Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file implements class that drive and introspect deterministic finite-
  10. // state automata (DFAs) as generated by TableGen's -gen-automata backend.
  11. //
  12. // For a description of how to define an automaton, see
  13. // include/llvm/TableGen/Automaton.td.
  14. //
  15. // One important detail is that these deterministic automata are created from
  16. // (potentially) nondeterministic definitions. Therefore a unique sequence of
  17. // input symbols will produce one path through the DFA but multiple paths
  18. // through the original NFA. An automaton by default only returns "accepted" or
  19. // "not accepted", but frequently we want to analyze what NFA path was taken.
  20. // Finding a path through the NFA states that results in a DFA state can help
  21. // answer *what* the solution to a problem was, not just that there exists a
  22. // solution.
  23. //
  24. //===----------------------------------------------------------------------===//
  25.  
  26. #ifndef LLVM_SUPPORT_AUTOMATON_H
  27. #define LLVM_SUPPORT_AUTOMATON_H
  28.  
  29. #include "llvm/ADT/ArrayRef.h"
  30. #include "llvm/ADT/DenseMap.h"
  31. #include "llvm/ADT/SmallVector.h"
  32. #include "llvm/Support/Allocator.h"
  33. #include <deque>
  34. #include <map>
  35. #include <memory>
  36. #include <unordered_map>
  37. #include <vector>
  38.  
  39. namespace llvm {
  40.  
  41. using NfaPath = SmallVector<uint64_t, 4>;
  42.  
  43. /// Forward define the pair type used by the automata transition info tables.
  44. ///
  45. /// Experimental results with large tables have shown a significant (multiple
  46. /// orders of magnitude) parsing speedup by using a custom struct here with a
  47. /// trivial constructor rather than std::pair<uint64_t, uint64_t>.
  48. struct NfaStatePair {
  49.   uint64_t FromDfaState, ToDfaState;
  50.  
  51.   bool operator<(const NfaStatePair &Other) const {
  52.     return std::make_tuple(FromDfaState, ToDfaState) <
  53.            std::make_tuple(Other.FromDfaState, Other.ToDfaState);
  54.   }
  55. };
  56.  
  57. namespace internal {
  58. /// The internal class that maintains all possible paths through an NFA based
  59. /// on a path through the DFA.
  60. class NfaTranscriber {
  61. private:
  62.   /// Cached transition table. This is a table of NfaStatePairs that contains
  63.   /// zero-terminated sequences pointed to by DFA transitions.
  64.   ArrayRef<NfaStatePair> TransitionInfo;
  65.  
  66.   /// A simple linked-list of traversed states that can have a shared tail. The
  67.   /// traversed path is stored in reverse order with the latest state as the
  68.   /// head.
  69.   struct PathSegment {
  70.     uint64_t State;
  71.     PathSegment *Tail;
  72.   };
  73.  
  74.   /// We allocate segment objects frequently. Allocate them upfront and dispose
  75.   /// at the end of a traversal rather than hammering the system allocator.
  76.   SpecificBumpPtrAllocator<PathSegment> Allocator;
  77.  
  78.   /// Heads of each tracked path. These are not ordered.
  79.   std::deque<PathSegment *> Heads;
  80.  
  81.   /// The returned paths. This is populated during getPaths.
  82.   SmallVector<NfaPath, 4> Paths;
  83.  
  84.   /// Create a new segment and return it.
  85.   PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) {
  86.     PathSegment *P = Allocator.Allocate();
  87.     *P = {State, Tail};
  88.     return P;
  89.   }
  90.  
  91.   /// Pairs defines a sequence of possible NFA transitions for a single DFA
  92.   /// transition.
  93.   void transition(ArrayRef<NfaStatePair> Pairs) {
  94.     // Iterate over all existing heads. We will mutate the Heads deque during
  95.     // iteration.
  96.     unsigned NumHeads = Heads.size();
  97.     for (unsigned I = 0; I < NumHeads; ++I) {
  98.       PathSegment *Head = Heads[I];
  99.       // The sequence of pairs is sorted. Select the set of pairs that
  100.       // transition from the current head state.
  101.       auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL});
  102.       auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX});
  103.       // For every transition from the current head state, add a new path
  104.       // segment.
  105.       for (; PI != PE; ++PI)
  106.         if (PI->FromDfaState == Head->State)
  107.           Heads.push_back(makePathSegment(PI->ToDfaState, Head));
  108.     }
  109.     // Now we've iterated over all the initial heads and added new ones,
  110.     // dispose of the original heads.
  111.     Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads));
  112.   }
  113.  
  114. public:
  115.   NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo)
  116.       : TransitionInfo(TransitionInfo) {
  117.     reset();
  118.   }
  119.  
  120.   ArrayRef<NfaStatePair> getTransitionInfo() const {
  121.     return TransitionInfo;
  122.   }
  123.  
  124.   void reset() {
  125.     Paths.clear();
  126.     Heads.clear();
  127.     Allocator.DestroyAll();
  128.     // The initial NFA state is 0.
  129.     Heads.push_back(makePathSegment(0ULL, nullptr));
  130.   }
  131.  
  132.   void transition(unsigned TransitionInfoIdx) {
  133.     unsigned EndIdx = TransitionInfoIdx;
  134.     while (TransitionInfo[EndIdx].ToDfaState != 0)
  135.       ++EndIdx;
  136.     ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx],
  137.                                  EndIdx - TransitionInfoIdx);
  138.     transition(Pairs);
  139.   }
  140.  
  141.   ArrayRef<NfaPath> getPaths() {
  142.     Paths.clear();
  143.     for (auto *Head : Heads) {
  144.       NfaPath P;
  145.       while (Head->State != 0) {
  146.         P.push_back(Head->State);
  147.         Head = Head->Tail;
  148.       }
  149.       std::reverse(P.begin(), P.end());
  150.       Paths.push_back(std::move(P));
  151.     }
  152.     return Paths;
  153.   }
  154. };
  155. } // namespace internal
  156.  
  157. /// A deterministic finite-state automaton. The automaton is defined in
  158. /// TableGen; this object drives an automaton defined by tblgen-emitted tables.
  159. ///
  160. /// An automaton accepts a sequence of input tokens ("actions"). This class is
  161. /// templated on the type of these actions.
  162. template <typename ActionT> class Automaton {
  163.   /// Map from {State, Action} to {NewState, TransitionInfoIdx}.
  164.   /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition.
  165.   /// FIXME: This uses a std::map because ActionT can be a pair type including
  166.   /// an enum. In particular DenseMapInfo<ActionT> must be defined to use
  167.   /// DenseMap here.
  168.   /// This is a shared_ptr to allow very quick copy-construction of Automata; this
  169.   /// state is immutable after construction so this is safe.
  170.   using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>;
  171.   std::shared_ptr<MapTy> M;
  172.   /// An optional transcription object. This uses much more state than simply
  173.   /// traversing the DFA for acceptance, so is heap allocated.
  174.   std::shared_ptr<internal::NfaTranscriber> Transcriber;
  175.   /// The initial DFA state is 1.
  176.   uint64_t State = 1;
  177.   /// True if we should transcribe and false if not (even if Transcriber is defined).
  178.   bool Transcribe;
  179.  
  180. public:
  181.   /// Create an automaton.
  182.   /// \param Transitions The Transitions table as created by TableGen. Note that
  183.   ///                    because the action type differs per automaton, the
  184.   ///                    table type is templated as ArrayRef<InfoT>.
  185.   /// \param TranscriptionTable The TransitionInfo table as created by TableGen.
  186.   ///
  187.   /// Providing the TranscriptionTable argument as non-empty will enable the
  188.   /// use of transcription, which analyzes the possible paths in the original
  189.   /// NFA taken by the DFA. NOTE: This is substantially more work than simply
  190.   /// driving the DFA, so unless you require the getPaths() method leave this
  191.   /// empty.
  192.   template <typename InfoT>
  193.   Automaton(ArrayRef<InfoT> Transitions,
  194.             ArrayRef<NfaStatePair> TranscriptionTable = {}) {
  195.     if (!TranscriptionTable.empty())
  196.       Transcriber =
  197.           std::make_shared<internal::NfaTranscriber>(TranscriptionTable);
  198.     Transcribe = Transcriber != nullptr;
  199.     M = std::make_shared<MapTy>();
  200.     for (const auto &I : Transitions)
  201.       // Greedily read and cache the transition table.
  202.       M->emplace(std::make_pair(I.FromDfaState, I.Action),
  203.                  std::make_pair(I.ToDfaState, I.InfoIdx));
  204.   }
  205.   Automaton(const Automaton &Other)
  206.       : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) {
  207.     // Transcriber is not thread-safe, so create a new instance on copy.
  208.     if (Other.Transcriber)
  209.       Transcriber = std::make_shared<internal::NfaTranscriber>(
  210.           Other.Transcriber->getTransitionInfo());
  211.   }
  212.  
  213.   /// Reset the automaton to its initial state.
  214.   void reset() {
  215.     State = 1;
  216.     if (Transcriber)
  217.       Transcriber->reset();
  218.   }
  219.  
  220.   /// Enable or disable transcription. Transcription is only available if
  221.   /// TranscriptionTable was provided to the constructor.
  222.   void enableTranscription(bool Enable = true) {
  223.     assert(Transcriber &&
  224.            "Transcription is only available if TranscriptionTable was provided "
  225.            "to the Automaton constructor");
  226.     Transcribe = Enable;
  227.   }
  228.  
  229.   /// Transition the automaton based on input symbol A. Return true if the
  230.   /// automaton transitioned to a valid state, false if the automaton
  231.   /// transitioned to an invalid state.
  232.   ///
  233.   /// If this function returns false, all methods are undefined until reset() is
  234.   /// called.
  235.   bool add(const ActionT &A) {
  236.     auto I = M->find({State, A});
  237.     if (I == M->end())
  238.       return false;
  239.     if (Transcriber && Transcribe)
  240.       Transcriber->transition(I->second.second);
  241.     State = I->second.first;
  242.     return true;
  243.   }
  244.  
  245.   /// Return true if the automaton can be transitioned based on input symbol A.
  246.   bool canAdd(const ActionT &A) {
  247.     auto I = M->find({State, A});
  248.     return I != M->end();
  249.   }
  250.  
  251.   /// Obtain a set of possible paths through the input nondeterministic
  252.   /// automaton that could be obtained from the sequence of input actions
  253.   /// presented to this deterministic automaton.
  254.   ArrayRef<NfaPath> getNfaPaths() {
  255.     assert(Transcriber && Transcribe &&
  256.            "Can only obtain NFA paths if transcribing!");
  257.     return Transcriber->getPaths();
  258.   }
  259. };
  260.  
  261. } // namespace llvm
  262.  
  263. #endif // LLVM_SUPPORT_AUTOMATON_H
  264.