//===- InstrProf.h - Instrumented profiling format support ------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Instrumentation-based profiling data is generated by instrumented
 
// binaries through library functions in compiler-rt, and read by the clang
 
// frontend to feed PGO.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_PROFILEDATA_INSTRPROF_H
 
#define LLVM_PROFILEDATA_INSTRPROF_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/BitmaskEnum.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/StringSet.h"
 
#include "llvm/ADT/Triple.h"
 
#include "llvm/IR/GlobalValue.h"
 
#include "llvm/IR/ProfileSummary.h"
 
#include "llvm/ProfileData/InstrProfData.inc"
 
#include "llvm/Support/CommandLine.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/Error.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include "llvm/Support/Host.h"
 
#include "llvm/Support/MD5.h"
 
#include "llvm/Support/MathExtras.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <cstring>
 
#include <list>
 
#include <memory>
 
#include <string>
 
#include <system_error>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class Function;
 
class GlobalVariable;
 
struct InstrProfRecord;
 
class InstrProfSymtab;
 
class Instruction;
 
class MDNode;
 
class Module;
 
 
 
enum InstrProfSectKind {
 
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) Kind,
 
#include "llvm/ProfileData/InstrProfData.inc"
 
};
 
 
 
/// Return the max count value. We reserver a few large values for special use.
 
inline uint64_t getInstrMaxCountValue() {
 
  return std::numeric_limits<uint64_t>::max() - 2;
 
}
 
 
 
/// Return the name of the profile section corresponding to \p IPSK.
 
///
 
/// The name of the section depends on the object format type \p OF. If
 
/// \p AddSegmentInfo is true, a segment prefix and additional linker hints may
 
/// be added to the section name (this is the default).
 
std::string getInstrProfSectionName(InstrProfSectKind IPSK,
 
                                    Triple::ObjectFormatType OF,
 
                                    bool AddSegmentInfo = true);
 
 
 
/// Return the name profile runtime entry point to do value profiling
 
/// for a given site.
 
inline StringRef getInstrProfValueProfFuncName() {
 
  return INSTR_PROF_VALUE_PROF_FUNC_STR;
 
}
 
 
 
/// Return the name profile runtime entry point to do memop size value
 
/// profiling.
 
inline StringRef getInstrProfValueProfMemOpFuncName() {
 
  return INSTR_PROF_VALUE_PROF_MEMOP_FUNC_STR;
 
}
 
 
 
/// Return the name prefix of variables containing instrumented function names.
 
inline StringRef getInstrProfNameVarPrefix() { return "__profn_"; }
 
 
 
/// Return the name prefix of variables containing per-function control data.
 
inline StringRef getInstrProfDataVarPrefix() { return "__profd_"; }
 
 
 
/// Return the name prefix of profile counter variables.
 
inline StringRef getInstrProfCountersVarPrefix() { return "__profc_"; }
 
 
 
/// Return the name prefix of value profile variables.
 
inline StringRef getInstrProfValuesVarPrefix() { return "__profvp_"; }
 
 
 
/// Return the name of value profile node array variables:
 
inline StringRef getInstrProfVNodesVarName() { return "__llvm_prf_vnodes"; }
 
 
 
/// Return the name of the variable holding the strings (possibly compressed)
 
/// of all function's PGO names.
 
inline StringRef getInstrProfNamesVarName() {
 
  return "__llvm_prf_nm";
 
}
 
 
 
/// Return the name of a covarage mapping variable (internal linkage)
 
/// for each instrumented source module. Such variables are allocated
 
/// in the __llvm_covmap section.
 
inline StringRef getCoverageMappingVarName() {
 
  return "__llvm_coverage_mapping";
 
}
 
 
 
/// Return the name of the internal variable recording the array
 
/// of PGO name vars referenced by the coverage mapping. The owning
 
/// functions of those names are not emitted by FE (e.g, unused inline
 
/// functions.)
 
inline StringRef getCoverageUnusedNamesVarName() {
 
  return "__llvm_coverage_names";
 
}
 
 
 
/// Return the name of function that registers all the per-function control
 
/// data at program startup time by calling __llvm_register_function. This
 
/// function has internal linkage and is called by  __llvm_profile_init
 
/// runtime method. This function is not generated for these platforms:
 
/// Darwin, Linux, and FreeBSD.
 
inline StringRef getInstrProfRegFuncsName() {
 
  return "__llvm_profile_register_functions";
 
}
 
 
 
/// Return the name of the runtime interface that registers per-function control
 
/// data for one instrumented function.
 
inline StringRef getInstrProfRegFuncName() {
 
  return "__llvm_profile_register_function";
 
}
 
 
 
/// Return the name of the runtime interface that registers the PGO name strings.
 
inline StringRef getInstrProfNamesRegFuncName() {
 
  return "__llvm_profile_register_names_function";
 
}
 
 
 
/// Return the name of the runtime initialization method that is generated by
 
/// the compiler. The function calls __llvm_profile_register_functions and
 
/// __llvm_profile_override_default_filename functions if needed. This function
 
/// has internal linkage and invoked at startup time via init_array.
 
inline StringRef getInstrProfInitFuncName() { return "__llvm_profile_init"; }
 
 
 
/// Return the name of the hook variable defined in profile runtime library.
 
/// A reference to the variable causes the linker to link in the runtime
 
/// initialization module (which defines the hook variable).
 
inline StringRef getInstrProfRuntimeHookVarName() {
 
  return INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_RUNTIME_VAR);
 
}
 
 
 
/// Return the name of the compiler generated function that references the
 
/// runtime hook variable. The function is a weak global.
 
inline StringRef getInstrProfRuntimeHookVarUseFuncName() {
 
  return "__llvm_profile_runtime_user";
 
}
 
 
 
inline StringRef getInstrProfCounterBiasVarName() {
 
  return INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_COUNTER_BIAS_VAR);
 
}
 
 
 
/// Return the marker used to separate PGO names during serialization.
 
inline StringRef getInstrProfNameSeparator() { return "\01"; }
 
 
 
/// Return the modified name for function \c F suitable to be
 
/// used the key for profile lookup. Variable \c InLTO indicates if this
 
/// is called in LTO optimization passes.
 
std::string getPGOFuncName(const Function &F, bool InLTO = false,
 
                           uint64_t Version = INSTR_PROF_INDEX_VERSION);
 
 
 
/// Return the modified name for a function suitable to be
 
/// used the key for profile lookup. The function's original
 
/// name is \c RawFuncName and has linkage of type \c Linkage.
 
/// The function is defined in module \c FileName.
 
std::string getPGOFuncName(StringRef RawFuncName,
 
                           GlobalValue::LinkageTypes Linkage,
 
                           StringRef FileName,
 
                           uint64_t Version = INSTR_PROF_INDEX_VERSION);
 
 
 
/// Return the name of the global variable used to store a function
 
/// name in PGO instrumentation. \c FuncName is the name of the function
 
/// returned by the \c getPGOFuncName call.
 
std::string getPGOFuncNameVarName(StringRef FuncName,
 
                                  GlobalValue::LinkageTypes Linkage);
 
 
 
/// Create and return the global variable for function name used in PGO
 
/// instrumentation. \c FuncName is the name of the function returned
 
/// by \c getPGOFuncName call.
 
GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName);
 
 
 
/// Create and return the global variable for function name used in PGO
 
/// instrumentation.  /// \c FuncName is the name of the function
 
/// returned by \c getPGOFuncName call, \c M is the owning module,
 
/// and \c Linkage is the linkage of the instrumented function.
 
GlobalVariable *createPGOFuncNameVar(Module &M,
 
                                     GlobalValue::LinkageTypes Linkage,
 
                                     StringRef PGOFuncName);
 
 
 
/// Return the initializer in string of the PGO name var \c NameVar.
 
StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar);
 
 
 
/// Given a PGO function name, remove the filename prefix and return
 
/// the original (static) function name.
 
StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName,
 
                                   StringRef FileName = "<unknown>");
 
 
 
/// Given a vector of strings (function PGO names) \c NameStrs, the
 
/// method generates a combined string \c Result that is ready to be
 
/// serialized.  The \c Result string is comprised of three fields:
 
/// The first field is the length of the uncompressed strings, and the
 
/// the second field is the length of the zlib-compressed string.
 
/// Both fields are encoded in ULEB128.  If \c doCompress is false, the
 
///  third field is the uncompressed strings; otherwise it is the
 
/// compressed string. When the string compression is off, the
 
/// second field will have value zero.
 
Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
 
                                bool doCompression, std::string &Result);
 
 
 
/// Produce \c Result string with the same format described above. The input
 
/// is vector of PGO function name variables that are referenced.
 
Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
 
                                std::string &Result, bool doCompression = true);
 
 
 
/// \c NameStrings is a string composed of one of more sub-strings encoded in
 
/// the format described above. The substrings are separated by 0 or more zero
 
/// bytes. This method decodes the string and populates the \c Symtab.
 
Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab);
 
 
 
/// Check if INSTR_PROF_RAW_VERSION_VAR is defined. This global is only being
 
/// set in IR PGO compilation.
 
bool isIRPGOFlagSet(const Module *M);
 
 
 
/// Check if we can safely rename this Comdat function. Instances of the same
 
/// comdat function may have different control flows thus can not share the
 
/// same counter variable.
 
bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken = false);
 
 
 
enum InstrProfValueKind : uint32_t {
 
#define VALUE_PROF_KIND(Enumerator, Value, Descr) Enumerator = Value,
 
#include "llvm/ProfileData/InstrProfData.inc"
 
};
 
 
 
/// Get the value profile data for value site \p SiteIdx from \p InstrProfR
 
/// and annotate the instruction \p Inst with the value profile meta data.
 
/// Annotate up to \p MaxMDCount (default 3) number of records per value site.
 
void annotateValueSite(Module &M, Instruction &Inst,
 
                       const InstrProfRecord &InstrProfR,
 
                       InstrProfValueKind ValueKind, uint32_t SiteIndx,
 
                       uint32_t MaxMDCount = 3);
 
 
 
/// Same as the above interface but using an ArrayRef, as well as \p Sum.
 
void annotateValueSite(Module &M, Instruction &Inst,
 
                       ArrayRef<InstrProfValueData> VDs, uint64_t Sum,
 
                       InstrProfValueKind ValueKind, uint32_t MaxMDCount);
 
 
 
/// Extract the value profile data from \p Inst which is annotated with
 
/// value profile meta data. Return false if there is no value data annotated,
 
/// otherwise  return true.
 
bool getValueProfDataFromInst(const Instruction &Inst,
 
                              InstrProfValueKind ValueKind,
 
                              uint32_t MaxNumValueData,
 
                              InstrProfValueData ValueData[],
 
                              uint32_t &ActualNumValueData, uint64_t &TotalC,
 
                              bool GetNoICPValue = false);
 
 
 
inline StringRef getPGOFuncNameMetadataName() { return "PGOFuncName"; }
 
 
 
/// Return the PGOFuncName meta data associated with a function.
 
MDNode *getPGOFuncNameMetadata(const Function &F);
 
 
 
/// Create the PGOFuncName meta data if PGOFuncName is different from
 
/// function's raw name. This should only apply to internal linkage functions
 
/// declared by users only.
 
void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName);
 
 
 
/// Check if we can use Comdat for profile variables. This will eliminate
 
/// the duplicated profile variables for Comdat functions.
 
bool needsComdatForCounter(const Function &F, const Module &M);
 
 
 
/// An enum describing the attributes of an instrumented profile.
 
enum class InstrProfKind {
 
  Unknown = 0x0,
 
  // A frontend clang profile, incompatible with other attrs.
 
  FrontendInstrumentation = 0x1,
 
  // An IR-level profile (default when -fprofile-generate is used).
 
  IRInstrumentation = 0x2,
 
  // A profile with entry basic block instrumentation.
 
  FunctionEntryInstrumentation = 0x4,
 
  // A context sensitive IR-level profile.
 
  ContextSensitive = 0x8,
 
  // Use single byte probes for coverage.
 
  SingleByteCoverage = 0x10,
 
  // Only instrument the function entry basic block.
 
  FunctionEntryOnly = 0x20,
 
  // A memory profile collected using -fprofile=memory.
 
  MemProf = 0x40,
 
  LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/MemProf)
 
};
 
 
 
const std::error_category &instrprof_category();
 
 
 
enum class instrprof_error {
 
  success = 0,
 
  eof,
 
  unrecognized_format,
 
  bad_magic,
 
  bad_header,
 
  unsupported_version,
 
  unsupported_hash_type,
 
  too_large,
 
  truncated,
 
  malformed,
 
  missing_debug_info_for_correlation,
 
  unexpected_debug_info_for_correlation,
 
  unable_to_correlate_profile,
 
  unknown_function,
 
  invalid_prof,
 
  hash_mismatch,
 
  count_mismatch,
 
  counter_overflow,
 
  value_site_count_mismatch,
 
  compress_failed,
 
  uncompress_failed,
 
  empty_raw_profile,
 
  zlib_unavailable
 
};
 
 
 
inline std::error_code make_error_code(instrprof_error E) {
 
  return std::error_code(static_cast<int>(E), instrprof_category());
 
}
 
 
 
class InstrProfError : public ErrorInfo<InstrProfError> {
 
public:
 
  InstrProfError(instrprof_error Err, const Twine &ErrStr = Twine())
 
      : Err(Err), Msg(ErrStr.str()) {
 
    assert(Err != instrprof_error::success && "Not an error");
 
  }
 
 
 
  std::string message() const override;
 
 
 
  void log(raw_ostream &OS) const override { OS << message(); }
 
 
 
  std::error_code convertToErrorCode() const override {
 
    return make_error_code(Err);
 
  }
 
 
 
  instrprof_error get() const { return Err; }
 
  const std::string &getMessage() const { return Msg; }
 
 
 
  /// Consume an Error and return the raw enum value contained within it. The
 
  /// Error must either be a success value, or contain a single InstrProfError.
 
  static instrprof_error take(Error E) {
 
    auto Err = instrprof_error::success;
 
    handleAllErrors(std::move(E), [&Err](const InstrProfError &IPE) {
 
      assert(Err == instrprof_error::success && "Multiple errors encountered");
 
      Err = IPE.get();
 
    });
 
    return Err;
 
  }
 
 
 
  static char ID;
 
 
 
private:
 
  instrprof_error Err;
 
  std::string Msg;
 
};
 
 
 
class SoftInstrProfErrors {
 
  /// Count the number of soft instrprof_errors encountered and keep track of
 
  /// the first such error for reporting purposes.
 
 
 
  /// The first soft error encountered.
 
  instrprof_error FirstError = instrprof_error::success;
 
 
 
  /// The number of hash mismatches.
 
  unsigned NumHashMismatches = 0;
 
 
 
  /// The number of count mismatches.
 
  unsigned NumCountMismatches = 0;
 
 
 
  /// The number of counter overflows.
 
  unsigned NumCounterOverflows = 0;
 
 
 
  /// The number of value site count mismatches.
 
  unsigned NumValueSiteCountMismatches = 0;
 
 
 
public:
 
  SoftInstrProfErrors() = default;
 
 
 
  ~SoftInstrProfErrors() {
 
    assert(FirstError == instrprof_error::success &&
 
           "Unchecked soft error encountered");
 
  }
 
 
 
  /// Track a soft error (\p IE) and increment its associated counter.
 
  void addError(instrprof_error IE);
 
 
 
  /// Get the number of hash mismatches.
 
  unsigned getNumHashMismatches() const { return NumHashMismatches; }
 
 
 
  /// Get the number of count mismatches.
 
  unsigned getNumCountMismatches() const { return NumCountMismatches; }
 
 
 
  /// Get the number of counter overflows.
 
  unsigned getNumCounterOverflows() const { return NumCounterOverflows; }
 
 
 
  /// Get the number of value site count mismatches.
 
  unsigned getNumValueSiteCountMismatches() const {
 
    return NumValueSiteCountMismatches;
 
  }
 
 
 
  /// Return the first encountered error and reset FirstError to a success
 
  /// value.
 
  Error takeError() {
 
    if (FirstError == instrprof_error::success)
 
      return Error::success();
 
    auto E = make_error<InstrProfError>(FirstError);
 
    FirstError = instrprof_error::success;
 
    return E;
 
  }
 
};
 
 
 
namespace object {
 
 
 
class SectionRef;
 
 
 
} // end namespace object
 
 
 
namespace IndexedInstrProf {
 
 
 
uint64_t ComputeHash(StringRef K);
 
 
 
} // end namespace IndexedInstrProf
 
 
 
/// A symbol table used for function PGO name look-up with keys
 
/// (such as pointers, md5hash values) to the function. A function's
 
/// PGO name or name's md5hash are used in retrieving the profile
 
/// data of the function. See \c getPGOFuncName() method for details
 
/// on how PGO name is formed.
 
class InstrProfSymtab {
 
public:
 
  using AddrHashMap = std::vector<std::pair<uint64_t, uint64_t>>;
 
 
 
private:
 
  StringRef Data;
 
  uint64_t Address = 0;
 
  // Unique name strings.
 
  StringSet<> NameTab;
 
  // A map from MD5 keys to function name strings.
 
  std::vector<std::pair<uint64_t, StringRef>> MD5NameMap;
 
  // A map from MD5 keys to function define. We only populate this map
 
  // when build the Symtab from a Module.
 
  std::vector<std::pair<uint64_t, Function *>> MD5FuncMap;
 
  // A map from function runtime address to function name MD5 hash.
 
  // This map is only populated and used by raw instr profile reader.
 
  AddrHashMap AddrToMD5Map;
 
  bool Sorted = false;
 
 
 
  static StringRef getExternalSymbol() {
 
    return "** External Symbol **";
 
  }
 
 
 
  // If the symtab is created by a series of calls to \c addFuncName, \c
 
  // finalizeSymtab needs to be called before looking up function names.
 
  // This is required because the underlying map is a vector (for space
 
  // efficiency) which needs to be sorted.
 
  inline void finalizeSymtab();
 
 
 
public:
 
  InstrProfSymtab() = default;
 
 
 
  /// Create InstrProfSymtab from an object file section which
 
  /// contains function PGO names. When section may contain raw
 
  /// string data or string data in compressed form. This method
 
  /// only initialize the symtab with reference to the data and
 
  /// the section base address. The decompression will be delayed
 
  /// until before it is used. See also \c create(StringRef) method.
 
  Error create(object::SectionRef &Section);
 
 
 
  /// This interface is used by reader of CoverageMapping test
 
  /// format.
 
  inline Error create(StringRef D, uint64_t BaseAddr);
 
 
 
  /// \c NameStrings is a string composed of one of more sub-strings
 
  ///  encoded in the format described in \c collectPGOFuncNameStrings.
 
  /// This method is a wrapper to \c readPGOFuncNameStrings method.
 
  inline Error create(StringRef NameStrings);
 
 
 
  /// A wrapper interface to populate the PGO symtab with functions
 
  /// decls from module \c M. This interface is used by transformation
 
  /// passes such as indirect function call promotion. Variable \c InLTO
 
  /// indicates if this is called from LTO optimization passes.
 
  Error create(Module &M, bool InLTO = false);
 
 
 
  /// Create InstrProfSymtab from a set of names iteratable from
 
  /// \p IterRange. This interface is used by IndexedProfReader.
 
  template <typename NameIterRange> Error create(const NameIterRange &IterRange);
 
 
 
  /// Update the symtab by adding \p FuncName to the table. This interface
 
  /// is used by the raw and text profile readers.
 
  Error addFuncName(StringRef FuncName) {
 
    if (FuncName.empty())
 
      return make_error<InstrProfError>(instrprof_error::malformed,
 
                                        "function name is empty");
 
    auto Ins = NameTab.insert(FuncName);
 
    if (Ins.second) {
 
      MD5NameMap.push_back(std::make_pair(
 
          IndexedInstrProf::ComputeHash(FuncName), Ins.first->getKey()));
 
      Sorted = false;
 
    }
 
    return Error::success();
 
  }
 
 
 
  /// Map a function address to its name's MD5 hash. This interface
 
  /// is only used by the raw profiler reader.
 
  void mapAddress(uint64_t Addr, uint64_t MD5Val) {
 
    AddrToMD5Map.push_back(std::make_pair(Addr, MD5Val));
 
  }
 
 
 
  /// Return a function's hash, or 0, if the function isn't in this SymTab.
 
  uint64_t getFunctionHashFromAddress(uint64_t Address);
 
 
 
  /// Return function's PGO name from the function name's symbol
 
  /// address in the object file. If an error occurs, return
 
  /// an empty string.
 
  StringRef getFuncName(uint64_t FuncNameAddress, size_t NameSize);
 
 
 
  /// Return function's PGO name from the name's md5 hash value.
 
  /// If not found, return an empty string.
 
  inline StringRef getFuncName(uint64_t FuncMD5Hash);
 
 
 
  /// Just like getFuncName, except that it will return a non-empty StringRef
 
  /// if the function is external to this symbol table. All such cases
 
  /// will be represented using the same StringRef value.
 
  inline StringRef getFuncNameOrExternalSymbol(uint64_t FuncMD5Hash);
 
 
 
  /// True if Symbol is the value used to represent external symbols.
 
  static bool isExternalSymbol(const StringRef &Symbol) {
 
    return Symbol == InstrProfSymtab::getExternalSymbol();
 
  }
 
 
 
  /// Return function from the name's md5 hash. Return nullptr if not found.
 
  inline Function *getFunction(uint64_t FuncMD5Hash);
 
 
 
  /// Return the function's original assembly name by stripping off
 
  /// the prefix attached (to symbols with priviate linkage). For
 
  /// global functions, it returns the same string as getFuncName.
 
  inline StringRef getOrigFuncName(uint64_t FuncMD5Hash);
 
 
 
  /// Return the name section data.
 
  inline StringRef getNameData() const { return Data; }
 
 
 
  /// Dump the symbols in this table.
 
  void dumpNames(raw_ostream &OS) const {
 
    for (StringRef S : NameTab.keys())
 
      OS << S << "\n";
 
  }
 
};
 
 
 
Error InstrProfSymtab::create(StringRef D, uint64_t BaseAddr) {
 
  Data = D;
 
  Address = BaseAddr;
 
  return Error::success();
 
}
 
 
 
Error InstrProfSymtab::create(StringRef NameStrings) {
 
  return readPGOFuncNameStrings(NameStrings, *this);
 
}
 
 
 
template <typename NameIterRange>
 
Error InstrProfSymtab::create(const NameIterRange &IterRange) {
 
  for (auto Name : IterRange)
 
    if (Error E = addFuncName(Name))
 
      return E;
 
 
 
  finalizeSymtab();
 
  return Error::success();
 
}
 
 
 
void InstrProfSymtab::finalizeSymtab() {
 
  if (Sorted)
 
    return;
 
  llvm::sort(MD5NameMap, less_first());
 
  llvm::sort(MD5FuncMap, less_first());
 
  llvm::sort(AddrToMD5Map, less_first());
 
  AddrToMD5Map.erase(std::unique(AddrToMD5Map.begin(), AddrToMD5Map.end()),
 
                     AddrToMD5Map.end());
 
  Sorted = true;
 
}
 
 
 
StringRef InstrProfSymtab::getFuncNameOrExternalSymbol(uint64_t FuncMD5Hash) {
 
  StringRef ret = getFuncName(FuncMD5Hash);
 
  if (ret.empty())
 
    return InstrProfSymtab::getExternalSymbol();
 
  return ret;
 
}
 
 
 
StringRef InstrProfSymtab::getFuncName(uint64_t FuncMD5Hash) {
 
  finalizeSymtab();
 
  auto Result = llvm::lower_bound(MD5NameMap, FuncMD5Hash,
 
                                  [](const std::pair<uint64_t, StringRef> &LHS,
 
                                     uint64_t RHS) { return LHS.first < RHS; });
 
  if (Result != MD5NameMap.end() && Result->first == FuncMD5Hash)
 
    return Result->second;
 
  return StringRef();
 
}
 
 
 
Function* InstrProfSymtab::getFunction(uint64_t FuncMD5Hash) {
 
  finalizeSymtab();
 
  auto Result = llvm::lower_bound(MD5FuncMap, FuncMD5Hash,
 
                                  [](const std::pair<uint64_t, Function *> &LHS,
 
                                     uint64_t RHS) { return LHS.first < RHS; });
 
  if (Result != MD5FuncMap.end() && Result->first == FuncMD5Hash)
 
    return Result->second;
 
  return nullptr;
 
}
 
 
 
// See also getPGOFuncName implementation. These two need to be
 
// matched.
 
StringRef InstrProfSymtab::getOrigFuncName(uint64_t FuncMD5Hash) {
 
  StringRef PGOName = getFuncName(FuncMD5Hash);
 
  size_t S = PGOName.find_first_of(':');
 
  if (S == StringRef::npos)
 
    return PGOName;
 
  return PGOName.drop_front(S + 1);
 
}
 
 
 
// To store the sums of profile count values, or the percentage of
 
// the sums of the total count values.
 
struct CountSumOrPercent {
 
  uint64_t NumEntries;
 
  double CountSum;
 
  double ValueCounts[IPVK_Last - IPVK_First + 1];
 
  CountSumOrPercent() : NumEntries(0), CountSum(0.0f), ValueCounts() {}
 
  void reset() {
 
    NumEntries = 0;
 
    CountSum = 0.0f;
 
    for (double &VC : ValueCounts)
 
      VC = 0.0f;
 
  }
 
};
 
 
 
// Function level or program level overlap information.
 
struct OverlapStats {
 
  enum OverlapStatsLevel { ProgramLevel, FunctionLevel };
 
  // Sum of the total count values for the base profile.
 
  CountSumOrPercent Base;
 
  // Sum of the total count values for the test profile.
 
  CountSumOrPercent Test;
 
  // Overlap lap score. Should be in range of [0.0f to 1.0f].
 
  CountSumOrPercent Overlap;
 
  CountSumOrPercent Mismatch;
 
  CountSumOrPercent Unique;
 
  OverlapStatsLevel Level;
 
  const std::string *BaseFilename;
 
  const std::string *TestFilename;
 
  StringRef FuncName;
 
  uint64_t FuncHash;
 
  bool Valid;
 
 
 
  OverlapStats(OverlapStatsLevel L = ProgramLevel)
 
      : Level(L), BaseFilename(nullptr), TestFilename(nullptr), FuncHash(0),
 
        Valid(false) {}
 
 
 
  void dump(raw_fd_ostream &OS) const;
 
 
 
  void setFuncInfo(StringRef Name, uint64_t Hash) {
 
    FuncName = Name;
 
    FuncHash = Hash;
 
  }
 
 
 
  Error accumulateCounts(const std::string &BaseFilename,
 
                         const std::string &TestFilename, bool IsCS);
 
  void addOneMismatch(const CountSumOrPercent &MismatchFunc);
 
  void addOneUnique(const CountSumOrPercent &UniqueFunc);
 
 
 
  static inline double score(uint64_t Val1, uint64_t Val2, double Sum1,
 
                             double Sum2) {
 
    if (Sum1 < 1.0f || Sum2 < 1.0f)
 
      return 0.0f;
 
    return std::min(Val1 / Sum1, Val2 / Sum2);
 
  }
 
};
 
 
 
// This is used to filter the functions whose overlap information
 
// to be output.
 
struct OverlapFuncFilters {
 
  uint64_t ValueCutoff;
 
  const std::string NameFilter;
 
};
 
 
 
struct InstrProfValueSiteRecord {
 
  /// Value profiling data pairs at a given value site.
 
  std::list<InstrProfValueData> ValueData;
 
 
 
  InstrProfValueSiteRecord() { ValueData.clear(); }
 
  template <class InputIterator>
 
  InstrProfValueSiteRecord(InputIterator F, InputIterator L)
 
      : ValueData(F, L) {}
 
 
 
  /// Sort ValueData ascending by Value
 
  void sortByTargetValues() {
 
    ValueData.sort(
 
        [](const InstrProfValueData &left, const InstrProfValueData &right) {
 
          return left.Value < right.Value;
 
        });
 
  }
 
  /// Sort ValueData Descending by Count
 
  inline void sortByCount();
 
 
 
  /// Merge data from another InstrProfValueSiteRecord
 
  /// Optionally scale merged counts by \p Weight.
 
  void merge(InstrProfValueSiteRecord &Input, uint64_t Weight,
 
             function_ref<void(instrprof_error)> Warn);
 
  /// Scale up value profile data counts by N (Numerator) / D (Denominator).
 
  void scale(uint64_t N, uint64_t D, function_ref<void(instrprof_error)> Warn);
 
 
 
  /// Compute the overlap b/w this record and Input record.
 
  void overlap(InstrProfValueSiteRecord &Input, uint32_t ValueKind,
 
               OverlapStats &Overlap, OverlapStats &FuncLevelOverlap);
 
};
 
 
 
/// Profiling information for a single function.
 
struct InstrProfRecord {
 
  std::vector<uint64_t> Counts;
 
 
 
  InstrProfRecord() = default;
 
  InstrProfRecord(std::vector<uint64_t> Counts) : Counts(std::move(Counts)) {}
 
  InstrProfRecord(InstrProfRecord &&) = default;
 
  InstrProfRecord(const InstrProfRecord &RHS)
 
      : Counts(RHS.Counts),
 
        ValueData(RHS.ValueData
 
                      ? std::make_unique<ValueProfData>(*RHS.ValueData)
 
                      : nullptr) {}
 
  InstrProfRecord &operator=(InstrProfRecord &&) = default;
 
  InstrProfRecord &operator=(const InstrProfRecord &RHS) {
 
    Counts = RHS.Counts;
 
    if (!RHS.ValueData) {
 
      ValueData = nullptr;
 
      return *this;
 
    }
 
    if (!ValueData)
 
      ValueData = std::make_unique<ValueProfData>(*RHS.ValueData);
 
    else
 
      *ValueData = *RHS.ValueData;
 
    return *this;
 
  }
 
 
 
  /// Return the number of value profile kinds with non-zero number
 
  /// of profile sites.
 
  inline uint32_t getNumValueKinds() const;
 
  /// Return the number of instrumented sites for ValueKind.
 
  inline uint32_t getNumValueSites(uint32_t ValueKind) const;
 
 
 
  /// Return the total number of ValueData for ValueKind.
 
  inline uint32_t getNumValueData(uint32_t ValueKind) const;
 
 
 
  /// Return the number of value data collected for ValueKind at profiling
 
  /// site: Site.
 
  inline uint32_t getNumValueDataForSite(uint32_t ValueKind,
 
                                         uint32_t Site) const;
 
 
 
  /// Return the array of profiled values at \p Site. If \p TotalC
 
  /// is not null, the total count of all target values at this site
 
  /// will be stored in \c *TotalC.
 
  inline std::unique_ptr<InstrProfValueData[]>
 
  getValueForSite(uint32_t ValueKind, uint32_t Site,
 
                  uint64_t *TotalC = nullptr) const;
 
 
 
  /// Get the target value/counts of kind \p ValueKind collected at site
 
  /// \p Site and store the result in array \p Dest. Return the total
 
  /// counts of all target values at this site.
 
  inline uint64_t getValueForSite(InstrProfValueData Dest[], uint32_t ValueKind,
 
                                  uint32_t Site) const;
 
 
 
  /// Reserve space for NumValueSites sites.
 
  inline void reserveSites(uint32_t ValueKind, uint32_t NumValueSites);
 
 
 
  /// Add ValueData for ValueKind at value Site.
 
  void addValueData(uint32_t ValueKind, uint32_t Site,
 
                    InstrProfValueData *VData, uint32_t N,
 
                    InstrProfSymtab *SymTab);
 
 
 
  /// Merge the counts in \p Other into this one.
 
  /// Optionally scale merged counts by \p Weight.
 
  void merge(InstrProfRecord &Other, uint64_t Weight,
 
             function_ref<void(instrprof_error)> Warn);
 
 
 
  /// Scale up profile counts (including value profile data) by
 
  /// a factor of (N / D).
 
  void scale(uint64_t N, uint64_t D, function_ref<void(instrprof_error)> Warn);
 
 
 
  /// Sort value profile data (per site) by count.
 
  void sortValueData() {
 
    for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
 
      for (auto &SR : getValueSitesForKind(Kind))
 
        SR.sortByCount();
 
  }
 
 
 
  /// Clear value data entries and edge counters.
 
  void Clear() {
 
    Counts.clear();
 
    clearValueData();
 
  }
 
 
 
  /// Clear value data entries
 
  void clearValueData() { ValueData = nullptr; }
 
 
 
  /// Compute the sums of all counts and store in Sum.
 
  void accumulateCounts(CountSumOrPercent &Sum) const;
 
 
 
  /// Compute the overlap b/w this IntrprofRecord and Other.
 
  void overlap(InstrProfRecord &Other, OverlapStats &Overlap,
 
               OverlapStats &FuncLevelOverlap, uint64_t ValueCutoff);
 
 
 
  /// Compute the overlap of value profile counts.
 
  void overlapValueProfData(uint32_t ValueKind, InstrProfRecord &Src,
 
                            OverlapStats &Overlap,
 
                            OverlapStats &FuncLevelOverlap);
 
 
 
  enum CountPseudoKind {
 
    NotPseudo = 0,
 
    PseudoHot,
 
    PseudoWarm,
 
  };
 
  enum PseudoCountVal {
 
    HotFunctionVal = -1,
 
    WarmFunctionVal = -2,
 
  };
 
  CountPseudoKind getCountPseudoKind() const {
 
    uint64_t FirstCount = Counts[0];
 
    if (FirstCount == (uint64_t)HotFunctionVal)
 
      return PseudoHot;
 
    if (FirstCount == (uint64_t)WarmFunctionVal)
 
      return PseudoWarm;
 
    return NotPseudo;
 
  }
 
  void setPseudoCount(CountPseudoKind Kind) {
 
    if (Kind == PseudoHot)
 
      Counts[0] = (uint64_t)HotFunctionVal;
 
    else if (Kind == PseudoWarm)
 
      Counts[0] = (uint64_t)WarmFunctionVal;
 
  }
 
 
 
private:
 
  struct ValueProfData {
 
    std::vector<InstrProfValueSiteRecord> IndirectCallSites;
 
    std::vector<InstrProfValueSiteRecord> MemOPSizes;
 
  };
 
  std::unique_ptr<ValueProfData> ValueData;
 
 
 
  MutableArrayRef<InstrProfValueSiteRecord>
 
  getValueSitesForKind(uint32_t ValueKind) {
 
    // Cast to /add/ const (should be an implicit_cast, ideally, if that's ever
 
    // implemented in LLVM) to call the const overload of this function, then
 
    // cast away the constness from the result.
 
    auto AR = const_cast<const InstrProfRecord *>(this)->getValueSitesForKind(
 
        ValueKind);
 
    return MutableArrayRef(
 
        const_cast<InstrProfValueSiteRecord *>(AR.data()), AR.size());
 
  }
 
  ArrayRef<InstrProfValueSiteRecord>
 
  getValueSitesForKind(uint32_t ValueKind) const {
 
    if (!ValueData)
 
      return std::nullopt;
 
    switch (ValueKind) {
 
    case IPVK_IndirectCallTarget:
 
      return ValueData->IndirectCallSites;
 
    case IPVK_MemOPSize:
 
      return ValueData->MemOPSizes;
 
    default:
 
      llvm_unreachable("Unknown value kind!");
 
    }
 
  }
 
 
 
  std::vector<InstrProfValueSiteRecord> &
 
  getOrCreateValueSitesForKind(uint32_t ValueKind) {
 
    if (!ValueData)
 
      ValueData = std::make_unique<ValueProfData>();
 
    switch (ValueKind) {
 
    case IPVK_IndirectCallTarget:
 
      return ValueData->IndirectCallSites;
 
    case IPVK_MemOPSize:
 
      return ValueData->MemOPSizes;
 
    default:
 
      llvm_unreachable("Unknown value kind!");
 
    }
 
  }
 
 
 
  // Map indirect call target name hash to name string.
 
  uint64_t remapValue(uint64_t Value, uint32_t ValueKind,
 
                      InstrProfSymtab *SymTab);
 
 
 
  // Merge Value Profile data from Src record to this record for ValueKind.
 
  // Scale merged value counts by \p Weight.
 
  void mergeValueProfData(uint32_t ValkeKind, InstrProfRecord &Src,
 
                          uint64_t Weight,
 
                          function_ref<void(instrprof_error)> Warn);
 
 
 
  // Scale up value profile data count by N (Numerator) / D (Denominator).
 
  void scaleValueProfData(uint32_t ValueKind, uint64_t N, uint64_t D,
 
                          function_ref<void(instrprof_error)> Warn);
 
};
 
 
 
struct NamedInstrProfRecord : InstrProfRecord {
 
  StringRef Name;
 
  uint64_t Hash;
 
 
 
  // We reserve this bit as the flag for context sensitive profile record.
 
  static const int CS_FLAG_IN_FUNC_HASH = 60;
 
 
 
  NamedInstrProfRecord() = default;
 
  NamedInstrProfRecord(StringRef Name, uint64_t Hash,
 
                       std::vector<uint64_t> Counts)
 
      : InstrProfRecord(std::move(Counts)), Name(Name), Hash(Hash) {}
 
 
 
  static bool hasCSFlagInHash(uint64_t FuncHash) {
 
    return ((FuncHash >> CS_FLAG_IN_FUNC_HASH) & 1);
 
  }
 
  static void setCSFlagInHash(uint64_t &FuncHash) {
 
    FuncHash |= ((uint64_t)1 << CS_FLAG_IN_FUNC_HASH);
 
  }
 
};
 
 
 
uint32_t InstrProfRecord::getNumValueKinds() const {
 
  uint32_t NumValueKinds = 0;
 
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
 
    NumValueKinds += !(getValueSitesForKind(Kind).empty());
 
  return NumValueKinds;
 
}
 
 
 
uint32_t InstrProfRecord::getNumValueData(uint32_t ValueKind) const {
 
  uint32_t N = 0;
 
  for (const auto &SR : getValueSitesForKind(ValueKind))
 
    N += SR.ValueData.size();
 
  return N;
 
}
 
 
 
uint32_t InstrProfRecord::getNumValueSites(uint32_t ValueKind) const {
 
  return getValueSitesForKind(ValueKind).size();
 
}
 
 
 
uint32_t InstrProfRecord::getNumValueDataForSite(uint32_t ValueKind,
 
                                                 uint32_t Site) const {
 
  return getValueSitesForKind(ValueKind)[Site].ValueData.size();
 
}
 
 
 
std::unique_ptr<InstrProfValueData[]>
 
InstrProfRecord::getValueForSite(uint32_t ValueKind, uint32_t Site,
 
                                 uint64_t *TotalC) const {
 
  uint64_t Dummy = 0;
 
  uint64_t &TotalCount = (TotalC == nullptr ? Dummy : *TotalC);
 
  uint32_t N = getNumValueDataForSite(ValueKind, Site);
 
  if (N == 0) {
 
    TotalCount = 0;
 
    return std::unique_ptr<InstrProfValueData[]>(nullptr);
 
  }
 
 
 
  auto VD = std::make_unique<InstrProfValueData[]>(N);
 
  TotalCount = getValueForSite(VD.get(), ValueKind, Site);
 
 
 
  return VD;
 
}
 
 
 
uint64_t InstrProfRecord::getValueForSite(InstrProfValueData Dest[],
 
                                          uint32_t ValueKind,
 
                                          uint32_t Site) const {
 
  uint32_t I = 0;
 
  uint64_t TotalCount = 0;
 
  for (auto V : getValueSitesForKind(ValueKind)[Site].ValueData) {
 
    Dest[I].Value = V.Value;
 
    Dest[I].Count = V.Count;
 
    TotalCount = SaturatingAdd(TotalCount, V.Count);
 
    I++;
 
  }
 
  return TotalCount;
 
}
 
 
 
void InstrProfRecord::reserveSites(uint32_t ValueKind, uint32_t NumValueSites) {
 
  if (!NumValueSites)
 
    return;
 
  getOrCreateValueSitesForKind(ValueKind).reserve(NumValueSites);
 
}
 
 
 
inline support::endianness getHostEndianness() {
 
  return sys::IsLittleEndianHost ? support::little : support::big;
 
}
 
 
 
// Include definitions for value profile data
 
#define INSTR_PROF_VALUE_PROF_DATA
 
#include "llvm/ProfileData/InstrProfData.inc"
 
 
 
void InstrProfValueSiteRecord::sortByCount() {
 
  ValueData.sort(
 
      [](const InstrProfValueData &left, const InstrProfValueData &right) {
 
        return left.Count > right.Count;
 
      });
 
  // Now truncate
 
  size_t max_s = INSTR_PROF_MAX_NUM_VAL_PER_SITE;
 
  if (ValueData.size() > max_s)
 
    ValueData.resize(max_s);
 
}
 
 
 
namespace IndexedInstrProf {
 
 
 
enum class HashT : uint32_t {
 
  MD5,
 
  Last = MD5
 
};
 
 
 
inline uint64_t ComputeHash(HashT Type, StringRef K) {
 
  switch (Type) {
 
  case HashT::MD5:
 
    return MD5Hash(K);
 
  }
 
  llvm_unreachable("Unhandled hash type");
 
}
 
 
 
const uint64_t Magic = 0x8169666f72706cff; // "\xfflprofi\x81"
 
 
 
enum ProfVersion {
 
  // Version 1 is the first version. In this version, the value of
 
  // a key/value pair can only include profile data of a single function.
 
  // Due to this restriction, the number of block counters for a given
 
  // function is not recorded but derived from the length of the value.
 
  Version1 = 1,
 
  // The version 2 format supports recording profile data of multiple
 
  // functions which share the same key in one value field. To support this,
 
  // the number block counters is recorded as an uint64_t field right after the
 
  // function structural hash.
 
  Version2 = 2,
 
  // Version 3 supports value profile data. The value profile data is expected
 
  // to follow the block counter profile data.
 
  Version3 = 3,
 
  // In this version, profile summary data \c IndexedInstrProf::Summary is
 
  // stored after the profile header.
 
  Version4 = 4,
 
  // In this version, the frontend PGO stable hash algorithm defaults to V2.
 
  Version5 = 5,
 
  // In this version, the frontend PGO stable hash algorithm got fixed and
 
  // may produce hashes different from Version5.
 
  Version6 = 6,
 
  // An additional counter is added around logical operators.
 
  Version7 = 7,
 
  // An additional (optional) memory profile type is added.
 
  Version8 = 8,
 
  // Binary ids are added.
 
  Version9 = 9,
 
  // The current version is 9.
 
  CurrentVersion = INSTR_PROF_INDEX_VERSION
 
};
 
const uint64_t Version = ProfVersion::CurrentVersion;
 
 
 
const HashT HashType = HashT::MD5;
 
 
 
inline uint64_t ComputeHash(StringRef K) { return ComputeHash(HashType, K); }
 
 
 
// This structure defines the file header of the LLVM profile
 
// data file in indexed-format.
 
struct Header {
 
  uint64_t Magic;
 
  uint64_t Version;
 
  uint64_t Unused; // Becomes unused since version 4
 
  uint64_t HashType;
 
  uint64_t HashOffset;
 
  uint64_t MemProfOffset;
 
  uint64_t BinaryIdOffset;
 
  // New fields should only be added at the end to ensure that the size
 
  // computation is correct. The methods below need to be updated to ensure that
 
  // the new field is read correctly.
 
 
 
  // Reads a header struct from the buffer.
 
  static Expected<Header> readFromBuffer(const unsigned char *Buffer);
 
 
 
  // Returns the size of the header in bytes for all valid fields based on the
 
  // version. I.e a older version header will return a smaller size.
 
  size_t size() const;
 
 
 
  // Returns the format version in little endian. The header retains the version
 
  // in native endian of the compiler runtime.
 
  uint64_t formatVersion() const;
 
};
 
 
 
// Profile summary data recorded in the profile data file in indexed
 
// format. It is introduced in version 4. The summary data follows
 
// right after the profile file header.
 
struct Summary {
 
  struct Entry {
 
    uint64_t Cutoff; ///< The required percentile of total execution count.
 
    uint64_t
 
        MinBlockCount;  ///< The minimum execution count for this percentile.
 
    uint64_t NumBlocks; ///< Number of blocks >= the minumum execution count.
 
  };
 
  // The field kind enumerator to assigned value mapping should remain
 
  // unchanged  when a new kind is added or an old kind gets deleted in
 
  // the future.
 
  enum SummaryFieldKind {
 
    /// The total number of functions instrumented.
 
    TotalNumFunctions = 0,
 
    /// Total number of instrumented blocks/edges.
 
    TotalNumBlocks = 1,
 
    /// The maximal execution count among all functions.
 
    /// This field does not exist for profile data from IR based
 
    /// instrumentation.
 
    MaxFunctionCount = 2,
 
    /// Max block count of the program.
 
    MaxBlockCount = 3,
 
    /// Max internal block count of the program (excluding entry blocks).
 
    MaxInternalBlockCount = 4,
 
    /// The sum of all instrumented block counts.
 
    TotalBlockCount = 5,
 
    NumKinds = TotalBlockCount + 1
 
  };
 
 
 
  // The number of summmary fields following the summary header.
 
  uint64_t NumSummaryFields;
 
  // The number of Cutoff Entries (Summary::Entry) following summary fields.
 
  uint64_t NumCutoffEntries;
 
 
 
  Summary() = delete;
 
  Summary(uint32_t Size) { memset(this, 0, Size); }
 
 
 
  void operator delete(void *ptr) { ::operator delete(ptr); }
 
 
 
  static uint32_t getSize(uint32_t NumSumFields, uint32_t NumCutoffEntries) {
 
    return sizeof(Summary) + NumCutoffEntries * sizeof(Entry) +
 
           NumSumFields * sizeof(uint64_t);
 
  }
 
 
 
  const uint64_t *getSummaryDataBase() const {
 
    return reinterpret_cast<const uint64_t *>(this + 1);
 
  }
 
 
 
  uint64_t *getSummaryDataBase() {
 
    return reinterpret_cast<uint64_t *>(this + 1);
 
  }
 
 
 
  const Entry *getCutoffEntryBase() const {
 
    return reinterpret_cast<const Entry *>(
 
        &getSummaryDataBase()[NumSummaryFields]);
 
  }
 
 
 
  Entry *getCutoffEntryBase() {
 
    return reinterpret_cast<Entry *>(&getSummaryDataBase()[NumSummaryFields]);
 
  }
 
 
 
  uint64_t get(SummaryFieldKind K) const {
 
    return getSummaryDataBase()[K];
 
  }
 
 
 
  void set(SummaryFieldKind K, uint64_t V) {
 
    getSummaryDataBase()[K] = V;
 
  }
 
 
 
  const Entry &getEntry(uint32_t I) const { return getCutoffEntryBase()[I]; }
 
 
 
  void setEntry(uint32_t I, const ProfileSummaryEntry &E) {
 
    Entry &ER = getCutoffEntryBase()[I];
 
    ER.Cutoff = E.Cutoff;
 
    ER.MinBlockCount = E.MinCount;
 
    ER.NumBlocks = E.NumCounts;
 
  }
 
};
 
 
 
inline std::unique_ptr<Summary> allocSummary(uint32_t TotalSize) {
 
  return std::unique_ptr<Summary>(new (::operator new(TotalSize))
 
                                      Summary(TotalSize));
 
}
 
 
 
} // end namespace IndexedInstrProf
 
 
 
namespace RawInstrProf {
 
 
 
// Version 1: First version
 
// Version 2: Added value profile data section. Per-function control data
 
// struct has more fields to describe value profile information.
 
// Version 3: Compressed name section support. Function PGO name reference
 
// from control data struct is changed from raw pointer to Name's MD5 value.
 
// Version 4: ValueDataBegin and ValueDataSizes fields are removed from the
 
// raw header.
 
// Version 5: Bit 60 of FuncHash is reserved for the flag for the context
 
// sensitive records.
 
// Version 6: Added binary id.
 
// Version 7: Reorder binary id and include version in signature.
 
// Version 8: Use relative counter pointer.
 
const uint64_t Version = INSTR_PROF_RAW_VERSION;
 
 
 
template <class IntPtrT> inline uint64_t getMagic();
 
template <> inline uint64_t getMagic<uint64_t>() {
 
  return INSTR_PROF_RAW_MAGIC_64;
 
}
 
 
 
template <> inline uint64_t getMagic<uint32_t>() {
 
  return INSTR_PROF_RAW_MAGIC_32;
 
}
 
 
 
// Per-function profile data header/control structure.
 
// The definition should match the structure defined in
 
// compiler-rt/lib/profile/InstrProfiling.h.
 
// It should also match the synthesized type in
 
// Transforms/Instrumentation/InstrProfiling.cpp:getOrCreateRegionCounters.
 
template <class IntPtrT> struct alignas(8) ProfileData {
 
  #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Type Name;
 
  #include "llvm/ProfileData/InstrProfData.inc"
 
};
 
 
 
// File header structure of the LLVM profile data in raw format.
 
// The definition should match the header referenced in
 
// compiler-rt/lib/profile/InstrProfilingFile.c  and
 
// InstrProfilingBuffer.c.
 
struct Header {
 
#define INSTR_PROF_RAW_HEADER(Type, Name, Init) const Type Name;
 
#include "llvm/ProfileData/InstrProfData.inc"
 
};
 
 
 
} // end namespace RawInstrProf
 
 
 
// Parse MemOP Size range option.
 
void getMemOPSizeRangeFromOption(StringRef Str, int64_t &RangeStart,
 
                                 int64_t &RangeLast);
 
 
 
// Create the variable for the profile file name.
 
void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput);
 
 
 
// Whether to compress function names in profile records, and filenames in
 
// code coverage mappings. Used by the Instrumentation library and unit tests.
 
extern cl::opt<bool> DoInstrProfNameCompression;
 
 
 
} // end namespace llvm
 
#endif // LLVM_PROFILEDATA_INSTRPROF_H