//===- SampleProfReader.h - Read LLVM sample profile data -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file contains definitions needed for reading sample profiles.
 
//
 
// NOTE: If you are making changes to this file format, please remember
 
//       to document them in the Clang documentation at
 
//       tools/clang/docs/UsersManual.rst.
 
//
 
// Text format
 
// -----------
 
//
 
// Sample profiles are written as ASCII text. The file is divided into
 
// sections, which correspond to each of the functions executed at runtime.
 
// Each section has the following format
 
//
 
//     function1:total_samples:total_head_samples
 
//      offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
 
//      offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
 
//      ...
 
//      offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
 
//      offsetA[.discriminator]: fnA:num_of_total_samples
 
//       offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ]
 
//       ...
 
//      !CFGChecksum: num
 
//      !Attribute: flags
 
//
 
// This is a nested tree in which the indentation represents the nesting level
 
// of the inline stack. There are no blank lines in the file. And the spacing
 
// within a single line is fixed. Additional spaces will result in an error
 
// while reading the file.
 
//
 
// Any line starting with the '#' character is completely ignored.
 
//
 
// Inlined calls are represented with indentation. The Inline stack is a
 
// stack of source locations in which the top of the stack represents the
 
// leaf function, and the bottom of the stack represents the actual
 
// symbol to which the instruction belongs.
 
//
 
// Function names must be mangled in order for the profile loader to
 
// match them in the current translation unit. The two numbers in the
 
// function header specify how many total samples were accumulated in the
 
// function (first number), and the total number of samples accumulated
 
// in the prologue of the function (second number). This head sample
 
// count provides an indicator of how frequently the function is invoked.
 
//
 
// There are three types of lines in the function body.
 
//
 
// * Sampled line represents the profile information of a source location.
 
// * Callsite line represents the profile information of a callsite.
 
// * Metadata line represents extra metadata of the function.
 
//
 
// Each sampled line may contain several items. Some are optional (marked
 
// below):
 
//
 
// a. Source line offset. This number represents the line number
 
//    in the function where the sample was collected. The line number is
 
//    always relative to the line where symbol of the function is
 
//    defined. So, if the function has its header at line 280, the offset
 
//    13 is at line 293 in the file.
 
//
 
//    Note that this offset should never be a negative number. This could
 
//    happen in cases like macros. The debug machinery will register the
 
//    line number at the point of macro expansion. So, if the macro was
 
//    expanded in a line before the start of the function, the profile
 
//    converter should emit a 0 as the offset (this means that the optimizers
 
//    will not be able to associate a meaningful weight to the instructions
 
//    in the macro).
 
//
 
// b. [OPTIONAL] Discriminator. This is used if the sampled program
 
//    was compiled with DWARF discriminator support
 
//    (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
 
//    DWARF discriminators are unsigned integer values that allow the
 
//    compiler to distinguish between multiple execution paths on the
 
//    same source line location.
 
//
 
//    For example, consider the line of code ``if (cond) foo(); else bar();``.
 
//    If the predicate ``cond`` is true 80% of the time, then the edge
 
//    into function ``foo`` should be considered to be taken most of the
 
//    time. But both calls to ``foo`` and ``bar`` are at the same source
 
//    line, so a sample count at that line is not sufficient. The
 
//    compiler needs to know which part of that line is taken more
 
//    frequently.
 
//
 
//    This is what discriminators provide. In this case, the calls to
 
//    ``foo`` and ``bar`` will be at the same line, but will have
 
//    different discriminator values. This allows the compiler to correctly
 
//    set edge weights into ``foo`` and ``bar``.
 
//
 
// c. Number of samples. This is an integer quantity representing the
 
//    number of samples collected by the profiler at this source
 
//    location.
 
//
 
// d. [OPTIONAL] Potential call targets and samples. If present, this
 
//    line contains a call instruction. This models both direct and
 
//    number of samples. For example,
 
//
 
//      130: 7  foo:3  bar:2  baz:7
 
//
 
//    The above means that at relative line offset 130 there is a call
 
//    instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
 
//    with ``baz()`` being the relatively more frequently called target.
 
//
 
// Each callsite line may contain several items. Some are optional.
 
//
 
// a. Source line offset. This number represents the line number of the
 
//    callsite that is inlined in the profiled binary.
 
//
 
// b. [OPTIONAL] Discriminator. Same as the discriminator for sampled line.
 
//
 
// c. Number of samples. This is an integer quantity representing the
 
//    total number of samples collected for the inlined instance at this
 
//    callsite
 
//
 
// Metadata line can occur in lines with one indent only, containing extra
 
// information for the top-level function. Furthermore, metadata can only
 
// occur after all the body samples and callsite samples.
 
// Each metadata line may contain a particular type of metadata, marked by
 
// the starting characters annotated with !. We process each metadata line
 
// independently, hence each metadata line has to form an independent piece
 
// of information that does not require cross-line reference.
 
// We support the following types of metadata:
 
//
 
// a. CFG Checksum (a.k.a. function hash):
 
//   !CFGChecksum: 12345
 
// b. CFG Checksum (see ContextAttributeMask):
 
//   !Atribute: 1
 
//
 
//
 
// Binary format
 
// -------------
 
//
 
// This is a more compact encoding. Numbers are encoded as ULEB128 values
 
// and all strings are encoded in a name table. The file is organized in
 
// the following sections:
 
//
 
// MAGIC (uint64_t)
 
//    File identifier computed by function SPMagic() (0x5350524f463432ff)
 
//
 
// VERSION (uint32_t)
 
//    File format version number computed by SPVersion()
 
//
 
// SUMMARY
 
//    TOTAL_COUNT (uint64_t)
 
//        Total number of samples in the profile.
 
//    MAX_COUNT (uint64_t)
 
//        Maximum value of samples on a line.
 
//    MAX_FUNCTION_COUNT (uint64_t)
 
//        Maximum number of samples at function entry (head samples).
 
//    NUM_COUNTS (uint64_t)
 
//        Number of lines with samples.
 
//    NUM_FUNCTIONS (uint64_t)
 
//        Number of functions with samples.
 
//    NUM_DETAILED_SUMMARY_ENTRIES (size_t)
 
//        Number of entries in detailed summary
 
//    DETAILED_SUMMARY
 
//        A list of detailed summary entry. Each entry consists of
 
//        CUTOFF (uint32_t)
 
//            Required percentile of total sample count expressed as a fraction
 
//            multiplied by 1000000.
 
//        MIN_COUNT (uint64_t)
 
//            The minimum number of samples required to reach the target
 
//            CUTOFF.
 
//        NUM_COUNTS (uint64_t)
 
//            Number of samples to get to the desrired percentile.
 
//
 
// NAME TABLE
 
//    SIZE (uint32_t)
 
//        Number of entries in the name table.
 
//    NAMES
 
//        A NUL-separated list of SIZE strings.
 
//
 
// FUNCTION BODY (one for each uninlined function body present in the profile)
 
//    HEAD_SAMPLES (uint64_t) [only for top-level functions]
 
//        Total number of samples collected at the head (prologue) of the
 
//        function.
 
//        NOTE: This field should only be present for top-level functions
 
//              (i.e., not inlined into any caller). Inlined function calls
 
//              have no prologue, so they don't need this.
 
//    NAME_IDX (uint32_t)
 
//        Index into the name table indicating the function name.
 
//    SAMPLES (uint64_t)
 
//        Total number of samples collected in this function.
 
//    NRECS (uint32_t)
 
//        Total number of sampling records this function's profile.
 
//    BODY RECORDS
 
//        A list of NRECS entries. Each entry contains:
 
//          OFFSET (uint32_t)
 
//            Line offset from the start of the function.
 
//          DISCRIMINATOR (uint32_t)
 
//            Discriminator value (see description of discriminators
 
//            in the text format documentation above).
 
//          SAMPLES (uint64_t)
 
//            Number of samples collected at this location.
 
//          NUM_CALLS (uint32_t)
 
//            Number of non-inlined function calls made at this location. In the
 
//            case of direct calls, this number will always be 1. For indirect
 
//            calls (virtual functions and function pointers) this will
 
//            represent all the actual functions called at runtime.
 
//          CALL_TARGETS
 
//            A list of NUM_CALLS entries for each called function:
 
//               NAME_IDX (uint32_t)
 
//                  Index into the name table with the callee name.
 
//               SAMPLES (uint64_t)
 
//                  Number of samples collected at the call site.
 
//    NUM_INLINED_FUNCTIONS (uint32_t)
 
//      Number of callees inlined into this function.
 
//    INLINED FUNCTION RECORDS
 
//      A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
 
//      callees.
 
//        OFFSET (uint32_t)
 
//          Line offset from the start of the function.
 
//        DISCRIMINATOR (uint32_t)
 
//          Discriminator value (see description of discriminators
 
//          in the text format documentation above).
 
//        FUNCTION BODY
 
//          A FUNCTION BODY entry describing the inlined function.
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_PROFILEDATA_SAMPLEPROFREADER_H
 
#define LLVM_PROFILEDATA_SAMPLEPROFREADER_H
 
 
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/IR/DiagnosticInfo.h"
 
#include "llvm/IR/LLVMContext.h"
 
#include "llvm/IR/ProfileSummary.h"
 
#include "llvm/ProfileData/GCOV.h"
 
#include "llvm/ProfileData/SampleProf.h"
 
#include "llvm/Support/Debug.h"
 
#include "llvm/Support/Discriminator.h"
 
#include "llvm/Support/ErrorOr.h"
 
#include "llvm/Support/MemoryBuffer.h"
 
#include "llvm/Support/SymbolRemappingReader.h"
 
#include <cstdint>
 
#include <list>
 
#include <memory>
 
#include <optional>
 
#include <string>
 
#include <system_error>
 
#include <unordered_set>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class raw_ostream;
 
class Twine;
 
 
 
namespace sampleprof {
 
 
 
class SampleProfileReader;
 
 
 
/// SampleProfileReaderItaniumRemapper remaps the profile data from a
 
/// sample profile data reader, by applying a provided set of equivalences
 
/// between components of the symbol names in the profile.
 
class SampleProfileReaderItaniumRemapper {
 
public:
 
  SampleProfileReaderItaniumRemapper(std::unique_ptr<MemoryBuffer> B,
 
                                     std::unique_ptr<SymbolRemappingReader> SRR,
 
                                     SampleProfileReader &R)
 
      : Buffer(std::move(B)), Remappings(std::move(SRR)), Reader(R) {
 
    assert(Remappings && "Remappings cannot be nullptr");
 
  }
 
 
 
  /// Create a remapper from the given remapping file. The remapper will
 
  /// be used for profile read in by Reader.
 
  static ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
 
  create(const std::string Filename, SampleProfileReader &Reader,
 
         LLVMContext &C);
 
 
 
  /// Create a remapper from the given Buffer. The remapper will
 
  /// be used for profile read in by Reader.
 
  static ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
 
  create(std::unique_ptr<MemoryBuffer> &B, SampleProfileReader &Reader,
 
         LLVMContext &C);
 
 
 
  /// Apply remappings to the profile read by Reader.
 
  void applyRemapping(LLVMContext &Ctx);
 
 
 
  bool hasApplied() { return RemappingApplied; }
 
 
 
  /// Insert function name into remapper.
 
  void insert(StringRef FunctionName) { Remappings->insert(FunctionName); }
 
 
 
  /// Query whether there is equivalent in the remapper which has been
 
  /// inserted.
 
  bool exist(StringRef FunctionName) {
 
    return Remappings->lookup(FunctionName);
 
  }
 
 
 
  /// Return the equivalent name in the profile for \p FunctionName if
 
  /// it exists.
 
  std::optional<StringRef> lookUpNameInProfile(StringRef FunctionName);
 
 
 
private:
 
  // The buffer holding the content read from remapping file.
 
  std::unique_ptr<MemoryBuffer> Buffer;
 
  std::unique_ptr<SymbolRemappingReader> Remappings;
 
  // Map remapping key to the name in the profile. By looking up the
 
  // key in the remapper, a given new name can be mapped to the
 
  // cannonical name using the NameMap.
 
  DenseMap<SymbolRemappingReader::Key, StringRef> NameMap;
 
  // The Reader the remapper is servicing.
 
  SampleProfileReader &Reader;
 
  // Indicate whether remapping has been applied to the profile read
 
  // by Reader -- by calling applyRemapping.
 
  bool RemappingApplied = false;
 
};
 
 
 
/// Sample-based profile reader.
 
///
 
/// Each profile contains sample counts for all the functions
 
/// executed. Inside each function, statements are annotated with the
 
/// collected samples on all the instructions associated with that
 
/// statement.
 
///
 
/// For this to produce meaningful data, the program needs to be
 
/// compiled with some debug information (at minimum, line numbers:
 
/// -gline-tables-only). Otherwise, it will be impossible to match IR
 
/// instructions to the line numbers collected by the profiler.
 
///
 
/// From the profile file, we are interested in collecting the
 
/// following information:
 
///
 
/// * A list of functions included in the profile (mangled names).
 
///
 
/// * For each function F:
 
///   1. The total number of samples collected in F.
 
///
 
///   2. The samples collected at each line in F. To provide some
 
///      protection against source code shuffling, line numbers should
 
///      be relative to the start of the function.
 
///
 
/// The reader supports two file formats: text and binary. The text format
 
/// is useful for debugging and testing, while the binary format is more
 
/// compact and I/O efficient. They can both be used interchangeably.
 
class SampleProfileReader {
 
public:
 
  SampleProfileReader(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
 
                      SampleProfileFormat Format = SPF_None)
 
      : Profiles(0), Ctx(C), Buffer(std::move(B)), Format(Format) {}
 
 
 
  virtual ~SampleProfileReader() = default;
 
 
 
  /// Read and validate the file header.
 
  virtual std::error_code readHeader() = 0;
 
 
 
  /// Set the bits for FS discriminators. Parameter Pass specify the sequence
 
  /// number, Pass == i is for the i-th round of adding FS discriminators.
 
  /// Pass == 0 is for using base discriminators.
 
  void setDiscriminatorMaskedBitFrom(FSDiscriminatorPass P) {
 
    MaskedBitFrom = getFSPassBitEnd(P);
 
  }
 
 
 
  /// Get the bitmask the discriminators: For FS profiles, return the bit
 
  /// mask for this pass. For non FS profiles, return (unsigned) -1.
 
  uint32_t getDiscriminatorMask() const {
 
    if (!ProfileIsFS)
 
      return 0xFFFFFFFF;
 
    assert((MaskedBitFrom != 0) && "MaskedBitFrom is not set properly");
 
    return getN1Bits(MaskedBitFrom);
 
  }
 
 
 
  /// The interface to read sample profiles from the associated file.
 
  std::error_code read() {
 
    if (std::error_code EC = readImpl())
 
      return EC;
 
    if (Remapper)
 
      Remapper->applyRemapping(Ctx);
 
    FunctionSamples::UseMD5 = useMD5();
 
    return sampleprof_error::success;
 
  }
 
 
 
  /// The implementaion to read sample profiles from the associated file.
 
  virtual std::error_code readImpl() = 0;
 
 
 
  /// Print the profile for \p FContext on stream \p OS.
 
  void dumpFunctionProfile(SampleContext FContext, raw_ostream &OS = dbgs());
 
 
 
  /// Collect functions with definitions in Module M. For reader which
 
  /// support loading function profiles on demand, return true when the
 
  /// reader has been given a module. Always return false for reader
 
  /// which doesn't support loading function profiles on demand.
 
  virtual bool collectFuncsFromModule() { return false; }
 
 
 
  /// Print all the profiles on stream \p OS.
 
  void dump(raw_ostream &OS = dbgs());
 
 
 
  /// Print all the profiles on stream \p OS in the JSON format.
 
  void dumpJson(raw_ostream &OS = dbgs());
 
 
 
  /// Return the samples collected for function \p F.
 
  FunctionSamples *getSamplesFor(const Function &F) {
 
    // The function name may have been updated by adding suffix. Call
 
    // a helper to (optionally) strip off suffixes so that we can
 
    // match against the original function name in the profile.
 
    StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
 
    return getSamplesFor(CanonName);
 
  }
 
 
 
  /// Return the samples collected for function \p F, create empty
 
  /// FunctionSamples if it doesn't exist.
 
  FunctionSamples *getOrCreateSamplesFor(const Function &F) {
 
    std::string FGUID;
 
    StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
 
    CanonName = getRepInFormat(CanonName, useMD5(), FGUID);
 
    auto It = Profiles.find(CanonName);
 
    if (It != Profiles.end())
 
      return &It->second;
 
    if (!FGUID.empty()) {
 
      assert(useMD5() && "New name should only be generated for md5 profile");
 
      CanonName = *MD5NameBuffer.insert(FGUID).first;
 
    }
 
    return &Profiles[CanonName];
 
  }
 
 
 
  /// Return the samples collected for function \p F.
 
  virtual FunctionSamples *getSamplesFor(StringRef Fname) {
 
    std::string FGUID;
 
    Fname = getRepInFormat(Fname, useMD5(), FGUID);
 
    auto It = Profiles.find(Fname);
 
    if (It != Profiles.end())
 
      return &It->second;
 
 
 
    if (Remapper) {
 
      if (auto NameInProfile = Remapper->lookUpNameInProfile(Fname)) {
 
        auto It = Profiles.find(*NameInProfile);
 
        if (It != Profiles.end())
 
          return &It->second;
 
      }
 
    }
 
    return nullptr;
 
  }
 
 
 
  /// Return all the profiles.
 
  SampleProfileMap &getProfiles() { return Profiles; }
 
 
 
  /// Report a parse error message.
 
  void reportError(int64_t LineNumber, const Twine &Msg) const {
 
    Ctx.diagnose(DiagnosticInfoSampleProfile(Buffer->getBufferIdentifier(),
 
                                             LineNumber, Msg));
 
  }
 
 
 
  /// Create a sample profile reader appropriate to the file format.
 
  /// Create a remapper underlying if RemapFilename is not empty.
 
  /// Parameter P specifies the FSDiscriminatorPass.
 
  static ErrorOr<std::unique_ptr<SampleProfileReader>>
 
  create(const std::string Filename, LLVMContext &C,
 
         FSDiscriminatorPass P = FSDiscriminatorPass::Base,
 
         const std::string RemapFilename = "");
 
 
 
  /// Create a sample profile reader from the supplied memory buffer.
 
  /// Create a remapper underlying if RemapFilename is not empty.
 
  /// Parameter P specifies the FSDiscriminatorPass.
 
  static ErrorOr<std::unique_ptr<SampleProfileReader>>
 
  create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
 
         FSDiscriminatorPass P = FSDiscriminatorPass::Base,
 
         const std::string RemapFilename = "");
 
 
 
  /// Return the profile summary.
 
  ProfileSummary &getSummary() const { return *(Summary.get()); }
 
 
 
  MemoryBuffer *getBuffer() const { return Buffer.get(); }
 
 
 
  /// \brief Return the profile format.
 
  SampleProfileFormat getFormat() const { return Format; }
 
 
 
  /// Whether input profile is based on pseudo probes.
 
  bool profileIsProbeBased() const { return ProfileIsProbeBased; }
 
 
 
  /// Whether input profile is fully context-sensitive.
 
  bool profileIsCS() const { return ProfileIsCS; }
 
 
 
  /// Whether input profile contains ShouldBeInlined contexts.
 
  bool profileIsPreInlined() const { return ProfileIsPreInlined; }
 
 
 
  virtual std::unique_ptr<ProfileSymbolList> getProfileSymbolList() {
 
    return nullptr;
 
  };
 
 
 
  /// It includes all the names that have samples either in outline instance
 
  /// or inline instance.
 
  virtual std::vector<StringRef> *getNameTable() { return nullptr; }
 
  virtual bool dumpSectionInfo(raw_ostream &OS = dbgs()) { return false; };
 
 
 
  /// Return whether names in the profile are all MD5 numbers.
 
  virtual bool useMD5() { return false; }
 
 
 
  /// Don't read profile without context if the flag is set. This is only meaningful
 
  /// for ExtBinary format.
 
  virtual void setSkipFlatProf(bool Skip) {}
 
  /// Return whether any name in the profile contains ".__uniq." suffix.
 
  virtual bool hasUniqSuffix() { return false; }
 
 
 
  SampleProfileReaderItaniumRemapper *getRemapper() { return Remapper.get(); }
 
 
 
  void setModule(const Module *Mod) { M = Mod; }
 
 
 
protected:
 
  /// Map every function to its associated profile.
 
  ///
 
  /// The profile of every function executed at runtime is collected
 
  /// in the structure FunctionSamples. This maps function objects
 
  /// to their corresponding profiles.
 
  SampleProfileMap Profiles;
 
 
 
  /// LLVM context used to emit diagnostics.
 
  LLVMContext &Ctx;
 
 
 
  /// Memory buffer holding the profile file.
 
  std::unique_ptr<MemoryBuffer> Buffer;
 
 
 
  /// Extra name buffer holding names created on demand.
 
  /// This should only be needed for md5 profiles.
 
  std::unordered_set<std::string> MD5NameBuffer;
 
 
 
  /// Profile summary information.
 
  std::unique_ptr<ProfileSummary> Summary;
 
 
 
  /// Take ownership of the summary of this reader.
 
  static std::unique_ptr<ProfileSummary>
 
  takeSummary(SampleProfileReader &Reader) {
 
    return std::move(Reader.Summary);
 
  }
 
 
 
  /// Compute summary for this profile.
 
  void computeSummary();
 
 
 
  std::unique_ptr<SampleProfileReaderItaniumRemapper> Remapper;
 
 
 
  /// \brief Whether samples are collected based on pseudo probes.
 
  bool ProfileIsProbeBased = false;
 
 
 
  /// Whether function profiles are context-sensitive flat profiles.
 
  bool ProfileIsCS = false;
 
 
 
  /// Whether function profile contains ShouldBeInlined contexts.
 
  bool ProfileIsPreInlined = false;
 
 
 
  /// Number of context-sensitive profiles.
 
  uint32_t CSProfileCount = 0;
 
 
 
  /// Whether the function profiles use FS discriminators.
 
  bool ProfileIsFS = false;
 
 
 
  /// \brief The format of sample.
 
  SampleProfileFormat Format = SPF_None;
 
 
 
  /// \brief The current module being compiled if SampleProfileReader
 
  /// is used by compiler. If SampleProfileReader is used by other
 
  /// tools which are not compiler, M is usually nullptr.
 
  const Module *M = nullptr;
 
 
 
  /// Zero out the discriminator bits higher than bit MaskedBitFrom (0 based).
 
  /// The default is to keep all the bits.
 
  uint32_t MaskedBitFrom = 31;
 
};
 
 
 
class SampleProfileReaderText : public SampleProfileReader {
 
public:
 
  SampleProfileReaderText(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
 
      : SampleProfileReader(std::move(B), C, SPF_Text) {}
 
 
 
  /// Read and validate the file header.
 
  std::error_code readHeader() override { return sampleprof_error::success; }
 
 
 
  /// Read sample profiles from the associated file.
 
  std::error_code readImpl() override;
 
 
 
  /// Return true if \p Buffer is in the format supported by this class.
 
  static bool hasFormat(const MemoryBuffer &Buffer);
 
 
 
private:
 
  /// CSNameTable is used to save full context vectors. This serves as an
 
  /// underlying immutable buffer for all clients.
 
  std::list<SampleContextFrameVector> CSNameTable;
 
};
 
 
 
class SampleProfileReaderBinary : public SampleProfileReader {
 
public:
 
  SampleProfileReaderBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
 
                            SampleProfileFormat Format = SPF_None)
 
      : SampleProfileReader(std::move(B), C, Format) {}
 
 
 
  /// Read and validate the file header.
 
  std::error_code readHeader() override;
 
 
 
  /// Read sample profiles from the associated file.
 
  std::error_code readImpl() override;
 
 
 
  /// It includes all the names that have samples either in outline instance
 
  /// or inline instance.
 
  std::vector<StringRef> *getNameTable() override { return &NameTable; }
 
 
 
protected:
 
  /// Read a numeric value of type T from the profile.
 
  ///
 
  /// If an error occurs during decoding, a diagnostic message is emitted and
 
  /// EC is set.
 
  ///
 
  /// \returns the read value.
 
  template <typename T> ErrorOr<T> readNumber();
 
 
 
  /// Read a numeric value of type T from the profile. The value is saved
 
  /// without encoded.
 
  template <typename T> ErrorOr<T> readUnencodedNumber();
 
 
 
  /// Read a string from the profile.
 
  ///
 
  /// If an error occurs during decoding, a diagnostic message is emitted and
 
  /// EC is set.
 
  ///
 
  /// \returns the read value.
 
  ErrorOr<StringRef> readString();
 
 
 
  /// Read the string index and check whether it overflows the table.
 
  template <typename T> inline ErrorOr<uint32_t> readStringIndex(T &Table);
 
 
 
  /// Return true if we've reached the end of file.
 
  bool at_eof() const { return Data >= End; }
 
 
 
  /// Read the next function profile instance.
 
  std::error_code readFuncProfile(const uint8_t *Start);
 
 
 
  /// Read the contents of the given profile instance.
 
  std::error_code readProfile(FunctionSamples &FProfile);
 
 
 
  /// Read the contents of Magic number and Version number.
 
  std::error_code readMagicIdent();
 
 
 
  /// Read profile summary.
 
  std::error_code readSummary();
 
 
 
  /// Read the whole name table.
 
  virtual std::error_code readNameTable();
 
 
 
  /// Points to the current location in the buffer.
 
  const uint8_t *Data = nullptr;
 
 
 
  /// Points to the end of the buffer.
 
  const uint8_t *End = nullptr;
 
 
 
  /// Function name table.
 
  std::vector<StringRef> NameTable;
 
 
 
  /// Read a string indirectly via the name table.
 
  virtual ErrorOr<StringRef> readStringFromTable();
 
  virtual ErrorOr<SampleContext> readSampleContextFromTable();
 
 
 
private:
 
  std::error_code readSummaryEntry(std::vector<ProfileSummaryEntry> &Entries);
 
  virtual std::error_code verifySPMagic(uint64_t Magic) = 0;
 
};
 
 
 
class SampleProfileReaderRawBinary : public SampleProfileReaderBinary {
 
private:
 
  std::error_code verifySPMagic(uint64_t Magic) override;
 
 
 
public:
 
  SampleProfileReaderRawBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
 
                               SampleProfileFormat Format = SPF_Binary)
 
      : SampleProfileReaderBinary(std::move(B), C, Format) {}
 
 
 
  /// \brief Return true if \p Buffer is in the format supported by this class.
 
  static bool hasFormat(const MemoryBuffer &Buffer);
 
};
 
 
 
/// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase defines
 
/// the basic structure of the extensible binary format.
 
/// The format is organized in sections except the magic and version number
 
/// at the beginning. There is a section table before all the sections, and
 
/// each entry in the table describes the entry type, start, size and
 
/// attributes. The format in each section is defined by the section itself.
 
///
 
/// It is easy to add a new section while maintaining the backward
 
/// compatibility of the profile. Nothing extra needs to be done. If we want
 
/// to extend an existing section, like add cache misses information in
 
/// addition to the sample count in the profile body, we can add a new section
 
/// with the extension and retire the existing section, and we could choose
 
/// to keep the parser of the old section if we want the reader to be able
 
/// to read both new and old format profile.
 
///
 
/// SampleProfileReaderExtBinary/SampleProfileWriterExtBinary define the
 
/// commonly used sections of a profile in extensible binary format. It is
 
/// possible to define other types of profile inherited from
 
/// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase.
 
class SampleProfileReaderExtBinaryBase : public SampleProfileReaderBinary {
 
private:
 
  std::error_code decompressSection(const uint8_t *SecStart,
 
                                    const uint64_t SecSize,
 
                                    const uint8_t *&DecompressBuf,
 
                                    uint64_t &DecompressBufSize);
 
 
 
  BumpPtrAllocator Allocator;
 
 
 
protected:
 
  std::vector<SecHdrTableEntry> SecHdrTable;
 
  std::error_code readSecHdrTableEntry(uint32_t Idx);
 
  std::error_code readSecHdrTable();
 
 
 
  std::error_code readFuncMetadata(bool ProfileHasAttribute);
 
  std::error_code readFuncMetadata(bool ProfileHasAttribute,
 
                                   FunctionSamples *FProfile);
 
  std::error_code readFuncOffsetTable();
 
  std::error_code readFuncProfiles();
 
  std::error_code readMD5NameTable();
 
  std::error_code readNameTableSec(bool IsMD5);
 
  std::error_code readCSNameTableSec();
 
  std::error_code readProfileSymbolList();
 
 
 
  std::error_code readHeader() override;
 
  std::error_code verifySPMagic(uint64_t Magic) override = 0;
 
  virtual std::error_code readOneSection(const uint8_t *Start, uint64_t Size,
 
                                         const SecHdrTableEntry &Entry);
 
  // placeholder for subclasses to dispatch their own section readers.
 
  virtual std::error_code readCustomSection(const SecHdrTableEntry &Entry) = 0;
 
  ErrorOr<StringRef> readStringFromTable() override;
 
  ErrorOr<SampleContext> readSampleContextFromTable() override;
 
  ErrorOr<SampleContextFrames> readContextFromTable();
 
 
 
  std::unique_ptr<ProfileSymbolList> ProfSymList;
 
 
 
  /// The table mapping from function context to the offset of its
 
  /// FunctionSample towards file start.
 
  DenseMap<SampleContext, uint64_t> FuncOffsetTable;
 
 
 
  /// Function offset mapping ordered by contexts.
 
  std::unique_ptr<std::vector<std::pair<SampleContext, uint64_t>>>
 
      OrderedFuncOffsets;
 
 
 
  /// The set containing the functions to use when compiling a module.
 
  DenseSet<StringRef> FuncsToUse;
 
 
 
  /// Use fixed length MD5 instead of ULEB128 encoding so NameTable doesn't
 
  /// need to be read in up front and can be directly accessed using index.
 
  bool FixedLengthMD5 = false;
 
  /// The starting address of NameTable containing fixed length MD5.
 
  const uint8_t *MD5NameMemStart = nullptr;
 
 
 
  /// If MD5 is used in NameTable section, the section saves uint64_t data.
 
  /// The uint64_t data has to be converted to a string and then the string
 
  /// will be used to initialize StringRef in NameTable.
 
  /// Note NameTable contains StringRef so it needs another buffer to own
 
  /// the string data. MD5StringBuf serves as the string buffer that is
 
  /// referenced by NameTable (vector of StringRef). We make sure
 
  /// the lifetime of MD5StringBuf is not shorter than that of NameTable.
 
  std::unique_ptr<std::vector<std::string>> MD5StringBuf;
 
 
 
  /// CSNameTable is used to save full context vectors. This serves as an
 
  /// underlying immutable buffer for all clients.
 
  std::unique_ptr<const std::vector<SampleContextFrameVector>> CSNameTable;
 
 
 
  /// If SkipFlatProf is true, skip the sections with
 
  /// SecFlagFlat flag.
 
  bool SkipFlatProf = false;
 
 
 
  bool FuncOffsetsOrdered = false;
 
 
 
public:
 
  SampleProfileReaderExtBinaryBase(std::unique_ptr<MemoryBuffer> B,
 
                                   LLVMContext &C, SampleProfileFormat Format)
 
      : SampleProfileReaderBinary(std::move(B), C, Format) {}
 
 
 
  /// Read sample profiles in extensible format from the associated file.
 
  std::error_code readImpl() override;
 
 
 
  /// Get the total size of all \p Type sections.
 
  uint64_t getSectionSize(SecType Type);
 
  /// Get the total size of header and all sections.
 
  uint64_t getFileSize();
 
  bool dumpSectionInfo(raw_ostream &OS = dbgs()) override;
 
 
 
  /// Collect functions with definitions in Module M. Return true if
 
  /// the reader has been given a module.
 
  bool collectFuncsFromModule() override;
 
 
 
  /// Return whether names in the profile are all MD5 numbers.
 
  bool useMD5() override { return MD5StringBuf.get(); }
 
 
 
  std::unique_ptr<ProfileSymbolList> getProfileSymbolList() override {
 
    return std::move(ProfSymList);
 
  };
 
 
 
  void setSkipFlatProf(bool Skip) override { SkipFlatProf = Skip; }
 
};
 
 
 
class SampleProfileReaderExtBinary : public SampleProfileReaderExtBinaryBase {
 
private:
 
  std::error_code verifySPMagic(uint64_t Magic) override;
 
  std::error_code readCustomSection(const SecHdrTableEntry &Entry) override {
 
    // Update the data reader pointer to the end of the section.
 
    Data = End;
 
    return sampleprof_error::success;
 
  };
 
 
 
public:
 
  SampleProfileReaderExtBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
 
                               SampleProfileFormat Format = SPF_Ext_Binary)
 
      : SampleProfileReaderExtBinaryBase(std::move(B), C, Format) {}
 
 
 
  /// \brief Return true if \p Buffer is in the format supported by this class.
 
  static bool hasFormat(const MemoryBuffer &Buffer);
 
};
 
 
 
class SampleProfileReaderCompactBinary : public SampleProfileReaderBinary {
 
private:
 
  /// Function name table.
 
  std::vector<std::string> NameTable;
 
  /// The table mapping from function name to the offset of its FunctionSample
 
  /// towards file start.
 
  DenseMap<StringRef, uint64_t> FuncOffsetTable;
 
  /// The set containing the functions to use when compiling a module.
 
  DenseSet<StringRef> FuncsToUse;
 
  std::error_code verifySPMagic(uint64_t Magic) override;
 
  std::error_code readNameTable() override;
 
  /// Read a string indirectly via the name table.
 
  ErrorOr<StringRef> readStringFromTable() override;
 
  std::error_code readHeader() override;
 
  std::error_code readFuncOffsetTable();
 
 
 
public:
 
  SampleProfileReaderCompactBinary(std::unique_ptr<MemoryBuffer> B,
 
                                   LLVMContext &C)
 
      : SampleProfileReaderBinary(std::move(B), C, SPF_Compact_Binary) {}
 
 
 
  /// \brief Return true if \p Buffer is in the format supported by this class.
 
  static bool hasFormat(const MemoryBuffer &Buffer);
 
 
 
  /// Read samples only for functions to use.
 
  std::error_code readImpl() override;
 
 
 
  /// Collect functions with definitions in Module M. Return true if
 
  /// the reader has been given a module.
 
  bool collectFuncsFromModule() override;
 
 
 
  /// Return whether names in the profile are all MD5 numbers.
 
  bool useMD5() override { return true; }
 
};
 
 
 
using InlineCallStack = SmallVector<FunctionSamples *, 10>;
 
 
 
// Supported histogram types in GCC.  Currently, we only need support for
 
// call target histograms.
 
enum HistType {
 
  HIST_TYPE_INTERVAL,
 
  HIST_TYPE_POW2,
 
  HIST_TYPE_SINGLE_VALUE,
 
  HIST_TYPE_CONST_DELTA,
 
  HIST_TYPE_INDIR_CALL,
 
  HIST_TYPE_AVERAGE,
 
  HIST_TYPE_IOR,
 
  HIST_TYPE_INDIR_CALL_TOPN
 
};
 
 
 
class SampleProfileReaderGCC : public SampleProfileReader {
 
public:
 
  SampleProfileReaderGCC(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
 
      : SampleProfileReader(std::move(B), C, SPF_GCC),
 
        GcovBuffer(Buffer.get()) {}
 
 
 
  /// Read and validate the file header.
 
  std::error_code readHeader() override;
 
 
 
  /// Read sample profiles from the associated file.
 
  std::error_code readImpl() override;
 
 
 
  /// Return true if \p Buffer is in the format supported by this class.
 
  static bool hasFormat(const MemoryBuffer &Buffer);
 
 
 
protected:
 
  std::error_code readNameTable();
 
  std::error_code readOneFunctionProfile(const InlineCallStack &InlineStack,
 
                                         bool Update, uint32_t Offset);
 
  std::error_code readFunctionProfiles();
 
  std::error_code skipNextWord();
 
  template <typename T> ErrorOr<T> readNumber();
 
  ErrorOr<StringRef> readString();
 
 
 
  /// Read the section tag and check that it's the same as \p Expected.
 
  std::error_code readSectionTag(uint32_t Expected);
 
 
 
  /// GCOV buffer containing the profile.
 
  GCOVBuffer GcovBuffer;
 
 
 
  /// Function names in this profile.
 
  std::vector<std::string> Names;
 
 
 
  /// GCOV tags used to separate sections in the profile file.
 
  static const uint32_t GCOVTagAFDOFileNames = 0xaa000000;
 
  static const uint32_t GCOVTagAFDOFunction = 0xac000000;
 
};
 
 
 
} // end namespace sampleprof
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_PROFILEDATA_SAMPLEPROFREADER_H