//===- BranchProbability.h - Branch Probability Wrapper ---------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Definition of BranchProbability shared by IR and Machine Instructions.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_BRANCHPROBABILITY_H
 
#define LLVM_SUPPORT_BRANCHPROBABILITY_H
 
 
 
#include "llvm/Support/DataTypes.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <iterator>
 
#include <numeric>
 
 
 
namespace llvm {
 
 
 
class raw_ostream;
 
 
 
// This class represents Branch Probability as a non-negative fraction that is
 
// no greater than 1. It uses a fixed-point-like implementation, in which the
 
// denominator is always a constant value (here we use 1<<31 for maximum
 
// precision).
 
class BranchProbability {
 
  // Numerator
 
  uint32_t N;
 
 
 
  // Denominator, which is a constant value.
 
  static constexpr uint32_t D = 1u << 31;
 
  static constexpr uint32_t UnknownN = UINT32_MAX;
 
 
 
  // Construct a BranchProbability with only numerator assuming the denominator
 
  // is 1<<31. For internal use only.
 
  explicit BranchProbability(uint32_t n) : N(n) {}
 
 
 
public:
 
  BranchProbability() : N(UnknownN) {}
 
  BranchProbability(uint32_t Numerator, uint32_t Denominator);
 
 
 
  bool isZero() const { return N == 0; }
 
  bool isUnknown() const { return N == UnknownN; }
 
 
 
  static BranchProbability getZero() { return BranchProbability(0); }
 
  static BranchProbability getOne() { return BranchProbability(D); }
 
  static BranchProbability getUnknown() { return BranchProbability(UnknownN); }
 
  // Create a BranchProbability object with the given numerator and 1<<31
 
  // as denominator.
 
  static BranchProbability getRaw(uint32_t N) { return BranchProbability(N); }
 
  // Create a BranchProbability object from 64-bit integers.
 
  static BranchProbability getBranchProbability(uint64_t Numerator,
 
                                                uint64_t Denominator);
 
 
 
  // Normalize given probabilties so that the sum of them becomes approximate
 
  // one.
 
  template <class ProbabilityIter>
 
  static void normalizeProbabilities(ProbabilityIter Begin,
 
                                     ProbabilityIter End);
 
 
 
  uint32_t getNumerator() const { return N; }
 
  static uint32_t getDenominator() { return D; }
 
 
 
  // Return (1 - Probability).
 
  BranchProbability getCompl() const { return BranchProbability(D - N); }
 
 
 
  raw_ostream &print(raw_ostream &OS) const;
 
 
 
  void dump() const;
 
 
 
  /// Scale a large integer.
 
  ///
 
  /// Scales \c Num.  Guarantees full precision.  Returns the floor of the
 
  /// result.
 
  ///
 
  /// \return \c Num times \c this.
 
  uint64_t scale(uint64_t Num) const;
 
 
 
  /// Scale a large integer by the inverse.
 
  ///
 
  /// Scales \c Num by the inverse of \c this.  Guarantees full precision.
 
  /// Returns the floor of the result.
 
  ///
 
  /// \return \c Num divided by \c this.
 
  uint64_t scaleByInverse(uint64_t Num) const;
 
 
 
  BranchProbability &operator+=(BranchProbability RHS) {
 
    assert(N != UnknownN && RHS.N != UnknownN &&
 
           "Unknown probability cannot participate in arithmetics.");
 
    // Saturate the result in case of overflow.
 
    N = (uint64_t(N) + RHS.N > D) ? D : N + RHS.N;
 
    return *this;
 
  }
 
 
 
  BranchProbability &operator-=(BranchProbability RHS) {
 
    assert(N != UnknownN && RHS.N != UnknownN &&
 
           "Unknown probability cannot participate in arithmetics.");
 
    // Saturate the result in case of underflow.
 
    N = N < RHS.N ? 0 : N - RHS.N;
 
    return *this;
 
  }
 
 
 
  BranchProbability &operator*=(BranchProbability RHS) {
 
    assert(N != UnknownN && RHS.N != UnknownN &&
 
           "Unknown probability cannot participate in arithmetics.");
 
    N = (static_cast<uint64_t>(N) * RHS.N + D / 2) / D;
 
    return *this;
 
  }
 
 
 
  BranchProbability &operator*=(uint32_t RHS) {
 
    assert(N != UnknownN &&
 
           "Unknown probability cannot participate in arithmetics.");
 
    N = (uint64_t(N) * RHS > D) ? D : N * RHS;
 
    return *this;
 
  }
 
 
 
  BranchProbability &operator/=(BranchProbability RHS) {
 
    assert(N != UnknownN && RHS.N != UnknownN &&
 
           "Unknown probability cannot participate in arithmetics.");
 
    N = (static_cast<uint64_t>(N) * D + RHS.N / 2) / RHS.N;
 
    return *this;
 
  }
 
 
 
  BranchProbability &operator/=(uint32_t RHS) {
 
    assert(N != UnknownN &&
 
           "Unknown probability cannot participate in arithmetics.");
 
    assert(RHS > 0 && "The divider cannot be zero.");
 
    N /= RHS;
 
    return *this;
 
  }
 
 
 
  BranchProbability operator+(BranchProbability RHS) const {
 
    BranchProbability Prob(*this);
 
    Prob += RHS;
 
    return Prob;
 
  }
 
 
 
  BranchProbability operator-(BranchProbability RHS) const {
 
    BranchProbability Prob(*this);
 
    Prob -= RHS;
 
    return Prob;
 
  }
 
 
 
  BranchProbability operator*(BranchProbability RHS) const {
 
    BranchProbability Prob(*this);
 
    Prob *= RHS;
 
    return Prob;
 
  }
 
 
 
  BranchProbability operator*(uint32_t RHS) const {
 
    BranchProbability Prob(*this);
 
    Prob *= RHS;
 
    return Prob;
 
  }
 
 
 
  BranchProbability operator/(BranchProbability RHS) const {
 
    BranchProbability Prob(*this);
 
    Prob /= RHS;
 
    return Prob;
 
  }
 
 
 
  BranchProbability operator/(uint32_t RHS) const {
 
    BranchProbability Prob(*this);
 
    Prob /= RHS;
 
    return Prob;
 
  }
 
 
 
  bool operator==(BranchProbability RHS) const { return N == RHS.N; }
 
  bool operator!=(BranchProbability RHS) const { return !(*this == RHS); }
 
 
 
  bool operator<(BranchProbability RHS) const {
 
    assert(N != UnknownN && RHS.N != UnknownN &&
 
           "Unknown probability cannot participate in comparisons.");
 
    return N < RHS.N;
 
  }
 
 
 
  bool operator>(BranchProbability RHS) const {
 
    assert(N != UnknownN && RHS.N != UnknownN &&
 
           "Unknown probability cannot participate in comparisons.");
 
    return RHS < *this;
 
  }
 
 
 
  bool operator<=(BranchProbability RHS) const {
 
    assert(N != UnknownN && RHS.N != UnknownN &&
 
           "Unknown probability cannot participate in comparisons.");
 
    return !(RHS < *this);
 
  }
 
 
 
  bool operator>=(BranchProbability RHS) const {
 
    assert(N != UnknownN && RHS.N != UnknownN &&
 
           "Unknown probability cannot participate in comparisons.");
 
    return !(*this < RHS);
 
  }
 
};
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, BranchProbability Prob) {
 
  return Prob.print(OS);
 
}
 
 
 
template <class ProbabilityIter>
 
void BranchProbability::normalizeProbabilities(ProbabilityIter Begin,
 
                                               ProbabilityIter End) {
 
  if (Begin == End)
 
    return;
 
 
 
  unsigned UnknownProbCount = 0;
 
  uint64_t Sum = std::accumulate(Begin, End, uint64_t(0),
 
                                 [&](uint64_t S, const BranchProbability &BP) {
 
                                   if (!BP.isUnknown())
 
                                     return S + BP.N;
 
                                   UnknownProbCount++;
 
                                   return S;
 
                                 });
 
 
 
  if (UnknownProbCount > 0) {
 
    BranchProbability ProbForUnknown = BranchProbability::getZero();
 
    // If the sum of all known probabilities is less than one, evenly distribute
 
    // the complement of sum to unknown probabilities. Otherwise, set unknown
 
    // probabilities to zeros and continue to normalize known probabilities.
 
    if (Sum < BranchProbability::getDenominator())
 
      ProbForUnknown = BranchProbability::getRaw(
 
          (BranchProbability::getDenominator() - Sum) / UnknownProbCount);
 
 
 
    std::replace_if(Begin, End,
 
                    [](const BranchProbability &BP) { return BP.isUnknown(); },
 
                    ProbForUnknown);
 
 
 
    if (Sum <= BranchProbability::getDenominator())
 
      return;
 
  }
 
 
 
  if (Sum == 0) {
 
    BranchProbability BP(1, std::distance(Begin, End));
 
    std::fill(Begin, End, BP);
 
    return;
 
  }
 
 
 
  for (auto I = Begin; I != End; ++I)
 
    I->N = (I->N * uint64_t(D) + Sum / 2) / Sum;
 
}
 
 
 
}
 
 
 
#endif