherT>
 
  Error moveInto(OtherT &Value,
 
                 std::enable_if_t<std::is_assignable<OtherT &, T &&>::value> * =
 
                     nullptr) && {
 
    if (*this)
 
      Value = std::move(get());
 
    return takeError();
 
  }
 
 
 
  /// Check that this Expected<T> is an error of type ErrT.
 
  template <typename ErrT> bool errorIsA() const {
 
    return HasError && (*getErrorStorage())->template isA<ErrT>();
 
  }
 
 
 
  /// Take ownership of the stored error.
 
  /// After calling this the Expected<T> is in an indeterminate state that can
 
  /// only be safely destructed. No further calls (beside the destructor) should
 
  /// be made on the Expected<T> value.
 
  Error takeError() {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    Unchecked = false;
 
#endif
 
    return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
 
  }
 
 
 
  /// Returns a pointer to the stored T value.
 
  pointer operator->() {
 
    assertIsChecked();
 
    return toPointer(getStorage());
 
  }
 
 
 
  /// Returns a const pointer to the stored T value.
 
  const_pointer operator->() const {
 
    assertIsChecked();
 
    return toPointer(getStorage());
 
  }
 
 
 
  /// Returns a reference to the stored T value.
 
  reference operator*() {
 
    assertIsChecked();
 
    return *getStorage();
 
  }
 
 
 
  /// Returns a const reference to the stored T value.
 
  const_reference operator*() const {
 
    assertIsChecked();
 
    return *getStorage();
 
  }
 
 
 
private:
 
  template <class T1>
 
  static bool compareThisIfSameType(const T1 &a, const T1 &b) {
 
    return &a == &b;
 
  }
 
 
 
  template <class T1, class T2>
 
  static bool compareThisIfSameType(const T1 &, const T2 &) {
 
    return false;
 
  }
 
 
 
  template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
 
    HasError = Other.HasError;
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    Unchecked = true;
 
    Other.Unchecked = false;
 
#endif
 
 
 
    if (!HasError)
 
      new (getStorage()) storage_type(std::move(*Other.getStorage()));
 
    else
 
      new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
 
  }
 
 
 
  template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
 
    assertIsChecked();
 
 
 
    if (compareThisIfSameType(*this, Other))
 
      return;
 
 
 
    this->~Expected();
 
    new (this) Expected(std::move(Other));
 
  }
 
 
 
  pointer toPointer(pointer Val) { return Val; }
 
 
 
  const_pointer toPointer(const_pointer Val) const { return Val; }
 
 
 
  pointer toPointer(wrap *Val) { return &Val->get(); }
 
 
 
  const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
 
 
 
  storage_type *getStorage() {
 
    assert(!HasError && "Cannot get value when an error exists!");
 
    return reinterpret_cast<storage_type *>(&TStorage);
 
  }
 
 
 
  const storage_type *getStorage() const {
 
    assert(!HasError && "Cannot get value when an error exists!");
 
    return reinterpret_cast<const storage_type *>(&TStorage);
 
  }
 
 
 
  error_type *getErrorStorage() {
 
    assert(HasError && "Cannot get error when a value exists!");
 
    return reinterpret_cast<error_type *>(&ErrorStorage);
 
  }
 
 
 
  const error_type *getErrorStorage() const {
 
    assert(HasError && "Cannot get error when a value exists!");
 
    return reinterpret_cast<const error_type *>(&ErrorStorage);
 
  }
 
 
 
  // Used by ExpectedAsOutParameter to reset the checked flag.
 
  void setUnchecked() {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    Unchecked = true;
 
#endif
 
  }
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  [[noreturn]] LLVM_ATTRIBUTE_NOINLINE void fatalUncheckedExpected() const {
 
    dbgs() << "Expected<T> must be checked before access or destruction.\n";
 
    if (HasError) {
 
      dbgs() << "Unchecked Expected<T> contained error:\n";
 
      (*getErrorStorage())->log(dbgs());
 
    } else
 
      dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
 
                "values in success mode must still be checked prior to being "
 
                "destroyed).\n";
 
    abort();
 
  }
 
#endif
 
 
 
  void assertIsChecked() const {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    if (LLVM_UNLIKELY(Unchecked))
 
      fatalUncheckedExpected();
 
#endif
 
  }
 
 
 
  union {
 
    AlignedCharArrayUnion<storage_type> TStorage;
 
    AlignedCharArrayUnion<error_type> ErrorStorage;
 
  };
 
  bool HasError : 1;
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  bool Unchecked : 1;
 
#endif
 
};
 
 
 
/// Report a serious error, calling any installed error handler. See
 
/// ErrorHandling.h.
 
[[noreturn]] void report_fatal_error(Error Err, bool gen_crash_diag = true);
 
 
 
/// Report a fatal error if Err is a failure value.
 
///
 
/// This function can be used to wrap calls to fallible functions ONLY when it
 
/// is known that the Error will always be a success value. E.g.
 
///
 
///   @code{.cpp}
 
///   // foo only attempts the fallible operation if DoFallibleOperation is
 
///   // true. If DoFallibleOperation is false then foo always returns
 
///   // Error::success().
 
///   Error foo(bool DoFallibleOperation);
 
///
 
///   cantFail(foo(false));
 
///   @endcode
 
inline void cantFail(Error Err, const char *Msg = nullptr) {
 
  if (Err) {
 
    if (!Msg)
 
      Msg = "Failure value returned from cantFail wrapped call";
 
#ifndef NDEBUG
 
    std::string Str;
 
    raw_string_ostream OS(Str);
 
    OS << Msg << "\n" << Err;
 
    Msg = OS.str().c_str();
 
#endif
 
    llvm_unreachable(Msg);
 
  }
 
}
 
 
 
/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
 
/// returns the contained value.
 
///
 
/// This function can be used to wrap calls to fallible functions ONLY when it
 
/// is known that the Error will always be a success value. E.g.
 
///
 
///   @code{.cpp}
 
///   // foo only attempts the fallible operation if DoFallibleOperation is
 
///   // true. If DoFallibleOperation is false then foo always returns an int.
 
///   Expected<int> foo(bool DoFallibleOperation);
 
///
 
///   int X = cantFail(foo(false));
 
///   @endcode
 
template <typename T>
 
T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
 
  if (ValOrErr)
 
    return std::move(*ValOrErr);
 
  else {
 
    if (!Msg)
 
      Msg = "Failure value returned from cantFail wrapped call";
 
#ifndef NDEBUG
 
    std::string Str;
 
    raw_string_ostream OS(Str);
 
    auto E = ValOrErr.takeError();
 
    OS << Msg << "\n" << E;
 
    Msg = OS.str().c_str();
 
#endif
 
    llvm_unreachable(Msg);
 
  }
 
}
 
 
 
/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
 
/// returns the contained reference.
 
///
 
/// This function can be used to wrap calls to fallible functions ONLY when it
 
/// is known that the Error will always be a success value. E.g.
 
///
 
///   @code{.cpp}
 
///   // foo only attempts the fallible operation if DoFallibleOperation is
 
///   // true. If DoFallibleOperation is false then foo always returns a Bar&.
 
///   Expected<Bar&> foo(bool DoFallibleOperation);
 
///
 
///   Bar &X = cantFail(foo(false));
 
///   @endcode
 
template <typename T>
 
T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
 
  if (ValOrErr)
 
    return *ValOrErr;
 
  else {
 
    if (!Msg)
 
      Msg = "Failure value returned from cantFail wrapped call";
 
#ifndef NDEBUG
 
    std::string Str;
 
    raw_string_ostream OS(Str);
 
    auto E = ValOrErr.takeError();
 
    OS << Msg << "\n" << E;
 
    Msg = OS.str().c_str();
 
#endif
 
    llvm_unreachable(Msg);
 
  }
 
}
 
 
 
/// Helper for testing applicability of, and applying, handlers for
 
/// ErrorInfo types.
 
template <typename HandlerT>
 
class ErrorHandlerTraits
 
    : public ErrorHandlerTraits<
 
          decltype(&std::remove_reference_t<HandlerT>::operator())> {};
 
 
 
// Specialization functions of the form 'Error (const ErrT&)'.
 
template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
 
public:
 
  static bool appliesTo(const ErrorInfoBase &E) {
 
    return E.template isA<ErrT>();
 
  }
 
 
 
  template <typename HandlerT>
 
  static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
 
    assert(appliesTo(*E) && "Applying incorrect handler");
 
    return H(static_cast<ErrT &>(*E));
 
  }
 
};
 
 
 
// Specialization functions of the form 'void (const ErrT&)'.
 
template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
 
public:
 
  static bool appliesTo(const ErrorInfoBase &E) {
 
    return E.template isA<ErrT>();
 
  }
 
 
 
  template <typename HandlerT>
 
  static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
 
    assert(appliesTo(*E) && "Applying incorrect handler");
 
    H(static_cast<ErrT &>(*E));
 
    return Error::success();
 
  }
 
};
 
 
 
/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
 
template <typename ErrT>
 
class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
 
public:
 
  static bool appliesTo(const ErrorInfoBase &E) {
 
    return E.template isA<ErrT>();
 
  }
 
 
 
  template <typename HandlerT>
 
  static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
 
    assert(appliesTo(*E) && "Applying incorrect handler");
 
    std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
 
    return H(std::move(SubE));
 
  }
 
};
 
 
 
/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
 
template <typename ErrT>
 
class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
 
public:
 
  static bool appliesTo(const ErrorInfoBase &E) {
 
    return E.template isA<ErrT>();
 
  }
 
 
 
  template <typename HandlerT>
 
  static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
 
    assert(appliesTo(*E) && "Applying incorrect handler");
 
    std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
 
    H(std::move(SubE));
 
    return Error::success();
 
  }
 
};
 
 
 
// Specialization for member functions of the form 'RetT (const ErrT&)'.
 
template <typename C, typename RetT, typename ErrT>
 
class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
 
    : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
 
 
 
// Specialization for member functions of the form 'RetT (const ErrT&) const'.
 
template <typename C, typename RetT, typename ErrT>
 
class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
 
    : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
 
 
 
// Specialization for member functions of the form 'RetT (const ErrT&)'.
 
template <typename C, typename RetT, typename ErrT>
 
class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
 
    : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
 
 
 
// Specialization for member functions of the form 'RetT (const ErrT&) const'.
 
template <typename C, typename RetT, typename ErrT>
 
class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
 
    : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
 
 
 
/// Specialization for member functions of the form
 
/// 'RetT (std::unique_ptr<ErrT>)'.
 
template <typename C, typename RetT, typename ErrT>
 
class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
 
    : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
 
 
 
/// Specialization for member functions of the form
 
/// 'RetT (std::unique_ptr<ErrT>) const'.
 
template <typename C, typename RetT, typename ErrT>
 
class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
 
    : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
 
 
 
inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
 
  return Error(std::move(Payload));
 
}
 
 
 
template <typename HandlerT, typename... HandlerTs>
 
Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
 
                      HandlerT &&Handler, HandlerTs &&... Handlers) {
 
  if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
 
    return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
 
                                               std::move(Payload));
 
  return handleErrorImpl(std::move(Payload),
 
                         std::forward<HandlerTs>(Handlers)...);
 
}
 
 
 
/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
 
/// unhandled errors (or Errors returned by handlers) are re-concatenated and
 
/// returned.
 
/// Because this function returns an error, its result must also be checked
 
/// or returned. If you intend to handle all errors use handleAllErrors
 
/// (which returns void, and will abort() on unhandled errors) instead.
 
template <typename... HandlerTs>
 
Error handleErrors(Error E, HandlerTs &&... Hs) {
 
  if (!E)
 
    return Error::success();
 
 
 
  std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
 
 
 
  if (Payload->isA<ErrorList>()) {
 
    ErrorList &List = static_cast<ErrorList &>(*Payload);
 
    Error R;
 
    for (auto &P : List.Payloads)
 
      R = ErrorList::join(
 
          std::move(R),
 
          handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
 
    return R;
 
  }
 
 
 
  return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
 
}
 
 
 
/// Behaves the same as handleErrors, except that by contract all errors
 
/// *must* be handled by the given handlers (i.e. there must be no remaining
 
/// errors after running the handlers, or llvm_unreachable is called).
 
template <typename... HandlerTs>
 
void handleAllErrors(Error E, HandlerTs &&... Handlers) {
 
  cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
 
}
 
 
 
/// Check that E is a non-error, then drop it.
 
/// If E is an error, llvm_unreachable will be called.
 
inline void handleAllErrors(Error E) {
 
  cantFail(std::move(E));
 
}
 
 
 
/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
 
///
 
/// If the incoming value is a success value it is returned unmodified. If it
 
/// is a failure value then it the contained error is passed to handleErrors.
 
/// If handleErrors is able to handle the error then the RecoveryPath functor
 
/// is called to supply the final result. If handleErrors is not able to
 
/// handle all errors then the unhandled errors are returned.
 
///
 
/// This utility enables the follow pattern:
 
///
 
///   @code{.cpp}
 
///   enum FooStrategy { Aggressive, Conservative };
 
///   Expected<Foo> foo(FooStrategy S);
 
///
 
///   auto ResultOrErr =
 
///     handleExpected(
 
///       foo(Aggressive),
 
///       []() { return foo(Conservative); },
 
///       [](AggressiveStrategyError&) {
 
///         // Implicitly conusme this - we'll recover by using a conservative
 
///         // strategy.
 
///       });
 
///
 
///   @endcode
 
template <typename T, typename RecoveryFtor, typename... HandlerTs>
 
Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
 
                           HandlerTs &&... Handlers) {
 
  if (ValOrErr)
 
    return ValOrErr;
 
 
 
  if (auto Err = handleErrors(ValOrErr.takeError(),
 
                              std::forward<HandlerTs>(Handlers)...))
 
    return std::move(Err);
 
 
 
  return RecoveryPath();
 
}
 
 
 
/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
 
/// will be printed before the first one is logged. A newline will be printed
 
/// after each error.
 
///
 
/// This function is compatible with the helpers from Support/WithColor.h. You
 
/// can pass any of them as the OS. Please consider using them instead of
 
/// including 'error: ' in the ErrorBanner.
 
///
 
/// This is useful in the base level of your program to allow clean termination
 
/// (allowing clean deallocation of resources, etc.), while reporting error
 
/// information to the user.
 
void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
 
 
 
/// Write all error messages (if any) in E to a string. The newline character
 
/// is used to separate error messages.
 
inline std::string toString(Error E) {
 
  SmallVector<std::string, 2> Errors;
 
  handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
 
    Errors.push_back(EI.message());
 
  });
 
  return join(Errors.begin(), Errors.end(), "\n");
 
}
 
 
 
/// Consume a Error without doing anything. This method should be used
 
/// only where an error can be considered a reasonable and expected return
 
/// value.
 
///
 
/// Uses of this method are potentially indicative of design problems: If it's
 
/// legitimate to do nothing while processing an "error", the error-producer
 
/// might be more clearly refactored to return an std::optional<T>.
 
inline void consumeError(Error Err) {
 
  handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
 
}
 
 
 
/// Convert an Expected to an Optional without doing anything. This method
 
/// should be used only where an error can be considered a reasonable and
 
/// expected return value.
 
///
 
/// Uses of this method are potentially indicative of problems: perhaps the
 
/// error should be propagated further, or the error-producer should just
 
/// return an Optional in the first place.
 
template <typename T> std::optional<T> expectedToOptional(Expected<T> &&E) {
 
  if (E)
 
    return std::move(*E);
 
  consumeError(E.takeError());
 
  return std::nullopt;
 
}
 
 
 
template <typename T> std::optional<T> expectedToStdOptional(Expected<T> &&E) {
 
  if (E)
 
    return std::move(*E);
 
  consumeError(E.takeError());
 
  return std::nullopt;
 
}
 
 
 
/// Helper for converting an Error to a bool.
 
///
 
/// This method returns true if Err is in an error state, or false if it is
 
/// in a success state.  Puts Err in a checked state in both cases (unlike
 
/// Error::operator bool(), which only does this for success states).
 
inline bool errorToBool(Error Err) {
 
  bool IsError = static_cast<bool>(Err);
 
  if (IsError)
 
    consumeError(std::move(Err));
 
  return IsError;
 
}
 
 
 
/// Helper for Errors used as out-parameters.
 
///
 
/// This helper is for use with the Error-as-out-parameter idiom, where an error
 
/// is passed to a function or method by reference, rather than being returned.
 
/// In such cases it is helpful to set the checked bit on entry to the function
 
/// so that the error can be written to (unchecked Errors abort on assignment)
 
/// and clear the checked bit on exit so that clients cannot accidentally forget
 
/// to check the result. This helper performs these actions automatically using
 
/// RAII:
 
///
 
///   @code{.cpp}
 
///   Result foo(Error &Err) {
 
///     ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
 
///     // <body of foo>
 
///     // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
 
///   }
 
///   @endcode
 
///
 
/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
 
/// used with optional Errors (Error pointers that are allowed to be null). If
 
/// ErrorAsOutParameter took an Error reference, an instance would have to be
 
/// created inside every condition that verified that Error was non-null. By
 
/// taking an Error pointer we can just create one instance at the top of the
 
/// function.
 
class ErrorAsOutParameter {
 
public:
 
  ErrorAsOutParameter(Error *Err) : Err(Err) {
 
    // Raise the checked bit if Err is success.
 
    if (Err)
 
      (void)!!*Err;
 
  }
 
 
 
  ~ErrorAsOutParameter() {
 
    // Clear the checked bit.
 
    if (Err && !*Err)
 
      *Err = Error::success();
 
  }
 
 
 
private:
 
  Error *Err;
 
};
 
 
 
/// Helper for Expected<T>s used as out-parameters.
 
///
 
/// See ErrorAsOutParameter.
 
template <typename T>
 
class ExpectedAsOutParameter {
 
public:
 
  ExpectedAsOutParameter(Expected<T> *ValOrErr)
 
    : ValOrErr(ValOrErr) {
 
    if (ValOrErr)
 
      (void)!!*ValOrErr;
 
  }
 
 
 
  ~ExpectedAsOutParameter() {
 
    if (ValOrErr)
 
      ValOrErr->setUnchecked();
 
  }
 
 
 
private:
 
  Expected<T> *ValOrErr;
 
};
 
 
 
/// This class wraps a std::error_code in a Error.
 
///
 
/// This is useful if you're writing an interface that returns a Error
 
/// (or Expected) and you want to call code that still returns
 
/// std::error_codes.
 
class ECError : public ErrorInfo<ECError> {
 
  friend Error errorCodeToError(std::error_code);
 
 
 
  void anchor() override;
 
 
 
public:
 
  void setErrorCode(std::error_code EC) { this->EC = EC; }
 
  std::error_code convertToErrorCode() const override { return EC; }
 
  void log(raw_ostream &OS) const override { OS << EC.message(); }
 
 
 
  // Used by ErrorInfo::classID.
 
  static char ID;
 
 
 
protected:
 
  ECError() = default;
 
  ECError(std::error_code EC) : EC(EC) {}
 
 
 
  std::error_code EC;
 
};
 
 
 
/// The value returned by this function can be returned from convertToErrorCode
 
/// for Error values where no sensible translation to std::error_code exists.
 
/// It should only be used in this situation, and should never be used where a
 
/// sensible conversion to std::error_code is available, as attempts to convert
 
/// to/from this error will result in a fatal error. (i.e. it is a programmatic
 
/// error to try to convert such a value).
 
std::error_code inconvertibleErrorCode();
 
 
 
/// Helper for converting an std::error_code to a Error.
 
Error errorCodeToError(std::error_code EC);
 
 
 
/// Helper for converting an ECError to a std::error_code.
 
///
 
/// This method requires that Err be Error() or an ECError, otherwise it
 
/// will trigger a call to abort().
 
std::error_code errorToErrorCode(Error Err);
 
 
 
/// Convert an ErrorOr<T> to an Expected<T>.
 
template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
 
  if (auto EC = EO.getError())
 
    return errorCodeToError(EC);
 
  return std::move(*EO);
 
}
 
 
 
/// Convert an Expected<T> to an ErrorOr<T>.
 
template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
 
  if (auto Err = E.takeError())
 
    return errorToErrorCode(std::move(Err));
 
  return std::move(*E);
 
}
 
 
 
/// This class wraps a string in an Error.
 
///
 
/// StringError is useful in cases where the client is not expected to be able
 
/// to consume the specific error message programmatically (for example, if the
 
/// error message is to be presented to the user).
 
///
 
/// StringError can also be used when additional information is to be printed
 
/// along with a error_code message. Depending on the constructor called, this
 
/// class can either display:
 
///    1. the error_code message (ECError behavior)
 
///    2. a string
 
///    3. the error_code message and a string
 
///
 
/// These behaviors are useful when subtyping is required; for example, when a
 
/// specific library needs an explicit error type. In the example below,
 
/// PDBError is derived from StringError:
 
///
 
///   @code{.cpp}
 
///   Expected<int> foo() {
 
///      return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
 
///                                        "Additional information");
 
///   }
 
///   @endcode
 
///
 
class StringError : public ErrorInfo<StringError> {
 
public:
 
  static char ID;
 
 
 
  // Prints EC + S and converts to EC
 
  StringError(std::error_code EC, const Twine &S = Twine());
 
 
 
  // Prints S and converts to EC
 
  StringError(const Twine &S, std::error_code EC);
 
 
 
  void log(raw_ostream &OS) const override;
 
  std::error_code convertToErrorCode() const override;
 
 
 
  const std::string &getMessage() const { return Msg; }
 
 
 
private:
 
  std::string Msg;
 
  std::error_code EC;
 
  const bool PrintMsgOnly = false;
 
};
 
 
 
/// Create formatted StringError object.
 
template <typename... Ts>
 
inline Error createStringError(std::error_code EC, char const *Fmt,
 
                               const Ts &... Vals) {
 
  std::string Buffer;
 
  raw_string_ostream Stream(Buffer);
 
  Stream << format(Fmt, Vals...);
 
  return make_error<StringError>(Stream.str(), EC);
 
}
 
 
 
Error createStringError(std::error_code EC, char const *Msg);
 
 
 
inline Error createStringError(std::error_code EC, const Twine &S) {
 
  return createStringError(EC, S.str().c_str());
 
}
 
 
 
template <typename... Ts>
 
inline Error createStringError(std::errc EC, char const *Fmt,
 
                               const Ts &... Vals) {
 
  return createStringError(std::make_error_code(EC), Fmt, Vals...);
 
}
 
 
 
/// This class wraps a filename and another Error.
 
///
 
/// In some cases, an error needs to live along a 'source' name, in order to
 
/// show more detailed information to the user.
 
class FileError final : public ErrorInfo<FileError> {
 
 
 
  friend Error createFileError(const Twine &, Error);
 
  friend Error createFileError(const Twine &, size_t, Error);
 
 
 
public:
 
  void log(raw_ostream &OS) const override {
 
    assert(Err && "Trying to log after takeError().");
 
    OS << "'" << FileName << "': ";
 
    if (Line)
 
      OS << "line " << *Line << ": ";
 
    Err->log(OS);
 
  }
 
 
 
  std::string messageWithoutFileInfo() const {
 
    std::string Msg;
 
    raw_string_ostream OS(Msg);
 
    Err->log(OS);
 
    return OS.str();
 
  }
 
 
 
  StringRef getFileName() const { return FileName; }
 
 
 
  Error takeError() { return Error(std::move(Err)); }
 
 
 
  std::error_code convertToErrorCode() const override;
 
 
 
  // Used by ErrorInfo::classID.
 
  static char ID;
 
 
 
private:
 
  FileError(const Twine &F, std::optional<size_t> LineNum,
 
            std::unique_ptr<ErrorInfoBase> E) {
 
    assert(E && "Cannot create FileError from Error success value.");
 
    FileName = F.str();
 
    Err = std::move(E);
 
    Line = std::move(LineNum);
 
  }
 
 
 
  static Error build(const Twine &F, std::optional<size_t> Line, Error E) {
 
    std::unique_ptr<ErrorInfoBase> Payload;
 
    handleAllErrors(std::move(E),
 
                    [&](std::unique_ptr<ErrorInfoBase> EIB) -> Error {
 
                      Payload = std::move(EIB);
 
                      return Error::success();
 
                    });
 
    return Error(
 
        std::unique_ptr<FileError>(new FileError(F, Line, std::move(Payload))));
 
  }
 
 
 
  std::string FileName;
 
  std::optional<size_t> Line;
 
  std::unique_ptr<ErrorInfoBase> Err;
 
};
 
 
 
/// Concatenate a source file path and/or name with an Error. The resulting
 
/// Error is unchecked.
 
inline Error createFileError(const Twine &F, Error E) {
 
  return FileError::build(F, std::optional<size_t>(), std::move(E));
 
}
 
 
 
/// Concatenate a source file path and/or name with line number and an Error.
 
/// The resulting Error is unchecked.
 
inline Error createFileError(const Twine &F, size_t Line, Error E) {
 
  return FileError::build(F, std::optional<size_t>(Line), std::move(E));
 
}
 
 
 
/// Concatenate a source file path and/or name with a std::error_code 
 
/// to form an Error object.
 
inline Error createFileError(const Twine &F, std::error_code EC) {
 
  return createFileError(F, errorCodeToError(EC));
 
}
 
 
 
/// Concatenate a source file path and/or name with line number and
 
/// std::error_code to form an Error object.
 
inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
 
  return createFileError(F, Line, errorCodeToError(EC));
 
}
 
 
 
Error createFileError(const Twine &F, ErrorSuccess) = delete;
 
 
 
/// Helper for check-and-exit error handling.
 
///
 
/// For tool use only. NOT FOR USE IN LIBRARY CODE.
 
///
 
class ExitOnError {
 
public:
 
  /// Create an error on exit helper.
 
  ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
 
      : Banner(std::move(Banner)),
 
        GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
 
 
 
  /// Set the banner string for any errors caught by operator().
 
  void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
 
 
 
  /// Set the exit-code mapper function.
 
  void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
 
    this->GetExitCode = std::move(GetExitCode);
 
  }
 
 
 
  /// Check Err. If it's in a failure state log the error(s) and exit.
 
  void operator()(Error Err) const { checkError(std::move(Err)); }
 
 
 
  /// Check E. If it's in a success state then return the contained value. If
 
  /// it's in a failure state log the error(s) and exit.
 
  template <typename T> T operator()(Expected<T> &&E) const {
 
    checkError(E.takeError());
 
    return std::move(*E);
 
  }
 
 
 
  /// Check E. If it's in a success state then return the contained reference. If
 
  /// it's in a failure state log the error(s) and exit.
 
  template <typename T> T& operator()(Expected<T&> &&E) const {
 
    checkError(E.takeError());
 
    return *E;
 
  }
 
 
 
private:
 
  void checkError(Error Err) const {
 
    if (Err) {
 
      int ExitCode = GetExitCode(Err);
 
      logAllUnhandledErrors(std::move(Err), errs(), Banner);
 
      exit(ExitCode);
 
    }
 
  }
 
 
 
  std::string Banner;
 
  std::function<int(const Error &)> GetExitCode;
 
};
 
 
 
/// Conversion from Error to LLVMErrorRef for C error bindings.
 
inline LLVMErrorRef wrap(Error Err) {
 
  return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
 
}
 
 
 
/// Conversion from LLVMErrorRef to Error for C error bindings.
 
inline Error unwrap(LLVMErrorRef ErrRef) {
 
  return Error(std::unique_ptr<ErrorInfoBase>(
 
      reinterpret_cast<ErrorInfoBase *>(ErrRef)));
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_SUPPORT_ERROR_H