//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
///
 
/// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
 
/// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
 
/// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
 
/// allocator.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_ALLOCATOR_H
 
#define LLVM_SUPPORT_ALLOCATOR_H
 
 
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Support/Alignment.h"
 
#include "llvm/Support/AllocatorBase.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/MathExtras.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <iterator>
 
#include <optional>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
namespace detail {
 
 
 
// We call out to an external function to actually print the message as the
 
// printing code uses Allocator.h in its implementation.
 
void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
 
                                size_t TotalMemory);
 
 
 
} // end namespace detail
 
 
 
/// Allocate memory in an ever growing pool, as if by bump-pointer.
 
///
 
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
 
/// memory rather than relying on a boundless contiguous heap. However, it has
 
/// bump-pointer semantics in that it is a monotonically growing pool of memory
 
/// where every allocation is found by merely allocating the next N bytes in
 
/// the slab, or the next N bytes in the next slab.
 
///
 
/// Note that this also has a threshold for forcing allocations above a certain
 
/// size into their own slab.
 
///
 
/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
 
/// object, which wraps malloc, to allocate memory, but it can be changed to
 
/// use a custom allocator.
 
///
 
/// The GrowthDelay specifies after how many allocated slabs the allocator
 
/// increases the size of the slabs.
 
template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
 
          size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
 
class BumpPtrAllocatorImpl
 
    : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
 
                                                SizeThreshold, GrowthDelay>>,
 
      private detail::AllocatorHolder<AllocatorT> {
 
  using AllocTy = detail::AllocatorHolder<AllocatorT>;
 
 
 
public:
 
  static_assert(SizeThreshold <= SlabSize,
 
                "The SizeThreshold must be at most the SlabSize to ensure "
 
                "that objects larger than a slab go into their own memory "
 
                "allocation.");
 
  static_assert(GrowthDelay > 0,
 
                "GrowthDelay must be at least 1 which already increases the"
 
                "slab size after each allocated slab.");
 
 
 
  BumpPtrAllocatorImpl() = default;
 
 
 
  template <typename T>
 
  BumpPtrAllocatorImpl(T &&Allocator)
 
      : AllocTy(std::forward<T &&>(Allocator)) {}
 
 
 
  // Manually implement a move constructor as we must clear the old allocator's
 
  // slabs as a matter of correctness.
 
  BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
 
      : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr),
 
        End(Old.End), Slabs(std::move(Old.Slabs)),
 
        CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
 
        BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) {
 
    Old.CurPtr = Old.End = nullptr;
 
    Old.BytesAllocated = 0;
 
    Old.Slabs.clear();
 
    Old.CustomSizedSlabs.clear();
 
  }
 
 
 
  ~BumpPtrAllocatorImpl() {
 
    DeallocateSlabs(Slabs.begin(), Slabs.end());
 
    DeallocateCustomSizedSlabs();
 
  }
 
 
 
  BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
 
    DeallocateSlabs(Slabs.begin(), Slabs.end());
 
    DeallocateCustomSizedSlabs();
 
 
 
    CurPtr = RHS.CurPtr;
 
    End = RHS.End;
 
    BytesAllocated = RHS.BytesAllocated;
 
    RedZoneSize = RHS.RedZoneSize;
 
    Slabs = std::move(RHS.Slabs);
 
    CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
 
    AllocTy::operator=(std::move(RHS.getAllocator()));
 
 
 
    RHS.CurPtr = RHS.End = nullptr;
 
    RHS.BytesAllocated = 0;
 
    RHS.Slabs.clear();
 
    RHS.CustomSizedSlabs.clear();
 
    return *this;
 
  }
 
 
 
  /// Deallocate all but the current slab and reset the current pointer
 
  /// to the beginning of it, freeing all memory allocated so far.
 
  void Reset() {
 
    // Deallocate all but the first slab, and deallocate all custom-sized slabs.
 
    DeallocateCustomSizedSlabs();
 
    CustomSizedSlabs.clear();
 
 
 
    if (Slabs.empty())
 
      return;
 
 
 
    // Reset the state.
 
    BytesAllocated = 0;
 
    CurPtr = (char *)Slabs.front();
 
    End = CurPtr + SlabSize;
 
 
 
    __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
 
    DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
 
    Slabs.erase(std::next(Slabs.begin()), Slabs.end());
 
  }
 
 
 
  /// Allocate space at the specified alignment.
 
  // This method is *not* marked noalias, because
 
  // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and
 
  // that loop is not based on the Allocate() return value.
 
  //
 
  // Allocate(0, N) is valid, it returns a non-null pointer (which should not
 
  // be dereferenced).
 
  LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) {
 
    // Keep track of how many bytes we've allocated.
 
    BytesAllocated += Size;
 
 
 
    size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
 
    assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
 
 
 
    size_t SizeToAllocate = Size;
 
#if LLVM_ADDRESS_SANITIZER_BUILD
 
    // Add trailing bytes as a "red zone" under ASan.
 
    SizeToAllocate += RedZoneSize;
 
#endif
 
 
 
    // Check if we have enough space.
 
    if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)
 
        // We can't return nullptr even for a zero-sized allocation!
 
        && CurPtr != nullptr) {
 
      char *AlignedPtr = CurPtr + Adjustment;
 
      CurPtr = AlignedPtr + SizeToAllocate;
 
      // Update the allocation point of this memory block in MemorySanitizer.
 
      // Without this, MemorySanitizer messages for values originated from here
 
      // will point to the allocation of the entire slab.
 
      __msan_allocated_memory(AlignedPtr, Size);
 
      // Similarly, tell ASan about this space.
 
      __asan_unpoison_memory_region(AlignedPtr, Size);
 
      return AlignedPtr;
 
    }
 
 
 
    // If Size is really big, allocate a separate slab for it.
 
    size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
 
    if (PaddedSize > SizeThreshold) {
 
      void *NewSlab =
 
          this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t));
 
      // We own the new slab and don't want anyone reading anyting other than
 
      // pieces returned from this method.  So poison the whole slab.
 
      __asan_poison_memory_region(NewSlab, PaddedSize);
 
      CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
 
 
 
      uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
 
      assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
 
      char *AlignedPtr = (char*)AlignedAddr;
 
      __msan_allocated_memory(AlignedPtr, Size);
 
      __asan_unpoison_memory_region(AlignedPtr, Size);
 
      return AlignedPtr;
 
    }
 
 
 
    // Otherwise, start a new slab and try again.
 
    StartNewSlab();
 
    uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
 
    assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
 
           "Unable to allocate memory!");
 
    char *AlignedPtr = (char*)AlignedAddr;
 
    CurPtr = AlignedPtr + SizeToAllocate;
 
    __msan_allocated_memory(AlignedPtr, Size);
 
    __asan_unpoison_memory_region(AlignedPtr, Size);
 
    return AlignedPtr;
 
  }
 
 
 
  inline LLVM_ATTRIBUTE_RETURNS_NONNULL void *
 
  Allocate(size_t Size, size_t Alignment) {
 
    assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
 
    return Allocate(Size, Align(Alignment));
 
  }
 
 
 
  // Pull in base class overloads.
 
  using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
 
 
 
  // Bump pointer allocators are expected to never free their storage; and
 
  // clients expect pointers to remain valid for non-dereferencing uses even
 
  // after deallocation.
 
  void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
 
    __asan_poison_memory_region(Ptr, Size);
 
  }
 
 
 
  // Pull in base class overloads.
 
  using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
 
 
 
  size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
 
 
 
  /// \return An index uniquely and reproducibly identifying
 
  /// an input pointer \p Ptr in the given allocator.
 
  /// The returned value is negative iff the object is inside a custom-size
 
  /// slab.
 
  /// Returns an empty optional if the pointer is not found in the allocator.
 
  std::optional<int64_t> identifyObject(const void *Ptr) {
 
    const char *P = static_cast<const char *>(Ptr);
 
    int64_t InSlabIdx = 0;
 
    for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
 
      const char *S = static_cast<const char *>(Slabs[Idx]);
 
      if (P >= S && P < S + computeSlabSize(Idx))
 
        return InSlabIdx + static_cast<int64_t>(P - S);
 
      InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
 
    }
 
 
 
    // Use negative index to denote custom sized slabs.
 
    int64_t InCustomSizedSlabIdx = -1;
 
    for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
 
      const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
 
      size_t Size = CustomSizedSlabs[Idx].second;
 
      if (P >= S && P < S + Size)
 
        return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
 
      InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
 
    }
 
    return std::nullopt;
 
  }
 
 
 
  /// A wrapper around identifyObject that additionally asserts that
 
  /// the object is indeed within the allocator.
 
  /// \return An index uniquely and reproducibly identifying
 
  /// an input pointer \p Ptr in the given allocator.
 
  int64_t identifyKnownObject(const void *Ptr) {
 
    std::optional<int64_t> Out = identifyObject(Ptr);
 
    assert(Out && "Wrong allocator used");
 
    return *Out;
 
  }
 
 
 
  /// A wrapper around identifyKnownObject. Accepts type information
 
  /// about the object and produces a smaller identifier by relying on
 
  /// the alignment information. Note that sub-classes may have different
 
  /// alignment, so the most base class should be passed as template parameter
 
  /// in order to obtain correct results. For that reason automatic template
 
  /// parameter deduction is disabled.
 
  /// \return An index uniquely and reproducibly identifying
 
  /// an input pointer \p Ptr in the given allocator. This identifier is
 
  /// different from the ones produced by identifyObject and
 
  /// identifyAlignedObject.
 
  template <typename T>
 
  int64_t identifyKnownAlignedObject(const void *Ptr) {
 
    int64_t Out = identifyKnownObject(Ptr);
 
    assert(Out % alignof(T) == 0 && "Wrong alignment information");
 
    return Out / alignof(T);
 
  }
 
 
 
  size_t getTotalMemory() const {
 
    size_t TotalMemory = 0;
 
    for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
 
      TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
 
    for (const auto &PtrAndSize : CustomSizedSlabs)
 
      TotalMemory += PtrAndSize.second;
 
    return TotalMemory;
 
  }
 
 
 
  size_t getBytesAllocated() const { return BytesAllocated; }
 
 
 
  void setRedZoneSize(size_t NewSize) {
 
    RedZoneSize = NewSize;
 
  }
 
 
 
  void PrintStats() const {
 
    detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
 
                                       getTotalMemory());
 
  }
 
 
 
private:
 
  /// The current pointer into the current slab.
 
  ///
 
  /// This points to the next free byte in the slab.
 
  char *CurPtr = nullptr;
 
 
 
  /// The end of the current slab.
 
  char *End = nullptr;
 
 
 
  /// The slabs allocated so far.
 
  SmallVector<void *, 4> Slabs;
 
 
 
  /// Custom-sized slabs allocated for too-large allocation requests.
 
  SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
 
 
 
  /// How many bytes we've allocated.
 
  ///
 
  /// Used so that we can compute how much space was wasted.
 
  size_t BytesAllocated = 0;
 
 
 
  /// The number of bytes to put between allocations when running under
 
  /// a sanitizer.
 
  size_t RedZoneSize = 1;
 
 
 
  static size_t computeSlabSize(unsigned SlabIdx) {
 
    // Scale the actual allocated slab size based on the number of slabs
 
    // allocated. Every GrowthDelay slabs allocated, we double
 
    // the allocated size to reduce allocation frequency, but saturate at
 
    // multiplying the slab size by 2^30.
 
    return SlabSize *
 
           ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
 
  }
 
 
 
  /// Allocate a new slab and move the bump pointers over into the new
 
  /// slab, modifying CurPtr and End.
 
  void StartNewSlab() {
 
    size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
 
 
 
    void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize,
 
                                                  alignof(std::max_align_t));
 
    // We own the new slab and don't want anyone reading anything other than
 
    // pieces returned from this method.  So poison the whole slab.
 
    __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
 
 
 
    Slabs.push_back(NewSlab);
 
    CurPtr = (char *)(NewSlab);
 
    End = ((char *)NewSlab) + AllocatedSlabSize;
 
  }
 
 
 
  /// Deallocate a sequence of slabs.
 
  void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
 
                       SmallVectorImpl<void *>::iterator E) {
 
    for (; I != E; ++I) {
 
      size_t AllocatedSlabSize =
 
          computeSlabSize(std::distance(Slabs.begin(), I));
 
      this->getAllocator().Deallocate(*I, AllocatedSlabSize,
 
                                      alignof(std::max_align_t));
 
    }
 
  }
 
 
 
  /// Deallocate all memory for custom sized slabs.
 
  void DeallocateCustomSizedSlabs() {
 
    for (auto &PtrAndSize : CustomSizedSlabs) {
 
      void *Ptr = PtrAndSize.first;
 
      size_t Size = PtrAndSize.second;
 
      this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t));
 
    }
 
  }
 
 
 
  template <typename T> friend class SpecificBumpPtrAllocator;
 
};
 
 
 
/// The standard BumpPtrAllocator which just uses the default template
 
/// parameters.
 
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
 
 
 
/// A BumpPtrAllocator that allows only elements of a specific type to be
 
/// allocated.
 
///
 
/// This allows calling the destructor in DestroyAll() and when the allocator is
 
/// destroyed.
 
template <typename T> class SpecificBumpPtrAllocator {
 
  BumpPtrAllocator Allocator;
 
 
 
public:
 
  SpecificBumpPtrAllocator() {
 
    // Because SpecificBumpPtrAllocator walks the memory to call destructors,
 
    // it can't have red zones between allocations.
 
    Allocator.setRedZoneSize(0);
 
  }
 
  SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
 
      : Allocator(std::move(Old.Allocator)) {}
 
  ~SpecificBumpPtrAllocator() { DestroyAll(); }
 
 
 
  SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
 
    Allocator = std::move(RHS.Allocator);
 
    return *this;
 
  }
 
 
 
  /// Call the destructor of each allocated object and deallocate all but the
 
  /// current slab and reset the current pointer to the beginning of it, freeing
 
  /// all memory allocated so far.
 
  void DestroyAll() {
 
    auto DestroyElements = [](char *Begin, char *End) {
 
      assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
 
      for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
 
        reinterpret_cast<T *>(Ptr)->~T();
 
    };
 
 
 
    for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
 
         ++I) {
 
      size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
 
          std::distance(Allocator.Slabs.begin(), I));
 
      char *Begin = (char *)alignAddr(*I, Align::Of<T>());
 
      char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
 
                                               : (char *)*I + AllocatedSlabSize;
 
 
 
      DestroyElements(Begin, End);
 
    }
 
 
 
    for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
 
      void *Ptr = PtrAndSize.first;
 
      size_t Size = PtrAndSize.second;
 
      DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
 
                      (char *)Ptr + Size);
 
    }
 
 
 
    Allocator.Reset();
 
  }
 
 
 
  /// Allocate space for an array of objects without constructing them.
 
  T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
 
};
 
 
 
} // end namespace llvm
 
 
 
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
 
          size_t GrowthDelay>
 
void *
 
operator new(size_t Size,
 
             llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
 
                                        GrowthDelay> &Allocator) {
 
  return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
 
                                           alignof(std::max_align_t)));
 
}
 
 
 
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
 
          size_t GrowthDelay>
 
void operator delete(void *,
 
                     llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
 
                                                SizeThreshold, GrowthDelay> &) {
 
}
 
 
 
#endif // LLVM_SUPPORT_ALLOCATOR_H