- //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file implements class that drive and introspect deterministic finite- 
- // state automata (DFAs) as generated by TableGen's -gen-automata backend. 
- // 
- // For a description of how to define an automaton, see 
- // include/llvm/TableGen/Automaton.td. 
- // 
- // One important detail is that these deterministic automata are created from 
- // (potentially) nondeterministic definitions. Therefore a unique sequence of 
- // input symbols will produce one path through the DFA but multiple paths 
- // through the original NFA. An automaton by default only returns "accepted" or 
- // "not accepted", but frequently we want to analyze what NFA path was taken. 
- // Finding a path through the NFA states that results in a DFA state can help 
- // answer *what* the solution to a problem was, not just that there exists a 
- // solution. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_SUPPORT_AUTOMATON_H 
- #define LLVM_SUPPORT_AUTOMATON_H 
-   
- #include "llvm/ADT/ArrayRef.h" 
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/Support/Allocator.h" 
- #include <deque> 
- #include <map> 
- #include <memory> 
- #include <unordered_map> 
- #include <vector> 
-   
- namespace llvm { 
-   
- using NfaPath = SmallVector<uint64_t, 4>; 
-   
- /// Forward define the pair type used by the automata transition info tables. 
- /// 
- /// Experimental results with large tables have shown a significant (multiple 
- /// orders of magnitude) parsing speedup by using a custom struct here with a 
- /// trivial constructor rather than std::pair<uint64_t, uint64_t>. 
- struct NfaStatePair { 
-   uint64_t FromDfaState, ToDfaState; 
-   
-   bool operator<(const NfaStatePair &Other) const { 
-     return std::make_tuple(FromDfaState, ToDfaState) < 
-            std::make_tuple(Other.FromDfaState, Other.ToDfaState); 
-   } 
- }; 
-   
- namespace internal { 
- /// The internal class that maintains all possible paths through an NFA based 
- /// on a path through the DFA. 
- class NfaTranscriber { 
- private: 
-   /// Cached transition table. This is a table of NfaStatePairs that contains 
-   /// zero-terminated sequences pointed to by DFA transitions. 
-   ArrayRef<NfaStatePair> TransitionInfo; 
-   
-   /// A simple linked-list of traversed states that can have a shared tail. The 
-   /// traversed path is stored in reverse order with the latest state as the 
-   /// head. 
-   struct PathSegment { 
-     uint64_t State; 
-     PathSegment *Tail; 
-   }; 
-   
-   /// We allocate segment objects frequently. Allocate them upfront and dispose 
-   /// at the end of a traversal rather than hammering the system allocator. 
-   SpecificBumpPtrAllocator<PathSegment> Allocator; 
-   
-   /// Heads of each tracked path. These are not ordered. 
-   std::deque<PathSegment *> Heads; 
-   
-   /// The returned paths. This is populated during getPaths. 
-   SmallVector<NfaPath, 4> Paths; 
-   
-   /// Create a new segment and return it. 
-   PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) { 
-     PathSegment *P = Allocator.Allocate(); 
-     *P = {State, Tail}; 
-     return P; 
-   } 
-   
-   /// Pairs defines a sequence of possible NFA transitions for a single DFA 
-   /// transition. 
-   void transition(ArrayRef<NfaStatePair> Pairs) { 
-     // Iterate over all existing heads. We will mutate the Heads deque during 
-     // iteration. 
-     unsigned NumHeads = Heads.size(); 
-     for (unsigned I = 0; I < NumHeads; ++I) { 
-       PathSegment *Head = Heads[I]; 
-       // The sequence of pairs is sorted. Select the set of pairs that 
-       // transition from the current head state. 
-       auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL}); 
-       auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX}); 
-       // For every transition from the current head state, add a new path 
-       // segment. 
-       for (; PI != PE; ++PI) 
-         if (PI->FromDfaState == Head->State) 
-           Heads.push_back(makePathSegment(PI->ToDfaState, Head)); 
-     } 
-     // Now we've iterated over all the initial heads and added new ones, 
-     // dispose of the original heads. 
-     Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads)); 
-   } 
-   
- public: 
-   NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo) 
-       : TransitionInfo(TransitionInfo) { 
-     reset(); 
-   } 
-   
-   ArrayRef<NfaStatePair> getTransitionInfo() const { 
-     return TransitionInfo; 
-   } 
-   
-   void reset() { 
-     Paths.clear(); 
-     Heads.clear(); 
-     Allocator.DestroyAll(); 
-     // The initial NFA state is 0. 
-     Heads.push_back(makePathSegment(0ULL, nullptr)); 
-   } 
-   
-   void transition(unsigned TransitionInfoIdx) { 
-     unsigned EndIdx = TransitionInfoIdx; 
-     while (TransitionInfo[EndIdx].ToDfaState != 0) 
-       ++EndIdx; 
-     ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx], 
-                                  EndIdx - TransitionInfoIdx); 
-     transition(Pairs); 
-   } 
-   
-   ArrayRef<NfaPath> getPaths() { 
-     Paths.clear(); 
-     for (auto *Head : Heads) { 
-       NfaPath P; 
-       while (Head->State != 0) { 
-         P.push_back(Head->State); 
-         Head = Head->Tail; 
-       } 
-       std::reverse(P.begin(), P.end()); 
-       Paths.push_back(std::move(P)); 
-     } 
-     return Paths; 
-   } 
- }; 
- } // namespace internal 
-   
- /// A deterministic finite-state automaton. The automaton is defined in 
- /// TableGen; this object drives an automaton defined by tblgen-emitted tables. 
- /// 
- /// An automaton accepts a sequence of input tokens ("actions"). This class is 
- /// templated on the type of these actions. 
- template <typename ActionT> class Automaton { 
-   /// Map from {State, Action} to {NewState, TransitionInfoIdx}. 
-   /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition. 
-   /// FIXME: This uses a std::map because ActionT can be a pair type including 
-   /// an enum. In particular DenseMapInfo<ActionT> must be defined to use 
-   /// DenseMap here. 
-   /// This is a shared_ptr to allow very quick copy-construction of Automata; this 
-   /// state is immutable after construction so this is safe. 
-   using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>; 
-   std::shared_ptr<MapTy> M; 
-   /// An optional transcription object. This uses much more state than simply 
-   /// traversing the DFA for acceptance, so is heap allocated. 
-   std::shared_ptr<internal::NfaTranscriber> Transcriber; 
-   /// The initial DFA state is 1. 
-   uint64_t State = 1; 
-   /// True if we should transcribe and false if not (even if Transcriber is defined). 
-   bool Transcribe; 
-   
- public: 
-   /// Create an automaton. 
-   /// \param Transitions The Transitions table as created by TableGen. Note that 
-   ///                    because the action type differs per automaton, the 
-   ///                    table type is templated as ArrayRef<InfoT>. 
-   /// \param TranscriptionTable The TransitionInfo table as created by TableGen. 
-   /// 
-   /// Providing the TranscriptionTable argument as non-empty will enable the 
-   /// use of transcription, which analyzes the possible paths in the original 
-   /// NFA taken by the DFA. NOTE: This is substantially more work than simply 
-   /// driving the DFA, so unless you require the getPaths() method leave this 
-   /// empty. 
-   template <typename InfoT> 
-   Automaton(ArrayRef<InfoT> Transitions, 
-             ArrayRef<NfaStatePair> TranscriptionTable = {}) { 
-     if (!TranscriptionTable.empty()) 
-       Transcriber = 
-           std::make_shared<internal::NfaTranscriber>(TranscriptionTable); 
-     Transcribe = Transcriber != nullptr; 
-     M = std::make_shared<MapTy>(); 
-     for (const auto &I : Transitions) 
-       // Greedily read and cache the transition table. 
-       M->emplace(std::make_pair(I.FromDfaState, I.Action), 
-                  std::make_pair(I.ToDfaState, I.InfoIdx)); 
-   } 
-   Automaton(const Automaton &Other) 
-       : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) { 
-     // Transcriber is not thread-safe, so create a new instance on copy. 
-     if (Other.Transcriber) 
-       Transcriber = std::make_shared<internal::NfaTranscriber>( 
-           Other.Transcriber->getTransitionInfo()); 
-   } 
-   
-   /// Reset the automaton to its initial state. 
-   void reset() { 
-     State = 1; 
-     if (Transcriber) 
-       Transcriber->reset(); 
-   } 
-   
-   /// Enable or disable transcription. Transcription is only available if 
-   /// TranscriptionTable was provided to the constructor. 
-   void enableTranscription(bool Enable = true) { 
-     assert(Transcriber && 
-            "Transcription is only available if TranscriptionTable was provided " 
-            "to the Automaton constructor"); 
-     Transcribe = Enable; 
-   } 
-   
-   /// Transition the automaton based on input symbol A. Return true if the 
-   /// automaton transitioned to a valid state, false if the automaton 
-   /// transitioned to an invalid state. 
-   /// 
-   /// If this function returns false, all methods are undefined until reset() is 
-   /// called. 
-   bool add(const ActionT &A) { 
-     auto I = M->find({State, A}); 
-     if (I == M->end()) 
-       return false; 
-     if (Transcriber && Transcribe) 
-       Transcriber->transition(I->second.second); 
-     State = I->second.first; 
-     return true; 
-   } 
-   
-   /// Return true if the automaton can be transitioned based on input symbol A. 
-   bool canAdd(const ActionT &A) { 
-     auto I = M->find({State, A}); 
-     return I != M->end(); 
-   } 
-   
-   /// Obtain a set of possible paths through the input nondeterministic 
-   /// automaton that could be obtained from the sequence of input actions 
-   /// presented to this deterministic automaton. 
-   ArrayRef<NfaPath> getNfaPaths() { 
-     assert(Transcriber && Transcribe && 
-            "Can only obtain NFA paths if transcribing!"); 
-     return Transcriber->getPaths(); 
-   } 
- }; 
-   
- } // namespace llvm 
-   
- #endif // LLVM_SUPPORT_AUTOMATON_H 
-