//===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file implements class that drive and introspect deterministic finite-
 
// state automata (DFAs) as generated by TableGen's -gen-automata backend.
 
//
 
// For a description of how to define an automaton, see
 
// include/llvm/TableGen/Automaton.td.
 
//
 
// One important detail is that these deterministic automata are created from
 
// (potentially) nondeterministic definitions. Therefore a unique sequence of
 
// input symbols will produce one path through the DFA but multiple paths
 
// through the original NFA. An automaton by default only returns "accepted" or
 
// "not accepted", but frequently we want to analyze what NFA path was taken.
 
// Finding a path through the NFA states that results in a DFA state can help
 
// answer *what* the solution to a problem was, not just that there exists a
 
// solution.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_AUTOMATON_H
 
#define LLVM_SUPPORT_AUTOMATON_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Support/Allocator.h"
 
#include <deque>
 
#include <map>
 
#include <memory>
 
#include <unordered_map>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
using NfaPath = SmallVector<uint64_t, 4>;
 
 
 
/// Forward define the pair type used by the automata transition info tables.
 
///
 
/// Experimental results with large tables have shown a significant (multiple
 
/// orders of magnitude) parsing speedup by using a custom struct here with a
 
/// trivial constructor rather than std::pair<uint64_t, uint64_t>.
 
struct NfaStatePair {
 
  uint64_t FromDfaState, ToDfaState;
 
 
 
  bool operator<(const NfaStatePair &Other) const {
 
    return std::make_tuple(FromDfaState, ToDfaState) <
 
           std::make_tuple(Other.FromDfaState, Other.ToDfaState);
 
  }
 
};
 
 
 
namespace internal {
 
/// The internal class that maintains all possible paths through an NFA based
 
/// on a path through the DFA.
 
class NfaTranscriber {
 
private:
 
  /// Cached transition table. This is a table of NfaStatePairs that contains
 
  /// zero-terminated sequences pointed to by DFA transitions.
 
  ArrayRef<NfaStatePair> TransitionInfo;
 
 
 
  /// A simple linked-list of traversed states that can have a shared tail. The
 
  /// traversed path is stored in reverse order with the latest state as the
 
  /// head.
 
  struct PathSegment {
 
    uint64_t State;
 
    PathSegment *Tail;
 
  };
 
 
 
  /// We allocate segment objects frequently. Allocate them upfront and dispose
 
  /// at the end of a traversal rather than hammering the system allocator.
 
  SpecificBumpPtrAllocator<PathSegment> Allocator;
 
 
 
  /// Heads of each tracked path. These are not ordered.
 
  std::deque<PathSegment *> Heads;
 
 
 
  /// The returned paths. This is populated during getPaths.
 
  SmallVector<NfaPath, 4> Paths;
 
 
 
  /// Create a new segment and return it.
 
  PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) {
 
    PathSegment *P = Allocator.Allocate();
 
    *P = {State, Tail};
 
    return P;
 
  }
 
 
 
  /// Pairs defines a sequence of possible NFA transitions for a single DFA
 
  /// transition.
 
  void transition(ArrayRef<NfaStatePair> Pairs) {
 
    // Iterate over all existing heads. We will mutate the Heads deque during
 
    // iteration.
 
    unsigned NumHeads = Heads.size();
 
    for (unsigned I = 0; I < NumHeads; ++I) {
 
      PathSegment *Head = Heads[I];
 
      // The sequence of pairs is sorted. Select the set of pairs that
 
      // transition from the current head state.
 
      auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL});
 
      auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX});
 
      // For every transition from the current head state, add a new path
 
      // segment.
 
      for (; PI != PE; ++PI)
 
        if (PI->FromDfaState == Head->State)
 
          Heads.push_back(makePathSegment(PI->ToDfaState, Head));
 
    }
 
    // Now we've iterated over all the initial heads and added new ones,
 
    // dispose of the original heads.
 
    Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads));
 
  }
 
 
 
public:
 
  NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo)
 
      : TransitionInfo(TransitionInfo) {
 
    reset();
 
  }
 
 
 
  ArrayRef<NfaStatePair> getTransitionInfo() const {
 
    return TransitionInfo;
 
  }
 
 
 
  void reset() {
 
    Paths.clear();
 
    Heads.clear();
 
    Allocator.DestroyAll();
 
    // The initial NFA state is 0.
 
    Heads.push_back(makePathSegment(0ULL, nullptr));
 
  }
 
 
 
  void transition(unsigned TransitionInfoIdx) {
 
    unsigned EndIdx = TransitionInfoIdx;
 
    while (TransitionInfo[EndIdx].ToDfaState != 0)
 
      ++EndIdx;
 
    ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx],
 
                                 EndIdx - TransitionInfoIdx);
 
    transition(Pairs);
 
  }
 
 
 
  ArrayRef<NfaPath> getPaths() {
 
    Paths.clear();
 
    for (auto *Head : Heads) {
 
      NfaPath P;
 
      while (Head->State != 0) {
 
        P.push_back(Head->State);
 
        Head = Head->Tail;
 
      }
 
      std::reverse(P.begin(), P.end());
 
      Paths.push_back(std::move(P));
 
    }
 
    return Paths;
 
  }
 
};
 
} // namespace internal
 
 
 
/// A deterministic finite-state automaton. The automaton is defined in
 
/// TableGen; this object drives an automaton defined by tblgen-emitted tables.
 
///
 
/// An automaton accepts a sequence of input tokens ("actions"). This class is
 
/// templated on the type of these actions.
 
template <typename ActionT> class Automaton {
 
  /// Map from {State, Action} to {NewState, TransitionInfoIdx}.
 
  /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition.
 
  /// FIXME: This uses a std::map because ActionT can be a pair type including
 
  /// an enum. In particular DenseMapInfo<ActionT> must be defined to use
 
  /// DenseMap here.
 
  /// This is a shared_ptr to allow very quick copy-construction of Automata; this
 
  /// state is immutable after construction so this is safe.
 
  using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>;
 
  std::shared_ptr<MapTy> M;
 
  /// An optional transcription object. This uses much more state than simply
 
  /// traversing the DFA for acceptance, so is heap allocated.
 
  std::shared_ptr<internal::NfaTranscriber> Transcriber;
 
  /// The initial DFA state is 1.
 
  uint64_t State = 1;
 
  /// True if we should transcribe and false if not (even if Transcriber is defined).
 
  bool Transcribe;
 
 
 
public:
 
  /// Create an automaton.
 
  /// \param Transitions The Transitions table as created by TableGen. Note that
 
  ///                    because the action type differs per automaton, the
 
  ///                    table type is templated as ArrayRef<InfoT>.
 
  /// \param TranscriptionTable The TransitionInfo table as created by TableGen.
 
  ///
 
  /// Providing the TranscriptionTable argument as non-empty will enable the
 
  /// use of transcription, which analyzes the possible paths in the original
 
  /// NFA taken by the DFA. NOTE: This is substantially more work than simply
 
  /// driving the DFA, so unless you require the getPaths() method leave this
 
  /// empty.
 
  template <typename InfoT>
 
  Automaton(ArrayRef<InfoT> Transitions,
 
            ArrayRef<NfaStatePair> TranscriptionTable = {}) {
 
    if (!TranscriptionTable.empty())
 
      Transcriber =
 
          std::make_shared<internal::NfaTranscriber>(TranscriptionTable);
 
    Transcribe = Transcriber != nullptr;
 
    M = std::make_shared<MapTy>();
 
    for (const auto &I : Transitions)
 
      // Greedily read and cache the transition table.
 
      M->emplace(std::make_pair(I.FromDfaState, I.Action),
 
                 std::make_pair(I.ToDfaState, I.InfoIdx));
 
  }
 
  Automaton(const Automaton &Other)
 
      : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) {
 
    // Transcriber is not thread-safe, so create a new instance on copy.
 
    if (Other.Transcriber)
 
      Transcriber = std::make_shared<internal::NfaTranscriber>(
 
          Other.Transcriber->getTransitionInfo());
 
  }
 
 
 
  /// Reset the automaton to its initial state.
 
  void reset() {
 
    State = 1;
 
    if (Transcriber)
 
      Transcriber->reset();
 
  }
 
 
 
  /// Enable or disable transcription. Transcription is only available if
 
  /// TranscriptionTable was provided to the constructor.
 
  void enableTranscription(bool Enable = true) {
 
    assert(Transcriber &&
 
           "Transcription is only available if TranscriptionTable was provided "
 
           "to the Automaton constructor");
 
    Transcribe = Enable;
 
  }
 
 
 
  /// Transition the automaton based on input symbol A. Return true if the
 
  /// automaton transitioned to a valid state, false if the automaton
 
  /// transitioned to an invalid state.
 
  ///
 
  /// If this function returns false, all methods are undefined until reset() is
 
  /// called.
 
  bool add(const ActionT &A) {
 
    auto I = M->find({State, A});
 
    if (I == M->end())
 
      return false;
 
    if (Transcriber && Transcribe)
 
      Transcriber->transition(I->second.second);
 
    State = I->second.first;
 
    return true;
 
  }
 
 
 
  /// Return true if the automaton can be transitioned based on input symbol A.
 
  bool canAdd(const ActionT &A) {
 
    auto I = M->find({State, A});
 
    return I != M->end();
 
  }
 
 
 
  /// Obtain a set of possible paths through the input nondeterministic
 
  /// automaton that could be obtained from the sequence of input actions
 
  /// presented to this deterministic automaton.
 
  ArrayRef<NfaPath> getNfaPaths() {
 
    assert(Transcriber && Transcribe &&
 
           "Can only obtain NFA paths if transcribing!");
 
    return Transcriber->getPaths();
 
  }
 
};
 
 
 
} // namespace llvm
 
 
 
#endif // LLVM_SUPPORT_AUTOMATON_H