//===- BinaryStreamArray.h - Array backed by an arbitrary stream *- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// Lightweight arrays that are backed by an arbitrary BinaryStream.  This file
 
/// provides two different array implementations.
 
///
 
///     VarStreamArray - Arrays of variable length records.  The user specifies
 
///       an Extractor type that can extract a record from a given offset and
 
///       return the number of bytes consumed by the record.
 
///
 
///     FixedStreamArray - Arrays of fixed length records.  This is similar in
 
///       spirit to ArrayRef<T>, but since it is backed by a BinaryStream, the
 
///       elements of the array need not be laid out in contiguous memory.
 
///
 
 
 
#ifndef LLVM_SUPPORT_BINARYSTREAMARRAY_H
 
#define LLVM_SUPPORT_BINARYSTREAMARRAY_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/Support/Alignment.h"
 
#include "llvm/Support/BinaryStreamRef.h"
 
#include "llvm/Support/Error.h"
 
#include <cassert>
 
#include <cstdint>
 
 
 
namespace llvm {
 
 
 
/// VarStreamArrayExtractor is intended to be specialized to provide customized
 
/// extraction logic.  On input it receives a BinaryStreamRef pointing to the
 
/// beginning of the next record, but where the length of the record is not yet
 
/// known.  Upon completion, it should return an appropriate Error instance if
 
/// a record could not be extracted, or if one could be extracted it should
 
/// return success and set Len to the number of bytes this record occupied in
 
/// the underlying stream, and it should fill out the fields of the value type
 
/// Item appropriately to represent the current record.
 
///
 
/// You can specialize this template for your own custom value types to avoid
 
/// having to specify a second template argument to VarStreamArray (documented
 
/// below).
 
template <typename T> struct VarStreamArrayExtractor {
 
  // Method intentionally deleted.  You must provide an explicit specialization
 
  // with the following method implemented.
 
  Error operator()(BinaryStreamRef Stream, uint32_t &Len,
 
                   T &Item) const = delete;
 
};
 
 
 
/// VarStreamArray represents an array of variable length records backed by a
 
/// stream.  This could be a contiguous sequence of bytes in memory, it could
 
/// be a file on disk, or it could be a PDB stream where bytes are stored as
 
/// discontiguous blocks in a file.  Usually it is desirable to treat arrays
 
/// as contiguous blocks of memory, but doing so with large PDB files, for
 
/// example, could mean allocating huge amounts of memory just to allow
 
/// re-ordering of stream data to be contiguous before iterating over it.  By
 
/// abstracting this out, we need not duplicate this memory, and we can
 
/// iterate over arrays in arbitrarily formatted streams.  Elements are parsed
 
/// lazily on iteration, so there is no upfront cost associated with building
 
/// or copying a VarStreamArray, no matter how large it may be.
 
///
 
/// You create a VarStreamArray by specifying a ValueType and an Extractor type.
 
/// If you do not specify an Extractor type, you are expected to specialize
 
/// VarStreamArrayExtractor<T> for your ValueType.
 
///
 
/// By default an Extractor is default constructed in the class, but in some
 
/// cases you might find it useful for an Extractor to maintain state across
 
/// extractions.  In this case you can provide your own Extractor through a
 
/// secondary constructor.  The following examples show various ways of
 
/// creating a VarStreamArray.
 
///
 
///       // Will use VarStreamArrayExtractor<MyType> as the extractor.
 
///       VarStreamArray<MyType> MyTypeArray;
 
///
 
///       // Will use a default-constructed MyExtractor as the extractor.
 
///       VarStreamArray<MyType, MyExtractor> MyTypeArray2;
 
///
 
///       // Will use the specific instance of MyExtractor provided.
 
///       // MyExtractor need not be default-constructible in this case.
 
///       MyExtractor E(SomeContext);
 
///       VarStreamArray<MyType, MyExtractor> MyTypeArray3(E);
 
///
 
 
 
template <typename ValueType, typename Extractor> class VarStreamArrayIterator;
 
 
 
template <typename ValueType,
 
          typename Extractor = VarStreamArrayExtractor<ValueType>>
 
class VarStreamArray {
 
  friend class VarStreamArrayIterator<ValueType, Extractor>;
 
 
 
public:
 
  typedef VarStreamArrayIterator<ValueType, Extractor> Iterator;
 
 
 
  VarStreamArray() = default;
 
 
 
  explicit VarStreamArray(const Extractor &E) : E(E) {}
 
 
 
  explicit VarStreamArray(BinaryStreamRef Stream, uint32_t Skew = 0)
 
      : Stream(Stream), Skew(Skew) {}
 
 
 
  VarStreamArray(BinaryStreamRef Stream, const Extractor &E, uint32_t Skew = 0)
 
      : Stream(Stream), E(E), Skew(Skew) {}
 
 
 
  Iterator begin(bool *HadError = nullptr) const {
 
    return Iterator(*this, E, Skew, nullptr);
 
  }
 
 
 
  bool valid() const { return Stream.valid(); }
 
 
 
  bool isOffsetValid(uint32_t Offset) const { return at(Offset) != end(); }
 
 
 
  uint32_t skew() const { return Skew; }
 
  Iterator end() const { return Iterator(E); }
 
 
 
  bool empty() const { return Stream.getLength() == 0; }
 
 
 
  VarStreamArray<ValueType, Extractor> substream(uint32_t Begin,
 
                                                 uint32_t End) const {
 
    assert(Begin >= Skew);
 
    // We should never cut off the beginning of the stream since it might be
 
    // skewed, meaning the initial bytes are important.
 
    BinaryStreamRef NewStream = Stream.slice(0, End);
 
    return {NewStream, E, Begin};
 
  }
 
 
 
  /// given an offset into the array's underlying stream, return an
 
  /// iterator to the record at that offset.  This is considered unsafe
 
  /// since the behavior is undefined if \p Offset does not refer to the
 
  /// beginning of a valid record.
 
  Iterator at(uint32_t Offset) const {
 
    return Iterator(*this, E, Offset, nullptr);
 
  }
 
 
 
  const Extractor &getExtractor() const { return E; }
 
  Extractor &getExtractor() { return E; }
 
 
 
  BinaryStreamRef getUnderlyingStream() const { return Stream; }
 
  void setUnderlyingStream(BinaryStreamRef NewStream, uint32_t NewSkew = 0) {
 
    Stream = NewStream;
 
    Skew = NewSkew;
 
  }
 
 
 
  void drop_front() { Skew += begin()->length(); }
 
 
 
private:
 
  BinaryStreamRef Stream;
 
  Extractor E;
 
  uint32_t Skew = 0;
 
};
 
 
 
template <typename ValueType, typename Extractor>
 
class VarStreamArrayIterator
 
    : public iterator_facade_base<VarStreamArrayIterator<ValueType, Extractor>,
 
                                  std::forward_iterator_tag, const ValueType> {
 
  typedef VarStreamArrayIterator<ValueType, Extractor> IterType;
 
  typedef VarStreamArray<ValueType, Extractor> ArrayType;
 
 
 
public:
 
  VarStreamArrayIterator(const ArrayType &Array, const Extractor &E,
 
                         uint32_t Offset, bool *HadError)
 
      : IterRef(Array.Stream.drop_front(Offset)), Extract(E),
 
        Array(&Array), AbsOffset(Offset), HadError(HadError) {
 
    if (IterRef.getLength() == 0)
 
      moveToEnd();
 
    else {
 
      auto EC = Extract(IterRef, ThisLen, ThisValue);
 
      if (EC) {
 
        consumeError(std::move(EC));
 
        markError();
 
      }
 
    }
 
  }
 
 
 
  VarStreamArrayIterator() = default;
 
  explicit VarStreamArrayIterator(const Extractor &E) : Extract(E) {}
 
  ~VarStreamArrayIterator() = default;
 
 
 
  bool operator==(const IterType &R) const {
 
    if (Array && R.Array) {
 
      // Both have a valid array, make sure they're same.
 
      assert(Array == R.Array);
 
      return IterRef == R.IterRef;
 
    }
 
 
 
    // Both iterators are at the end.
 
    if (!Array && !R.Array)
 
      return true;
 
 
 
    // One is not at the end and one is.
 
    return false;
 
  }
 
 
 
  const ValueType &operator*() const {
 
    assert(Array && !HasError);
 
    return ThisValue;
 
  }
 
 
 
  IterType &operator+=(unsigned N) {
 
    for (unsigned I = 0; I < N; ++I) {
 
      // We are done with the current record, discard it so that we are
 
      // positioned at the next record.
 
      AbsOffset += ThisLen;
 
      IterRef = IterRef.drop_front(ThisLen);
 
      if (IterRef.getLength() == 0) {
 
        // There is nothing after the current record, we must make this an end
 
        // iterator.
 
        moveToEnd();
 
      } else {
 
        // There is some data after the current record.
 
        auto EC = Extract(IterRef, ThisLen, ThisValue);
 
        if (EC) {
 
          consumeError(std::move(EC));
 
          markError();
 
        } else if (ThisLen == 0) {
 
          // An empty record? Make this an end iterator.
 
          moveToEnd();
 
        }
 
      }
 
    }
 
    return *this;
 
  }
 
 
 
  uint32_t offset() const { return AbsOffset; }
 
  uint32_t getRecordLength() const { return ThisLen; }
 
 
 
private:
 
  void moveToEnd() {
 
    Array = nullptr;
 
    ThisLen = 0;
 
  }
 
  void markError() {
 
    moveToEnd();
 
    HasError = true;
 
    if (HadError != nullptr)
 
      *HadError = true;
 
  }
 
 
 
  ValueType ThisValue;
 
  BinaryStreamRef IterRef;
 
  Extractor Extract;
 
  const ArrayType *Array{nullptr};
 
  uint32_t ThisLen{0};
 
  uint32_t AbsOffset{0};
 
  bool HasError{false};
 
  bool *HadError{nullptr};
 
};
 
 
 
template <typename T> class FixedStreamArrayIterator;
 
 
 
/// FixedStreamArray is similar to VarStreamArray, except with each record
 
/// having a fixed-length.  As with VarStreamArray, there is no upfront
 
/// cost associated with building or copying a FixedStreamArray, as the
 
/// memory for each element is not read from the backing stream until that
 
/// element is iterated.
 
template <typename T> class FixedStreamArray {
 
  friend class FixedStreamArrayIterator<T>;
 
 
 
public:
 
  typedef FixedStreamArrayIterator<T> Iterator;
 
 
 
  FixedStreamArray() = default;
 
  explicit FixedStreamArray(BinaryStreamRef Stream) : Stream(Stream) {
 
    assert(Stream.getLength() % sizeof(T) == 0);
 
  }
 
 
 
  bool operator==(const FixedStreamArray<T> &Other) const {
 
    return Stream == Other.Stream;
 
  }
 
 
 
  bool operator!=(const FixedStreamArray<T> &Other) const {
 
    return !(*this == Other);
 
  }
 
 
 
  FixedStreamArray(const FixedStreamArray &) = default;
 
  FixedStreamArray &operator=(const FixedStreamArray &) = default;
 
 
 
  const T &operator[](uint32_t Index) const {
 
    assert(Index < size());
 
    uint32_t Off = Index * sizeof(T);
 
    ArrayRef<uint8_t> Data;
 
    if (auto EC = Stream.readBytes(Off, sizeof(T), Data)) {
 
      assert(false && "Unexpected failure reading from stream");
 
      // This should never happen since we asserted that the stream length was
 
      // an exact multiple of the element size.
 
      consumeError(std::move(EC));
 
    }
 
    assert(isAddrAligned(Align::Of<T>(), Data.data()));
 
    return *reinterpret_cast<const T *>(Data.data());
 
  }
 
 
 
  uint32_t size() const { return Stream.getLength() / sizeof(T); }
 
 
 
  bool empty() const { return size() == 0; }
 
 
 
  FixedStreamArrayIterator<T> begin() const {
 
    return FixedStreamArrayIterator<T>(*this, 0);
 
  }
 
 
 
  FixedStreamArrayIterator<T> end() const {
 
    return FixedStreamArrayIterator<T>(*this, size());
 
  }
 
 
 
  const T &front() const { return *begin(); }
 
  const T &back() const {
 
    FixedStreamArrayIterator<T> I = end();
 
    return *(--I);
 
  }
 
 
 
  BinaryStreamRef getUnderlyingStream() const { return Stream; }
 
 
 
private:
 
  BinaryStreamRef Stream;
 
};
 
 
 
template <typename T>
 
class FixedStreamArrayIterator
 
    : public iterator_facade_base<FixedStreamArrayIterator<T>,
 
                                  std::random_access_iterator_tag, const T> {
 
 
 
public:
 
  FixedStreamArrayIterator(const FixedStreamArray<T> &Array, uint32_t Index)
 
      : Array(Array), Index(Index) {}
 
 
 
  FixedStreamArrayIterator(const FixedStreamArrayIterator<T> &Other)
 
      : Array(Other.Array), Index(Other.Index) {}
 
  FixedStreamArrayIterator<T> &
 
  operator=(const FixedStreamArrayIterator<T> &Other) {
 
    Array = Other.Array;
 
    Index = Other.Index;
 
    return *this;
 
  }
 
 
 
  const T &operator*() const { return Array[Index]; }
 
  const T &operator*() { return Array[Index]; }
 
 
 
  bool operator==(const FixedStreamArrayIterator<T> &R) const {
 
    assert(Array == R.Array);
 
    return (Index == R.Index) && (Array == R.Array);
 
  }
 
 
 
  FixedStreamArrayIterator<T> &operator+=(std::ptrdiff_t N) {
 
    Index += N;
 
    return *this;
 
  }
 
 
 
  FixedStreamArrayIterator<T> &operator-=(std::ptrdiff_t N) {
 
    assert(std::ptrdiff_t(Index) >= N);
 
    Index -= N;
 
    return *this;
 
  }
 
 
 
  std::ptrdiff_t operator-(const FixedStreamArrayIterator<T> &R) const {
 
    assert(Array == R.Array);
 
    assert(Index >= R.Index);
 
    return Index - R.Index;
 
  }
 
 
 
  bool operator<(const FixedStreamArrayIterator<T> &RHS) const {
 
    assert(Array == RHS.Array);
 
    return Index < RHS.Index;
 
  }
 
 
 
private:
 
  FixedStreamArray<T> Array;
 
  uint32_t Index;
 
};
 
 
 
} // namespace llvm
 
 
 
#endif // LLVM_SUPPORT_BINARYSTREAMARRAY_H