//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file contains types to represent alignments.
 
// They are instrumented to guarantee some invariants are preserved and prevent
 
// invalid manipulations.
 
//
 
// - Align represents an alignment in bytes, it is always set and always a valid
 
// power of two, its minimum value is 1 which means no alignment requirements.
 
//
 
// - MaybeAlign is an optional type, it may be undefined or set. When it's set
 
// you can get the underlying Align type by using the getValue() method.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_SUPPORT_ALIGNMENT_H_
 
#define LLVM_SUPPORT_ALIGNMENT_H_
 
 
 
#include "llvm/Support/MathExtras.h"
 
#include <cassert>
 
#include <optional>
 
#ifndef NDEBUG
 
#include <string>
 
#endif // NDEBUG
 
 
 
namespace llvm {
 
 
 
#define ALIGN_CHECK_ISPOSITIVE(decl)                                           \
 
  assert(decl > 0 && (#decl " should be defined"))
 
 
 
/// This struct is a compact representation of a valid (non-zero power of two)
 
/// alignment.
 
/// It is suitable for use as static global constants.
 
struct Align {
 
private:
 
  uint8_t ShiftValue = 0; /// The log2 of the required alignment.
 
                          /// ShiftValue is less than 64 by construction.
 
 
 
  friend struct MaybeAlign;
 
  friend unsigned Log2(Align);
 
  friend bool operator==(Align Lhs, Align Rhs);
 
  friend bool operator!=(Align Lhs, Align Rhs);
 
  friend bool operator<=(Align Lhs, Align Rhs);
 
  friend bool operator>=(Align Lhs, Align Rhs);
 
  friend bool operator<(Align Lhs, Align Rhs);
 
  friend bool operator>(Align Lhs, Align Rhs);
 
  friend unsigned encode(struct MaybeAlign A);
 
  friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
 
 
 
  /// A trivial type to allow construction of constexpr Align.
 
  /// This is currently needed to workaround a bug in GCC 5.3 which prevents
 
  /// definition of constexpr assign operators.
 
  /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
 
  /// FIXME: Remove this, make all assign operators constexpr and introduce user
 
  /// defined literals when we don't have to support GCC 5.3 anymore.
 
  /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
 
  struct LogValue {
 
    uint8_t Log;
 
  };
 
 
 
public:
 
  /// Default is byte-aligned.
 
  constexpr Align() = default;
 
  /// Do not perform checks in case of copy/move construct/assign, because the
 
  /// checks have been performed when building `Other`.
 
  constexpr Align(const Align &Other) = default;
 
  constexpr Align(Align &&Other) = default;
 
  Align &operator=(const Align &Other) = default;
 
  Align &operator=(Align &&Other) = default;
 
 
 
  explicit Align(uint64_t Value) {
 
    assert(Value > 0 && "Value must not be 0");
 
    assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2");
 
    ShiftValue = Log2_64(Value);
 
    assert(ShiftValue < 64 && "Broken invariant");
 
  }
 
 
 
  /// This is a hole in the type system and should not be abused.
 
  /// Needed to interact with C for instance.
 
  uint64_t value() const { return uint64_t(1) << ShiftValue; }
 
 
 
  // Returns the previous alignment.
 
  Align previous() const {
 
    assert(ShiftValue != 0 && "Undefined operation");
 
    Align Out;
 
    Out.ShiftValue = ShiftValue - 1;
 
    return Out;
 
  }
 
 
 
  /// Allow constructions of constexpr Align.
 
  template <size_t kValue> constexpr static Align Constant() {
 
    return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
 
  }
 
 
 
  /// Allow constructions of constexpr Align from types.
 
  /// Compile time equivalent to Align(alignof(T)).
 
  template <typename T> constexpr static Align Of() {
 
    return Constant<std::alignment_of<T>::value>();
 
  }
 
 
 
  /// Constexpr constructor from LogValue type.
 
  constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
 
};
 
 
 
/// Treats the value 0 as a 1, so Align is always at least 1.
 
inline Align assumeAligned(uint64_t Value) {
 
  return Value ? Align(Value) : Align();
 
}
 
 
 
/// This struct is a compact representation of a valid (power of two) or
 
/// undefined (0) alignment.
 
struct MaybeAlign : public std::optional<Align> {
 
private:
 
  using UP = std::optional<Align>;
 
 
 
public:
 
  /// Default is undefined.
 
  MaybeAlign() = default;
 
  /// Do not perform checks in case of copy/move construct/assign, because the
 
  /// checks have been performed when building `Other`.
 
  MaybeAlign(const MaybeAlign &Other) = default;
 
  MaybeAlign &operator=(const MaybeAlign &Other) = default;
 
  MaybeAlign(MaybeAlign &&Other) = default;
 
  MaybeAlign &operator=(MaybeAlign &&Other) = default;
 
 
 
  constexpr MaybeAlign(std::nullopt_t None) : UP(None) {}
 
  constexpr MaybeAlign(Align Value) : UP(Value) {}
 
  explicit MaybeAlign(uint64_t Value) {
 
    assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&
 
           "Alignment is neither 0 nor a power of 2");
 
    if (Value)
 
      emplace(Value);
 
  }
 
 
 
  /// For convenience, returns a valid alignment or 1 if undefined.
 
  Align valueOrOne() const { return value_or(Align()); }
 
};
 
 
 
/// Checks that SizeInBytes is a multiple of the alignment.
 
inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
 
  return SizeInBytes % Lhs.value() == 0;
 
}
 
 
 
/// Checks that Addr is a multiple of the alignment.
 
inline bool isAddrAligned(Align Lhs, const void *Addr) {
 
  return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
 
}
 
 
 
/// Returns a multiple of A needed to store `Size` bytes.
 
inline uint64_t alignTo(uint64_t Size, Align A) {
 
  const uint64_t Value = A.value();
 
  // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
 
 
 
  // The division followed by a multiplication can be thought of as a right
 
  // shift followed by a left shift which zeros out the extra bits produced in
 
  // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
 
  // are just zero.
 
 
 
  // Most compilers can generate this code but the pattern may be missed when
 
  // multiple functions gets inlined.
 
  return (Size + Value - 1) & ~(Value - 1U);
 
}
 
 
 
/// If non-zero \p Skew is specified, the return value will be a minimal integer
 
/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
 
/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
 
/// Skew mod \p A'.
 
///
 
/// Examples:
 
/// \code
 
///   alignTo(5, Align(8), 7) = 7
 
///   alignTo(17, Align(8), 1) = 17
 
///   alignTo(~0LL, Align(8), 3) = 3
 
/// \endcode
 
inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
 
  const uint64_t Value = A.value();
 
  Skew %= Value;
 
  return alignTo(Size - Skew, A) + Skew;
 
}
 
 
 
/// Aligns `Addr` to `Alignment` bytes, rounding up.
 
inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
 
  uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
 
  assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=
 
             ArithAddr &&
 
         "Overflow");
 
  return alignTo(ArithAddr, Alignment);
 
}
 
 
 
/// Returns the offset to the next integer (mod 2**64) that is greater than
 
/// or equal to \p Value and is a multiple of \p Align.
 
inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
 
  return alignTo(Value, Alignment) - Value;
 
}
 
 
 
/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
 
/// bytes, rounding up.
 
inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
 
  return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
 
}
 
 
 
/// Returns the log2 of the alignment.
 
inline unsigned Log2(Align A) { return A.ShiftValue; }
 
 
 
/// Returns the alignment that satisfies both alignments.
 
/// Same semantic as MinAlign.
 
inline Align commonAlignment(Align A, uint64_t Offset) {
 
  return Align(MinAlign(A.value(), Offset));
 
}
 
 
 
/// Returns a representation of the alignment that encodes undefined as 0.
 
inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
 
 
 
/// Dual operation of the encode function above.
 
inline MaybeAlign decodeMaybeAlign(unsigned Value) {
 
  if (Value == 0)
 
    return MaybeAlign();
 
  Align Out;
 
  Out.ShiftValue = Value - 1;
 
  return Out;
 
}
 
 
 
/// Returns a representation of the alignment, the encoded value is positive by
 
/// definition.
 
inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
 
 
 
/// Comparisons between Align and scalars. Rhs must be positive.
 
inline bool operator==(Align Lhs, uint64_t Rhs) {
 
  ALIGN_CHECK_ISPOSITIVE(Rhs);
 
  return Lhs.value() == Rhs;
 
}
 
inline bool operator!=(Align Lhs, uint64_t Rhs) {
 
  ALIGN_CHECK_ISPOSITIVE(Rhs);
 
  return Lhs.value() != Rhs;
 
}
 
inline bool operator<=(Align Lhs, uint64_t Rhs) {
 
  ALIGN_CHECK_ISPOSITIVE(Rhs);
 
  return Lhs.value() <= Rhs;
 
}
 
inline bool operator>=(Align Lhs, uint64_t Rhs) {
 
  ALIGN_CHECK_ISPOSITIVE(Rhs);
 
  return Lhs.value() >= Rhs;
 
}
 
inline bool operator<(Align Lhs, uint64_t Rhs) {
 
  ALIGN_CHECK_ISPOSITIVE(Rhs);
 
  return Lhs.value() < Rhs;
 
}
 
inline bool operator>(Align Lhs, uint64_t Rhs) {
 
  ALIGN_CHECK_ISPOSITIVE(Rhs);
 
  return Lhs.value() > Rhs;
 
}
 
 
 
/// Comparisons operators between Align.
 
inline bool operator==(Align Lhs, Align Rhs) {
 
  return Lhs.ShiftValue == Rhs.ShiftValue;
 
}
 
inline bool operator!=(Align Lhs, Align Rhs) {
 
  return Lhs.ShiftValue != Rhs.ShiftValue;
 
}
 
inline bool operator<=(Align Lhs, Align Rhs) {
 
  return Lhs.ShiftValue <= Rhs.ShiftValue;
 
}
 
inline bool operator>=(Align Lhs, Align Rhs) {
 
  return Lhs.ShiftValue >= Rhs.ShiftValue;
 
}
 
inline bool operator<(Align Lhs, Align Rhs) {
 
  return Lhs.ShiftValue < Rhs.ShiftValue;
 
}
 
inline bool operator>(Align Lhs, Align Rhs) {
 
  return Lhs.ShiftValue > Rhs.ShiftValue;
 
}
 
 
 
// Don't allow relational comparisons with MaybeAlign.
 
bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
 
bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
 
bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
 
bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
 
 
 
bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
 
bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
 
bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
 
bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
 
 
 
bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
 
bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
 
bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
 
bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
 
 
 
// Allow equality comparisons between Align and MaybeAlign.
 
inline bool operator==(MaybeAlign Lhs, Align Rhs) { return Lhs && *Lhs == Rhs; }
 
inline bool operator!=(MaybeAlign Lhs, Align Rhs) { return !(Lhs == Rhs); }
 
inline bool operator==(Align Lhs, MaybeAlign Rhs) { return Rhs == Lhs; }
 
inline bool operator!=(Align Lhs, MaybeAlign Rhs) { return !(Rhs == Lhs); }
 
// Allow equality comparisons with MaybeAlign.
 
inline bool operator==(MaybeAlign Lhs, MaybeAlign Rhs) {
 
  return (Lhs && Rhs && (*Lhs == *Rhs)) || (!Lhs && !Rhs);
 
}
 
inline bool operator!=(MaybeAlign Lhs, MaybeAlign Rhs) { return !(Lhs == Rhs); }
 
// Allow equality comparisons with std::nullopt.
 
inline bool operator==(MaybeAlign Lhs, std::nullopt_t) { return !bool(Lhs); }
 
inline bool operator!=(MaybeAlign Lhs, std::nullopt_t) { return bool(Lhs); }
 
inline bool operator==(std::nullopt_t, MaybeAlign Rhs) { return !bool(Rhs); }
 
inline bool operator!=(std::nullopt_t, MaybeAlign Rhs) { return bool(Rhs); }
 
 
 
#ifndef NDEBUG
 
// For usage in LLVM_DEBUG macros.
 
inline std::string DebugStr(const Align &A) {
 
  return std::to_string(A.value());
 
}
 
// For usage in LLVM_DEBUG macros.
 
inline std::string DebugStr(const MaybeAlign &MA) {
 
  if (MA)
 
    return std::to_string(MA->value());
 
  return "None";
 
}
 
#endif // NDEBUG
 
 
 
#undef ALIGN_CHECK_ISPOSITIVE
 
 
 
} // namespace llvm
 
 
 
#endif // LLVM_SUPPORT_ALIGNMENT_H_