//===- ELFYAML.h - ELF YAMLIO implementation --------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file declares classes for handling the YAML representation
 
/// of ELF.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_OBJECTYAML_ELFYAML_H
 
#define LLVM_OBJECTYAML_ELFYAML_H
 
 
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/BinaryFormat/ELF.h"
 
#include "llvm/Object/ELFTypes.h"
 
#include "llvm/ObjectYAML/DWARFYAML.h"
 
#include "llvm/ObjectYAML/YAML.h"
 
#include "llvm/Support/YAMLTraits.h"
 
#include <cstdint>
 
#include <memory>
 
#include <optional>
 
#include <vector>
 
 
 
namespace llvm {
 
namespace ELFYAML {
 
 
 
StringRef dropUniqueSuffix(StringRef S);
 
std::string appendUniqueSuffix(StringRef Name, const Twine& Msg);
 
 
 
// These types are invariant across 32/64-bit ELF, so for simplicity just
 
// directly give them their exact sizes. We don't need to worry about
 
// endianness because these are just the types in the YAMLIO structures,
 
// and are appropriately converted to the necessary endianness when
 
// reading/generating binary object files.
 
// The naming of these types is intended to be ELF_PREFIX, where PREFIX is
 
// the common prefix of the respective constants. E.g. ELF_EM corresponds
 
// to the `e_machine` constants, like `EM_X86_64`.
 
// In the future, these would probably be better suited by C++11 enum
 
// class's with appropriate fixed underlying type.
 
LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_ET)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PT)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_EM)
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFCLASS)
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFDATA)
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFOSABI)
 
// Just use 64, since it can hold 32-bit values too.
 
LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_EF)
 
// Just use 64, since it can hold 32-bit values too.
 
LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_DYNTAG)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PF)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_SHT)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_REL)
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_RSS)
 
// Just use 64, since it can hold 32-bit values too.
 
LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_SHF)
 
LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_SHN)
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STB)
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STT)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_NT)
 
 
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG)
 
LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1)
 
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_ISA)
 
 
 
LLVM_YAML_STRONG_TYPEDEF(StringRef, YAMLFlowString)
 
LLVM_YAML_STRONG_TYPEDEF(int64_t, YAMLIntUInt)
 
 
 
template <class ELFT>
 
unsigned getDefaultShEntSize(unsigned EMachine, ELF_SHT SecType,
 
                             StringRef SecName) {
 
  if (EMachine == ELF::EM_MIPS && SecType == ELF::SHT_MIPS_ABIFLAGS)
 
    return sizeof(object::Elf_Mips_ABIFlags<ELFT>);
 
 
 
  switch (SecType) {
 
  case ELF::SHT_SYMTAB:
 
  case ELF::SHT_DYNSYM:
 
    return sizeof(typename ELFT::Sym);
 
  case ELF::SHT_GROUP:
 
    return sizeof(typename ELFT::Word);
 
  case ELF::SHT_REL:
 
    return sizeof(typename ELFT::Rel);
 
  case ELF::SHT_RELA:
 
    return sizeof(typename ELFT::Rela);
 
  case ELF::SHT_RELR:
 
    return sizeof(typename ELFT::Relr);
 
  case ELF::SHT_DYNAMIC:
 
    return sizeof(typename ELFT::Dyn);
 
  case ELF::SHT_HASH:
 
    return sizeof(typename ELFT::Word);
 
  case ELF::SHT_SYMTAB_SHNDX:
 
    return sizeof(typename ELFT::Word);
 
  case ELF::SHT_GNU_versym:
 
    return sizeof(typename ELFT::Half);
 
  case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
 
    return sizeof(object::Elf_CGProfile_Impl<ELFT>);
 
  default:
 
    if (SecName == ".debug_str")
 
      return 1;
 
    return 0;
 
  }
 
}
 
 
 
// For now, hardcode 64 bits everywhere that 32 or 64 would be needed
 
// since 64-bit can hold 32-bit values too.
 
struct FileHeader {
 
  ELF_ELFCLASS Class;
 
  ELF_ELFDATA Data;
 
  ELF_ELFOSABI OSABI;
 
  llvm::yaml::Hex8 ABIVersion;
 
  ELF_ET Type;
 
  std::optional<ELF_EM> Machine;
 
  ELF_EF Flags;
 
  llvm::yaml::Hex64 Entry;
 
  std::optional<StringRef> SectionHeaderStringTable;
 
 
 
  std::optional<llvm::yaml::Hex64> EPhOff;
 
  std::optional<llvm::yaml::Hex16> EPhEntSize;
 
  std::optional<llvm::yaml::Hex16> EPhNum;
 
  std::optional<llvm::yaml::Hex16> EShEntSize;
 
  std::optional<llvm::yaml::Hex64> EShOff;
 
  std::optional<llvm::yaml::Hex16> EShNum;
 
  std::optional<llvm::yaml::Hex16> EShStrNdx;
 
};
 
 
 
struct SectionHeader {
 
  StringRef Name;
 
};
 
 
 
struct Symbol {
 
  StringRef Name;
 
  ELF_STT Type;
 
  std::optional<StringRef> Section;
 
  std::optional<ELF_SHN> Index;
 
  ELF_STB Binding;
 
  std::optional<llvm::yaml::Hex64> Value;
 
  std::optional<llvm::yaml::Hex64> Size;
 
  std::optional<uint8_t> Other;
 
 
 
  std::optional<uint32_t> StName;
 
};
 
 
 
struct SectionOrType {
 
  StringRef sectionNameOrType;
 
};
 
 
 
struct DynamicEntry {
 
  ELF_DYNTAG Tag;
 
  llvm::yaml::Hex64 Val;
 
};
 
 
 
struct BBAddrMapEntry {
 
  struct BBEntry {
 
    uint32_t ID;
 
    llvm::yaml::Hex64 AddressOffset;
 
    llvm::yaml::Hex64 Size;
 
    llvm::yaml::Hex64 Metadata;
 
  };
 
  uint8_t Version;
 
  llvm::yaml::Hex8 Feature;
 
  llvm::yaml::Hex64 Address;
 
  std::optional<uint64_t> NumBlocks;
 
  std::optional<std::vector<BBEntry>> BBEntries;
 
};
 
 
 
struct StackSizeEntry {
 
  llvm::yaml::Hex64 Address;
 
  llvm::yaml::Hex64 Size;
 
};
 
 
 
struct NoteEntry {
 
  StringRef Name;
 
  yaml::BinaryRef Desc;
 
  ELF_NT Type;
 
};
 
 
 
struct Chunk {
 
  enum class ChunkKind {
 
    Dynamic,
 
    Group,
 
    RawContent,
 
    Relocation,
 
    Relr,
 
    NoBits,
 
    Note,
 
    Hash,
 
    GnuHash,
 
    Verdef,
 
    Verneed,
 
    StackSizes,
 
    SymtabShndxSection,
 
    Symver,
 
    ARMIndexTable,
 
    MipsABIFlags,
 
    Addrsig,
 
    LinkerOptions,
 
    DependentLibraries,
 
    CallGraphProfile,
 
    BBAddrMap,
 
 
 
    // Special chunks.
 
    SpecialChunksStart,
 
    Fill = SpecialChunksStart,
 
    SectionHeaderTable,
 
  };
 
 
 
  ChunkKind Kind;
 
  StringRef Name;
 
  std::optional<llvm::yaml::Hex64> Offset;
 
 
 
  // Usually chunks are not created implicitly, but rather loaded from YAML.
 
  // This flag is used to signal whether this is the case or not.
 
  bool IsImplicit;
 
 
 
  Chunk(ChunkKind K, bool Implicit) : Kind(K), IsImplicit(Implicit) {}
 
  virtual ~Chunk();
 
};
 
 
 
struct Section : public Chunk {
 
  ELF_SHT Type;
 
  std::optional<ELF_SHF> Flags;
 
  std::optional<llvm::yaml::Hex64> Address;
 
  std::optional<StringRef> Link;
 
  llvm::yaml::Hex64 AddressAlign;
 
  std::optional<llvm::yaml::Hex64> EntSize;
 
 
 
  std::optional<yaml::BinaryRef> Content;
 
  std::optional<llvm::yaml::Hex64> Size;
 
 
 
  // Holds the original section index.
 
  unsigned OriginalSecNdx;
 
 
 
  Section(ChunkKind Kind, bool IsImplicit = false) : Chunk(Kind, IsImplicit) {}
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind < ChunkKind::SpecialChunksStart;
 
  }
 
 
 
  // Some derived sections might have their own special entries. This method
 
  // returns a vector of <entry name, is used> pairs. It is used for section
 
  // validation.
 
  virtual std::vector<std::pair<StringRef, bool>> getEntries() const {
 
    return {};
 
  };
 
 
 
  // The following members are used to override section fields which is
 
  // useful for creating invalid objects.
 
 
 
  // This can be used to override the sh_addralign field.
 
  std::optional<llvm::yaml::Hex64> ShAddrAlign;
 
 
 
  // This can be used to override the offset stored in the sh_name field.
 
  // It does not affect the name stored in the string table.
 
  std::optional<llvm::yaml::Hex64> ShName;
 
 
 
  // This can be used to override the sh_offset field. It does not place the
 
  // section data at the offset specified.
 
  std::optional<llvm::yaml::Hex64> ShOffset;
 
 
 
  // This can be used to override the sh_size field. It does not affect the
 
  // content written.
 
  std::optional<llvm::yaml::Hex64> ShSize;
 
 
 
  // This can be used to override the sh_flags field.
 
  std::optional<llvm::yaml::Hex64> ShFlags;
 
 
 
  // This can be used to override the sh_type field. It is useful when we
 
  // want to use specific YAML keys for a section of a particular type to
 
  // describe the content, but still want to have a different final type
 
  // for the section.
 
  std::optional<ELF_SHT> ShType;
 
};
 
 
 
// Fill is a block of data which is placed outside of sections. It is
 
// not present in the sections header table, but it might affect the output file
 
// size and program headers produced.
 
struct Fill : Chunk {
 
  std::optional<yaml::BinaryRef> Pattern;
 
  llvm::yaml::Hex64 Size;
 
 
 
  Fill() : Chunk(ChunkKind::Fill, /*Implicit=*/false) {}
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Fill; }
 
};
 
 
 
struct SectionHeaderTable : Chunk {
 
  SectionHeaderTable(bool IsImplicit)
 
      : Chunk(ChunkKind::SectionHeaderTable, IsImplicit) {}
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::SectionHeaderTable;
 
  }
 
 
 
  std::optional<std::vector<SectionHeader>> Sections;
 
  std::optional<std::vector<SectionHeader>> Excluded;
 
  std::optional<bool> NoHeaders;
 
 
 
  size_t getNumHeaders(size_t SectionsNum) const {
 
    if (IsImplicit || isDefault())
 
      return SectionsNum;
 
    if (NoHeaders)
 
      return (*NoHeaders) ? 0 : SectionsNum;
 
    return (Sections ? Sections->size() : 0) + /*Null section*/ 1;
 
  }
 
 
 
  bool isDefault() const { return !Sections && !Excluded && !NoHeaders; }
 
 
 
  static constexpr StringRef TypeStr = "SectionHeaderTable";
 
};
 
 
 
struct BBAddrMapSection : Section {
 
  std::optional<std::vector<BBAddrMapEntry>> Entries;
 
 
 
  BBAddrMapSection() : Section(ChunkKind::BBAddrMap) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::BBAddrMap;
 
  }
 
};
 
 
 
struct StackSizesSection : Section {
 
  std::optional<std::vector<StackSizeEntry>> Entries;
 
 
 
  StackSizesSection() : Section(ChunkKind::StackSizes) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::StackSizes;
 
  }
 
 
 
  static bool nameMatches(StringRef Name) {
 
    return Name == ".stack_sizes";
 
  }
 
};
 
 
 
struct DynamicSection : Section {
 
  std::optional<std::vector<DynamicEntry>> Entries;
 
 
 
  DynamicSection() : Section(ChunkKind::Dynamic) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Dynamic; }
 
};
 
 
 
struct RawContentSection : Section {
 
  std::optional<llvm::yaml::Hex64> Info;
 
 
 
  RawContentSection() : Section(ChunkKind::RawContent) {}
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::RawContent;
 
  }
 
 
 
  // Is used when a content is read as an array of bytes.
 
  std::optional<std::vector<uint8_t>> ContentBuf;
 
};
 
 
 
struct NoBitsSection : Section {
 
  NoBitsSection() : Section(ChunkKind::NoBits) {}
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::NoBits; }
 
};
 
 
 
struct NoteSection : Section {
 
  std::optional<std::vector<ELFYAML::NoteEntry>> Notes;
 
 
 
  NoteSection() : Section(ChunkKind::Note) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Notes", Notes.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Note; }
 
};
 
 
 
struct HashSection : Section {
 
  std::optional<std::vector<uint32_t>> Bucket;
 
  std::optional<std::vector<uint32_t>> Chain;
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Bucket", Bucket.has_value()}, {"Chain", Chain.has_value()}};
 
  };
 
 
 
  // The following members are used to override section fields.
 
  // This is useful for creating invalid objects.
 
  std::optional<llvm::yaml::Hex64> NBucket;
 
  std::optional<llvm::yaml::Hex64> NChain;
 
 
 
  HashSection() : Section(ChunkKind::Hash) {}
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Hash; }
 
};
 
 
 
struct GnuHashHeader {
 
  // The number of hash buckets.
 
  // Not used when dumping the object, but can be used to override
 
  // the real number of buckets when emiting an object from a YAML document.
 
  std::optional<llvm::yaml::Hex32> NBuckets;
 
 
 
  // Index of the first symbol in the dynamic symbol table
 
  // included in the hash table.
 
  llvm::yaml::Hex32 SymNdx;
 
 
 
  // The number of words in the Bloom filter.
 
  // Not used when dumping the object, but can be used to override the real
 
  // number of words in the Bloom filter when emiting an object from a YAML
 
  // document.
 
  std::optional<llvm::yaml::Hex32> MaskWords;
 
 
 
  // A shift constant used by the Bloom filter.
 
  llvm::yaml::Hex32 Shift2;
 
};
 
 
 
struct GnuHashSection : Section {
 
  std::optional<GnuHashHeader> Header;
 
  std::optional<std::vector<llvm::yaml::Hex64>> BloomFilter;
 
  std::optional<std::vector<llvm::yaml::Hex32>> HashBuckets;
 
  std::optional<std::vector<llvm::yaml::Hex32>> HashValues;
 
 
 
  GnuHashSection() : Section(ChunkKind::GnuHash) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Header", Header.has_value()},
 
            {"BloomFilter", BloomFilter.has_value()},
 
            {"HashBuckets", HashBuckets.has_value()},
 
            {"HashValues", HashValues.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::GnuHash; }
 
};
 
 
 
struct VernauxEntry {
 
  uint32_t Hash;
 
  uint16_t Flags;
 
  uint16_t Other;
 
  StringRef Name;
 
};
 
 
 
struct VerneedEntry {
 
  uint16_t Version;
 
  StringRef File;
 
  std::vector<VernauxEntry> AuxV;
 
};
 
 
 
struct VerneedSection : Section {
 
  std::optional<std::vector<VerneedEntry>> VerneedV;
 
  std::optional<llvm::yaml::Hex64> Info;
 
 
 
  VerneedSection() : Section(ChunkKind::Verneed) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Dependencies", VerneedV.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::Verneed;
 
  }
 
};
 
 
 
struct AddrsigSection : Section {
 
  std::optional<std::vector<YAMLFlowString>> Symbols;
 
 
 
  AddrsigSection() : Section(ChunkKind::Addrsig) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Symbols", Symbols.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Addrsig; }
 
};
 
 
 
struct LinkerOption {
 
  StringRef Key;
 
  StringRef Value;
 
};
 
 
 
struct LinkerOptionsSection : Section {
 
  std::optional<std::vector<LinkerOption>> Options;
 
 
 
  LinkerOptionsSection() : Section(ChunkKind::LinkerOptions) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Options", Options.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::LinkerOptions;
 
  }
 
};
 
 
 
struct DependentLibrariesSection : Section {
 
  std::optional<std::vector<YAMLFlowString>> Libs;
 
 
 
  DependentLibrariesSection() : Section(ChunkKind::DependentLibraries) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Libraries", Libs.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::DependentLibraries;
 
  }
 
};
 
 
 
// Represents the call graph profile section entry.
 
struct CallGraphEntryWeight {
 
  // The weight of the edge.
 
  uint64_t Weight;
 
};
 
 
 
struct CallGraphProfileSection : Section {
 
  std::optional<std::vector<CallGraphEntryWeight>> Entries;
 
 
 
  CallGraphProfileSection() : Section(ChunkKind::CallGraphProfile) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::CallGraphProfile;
 
  }
 
};
 
 
 
struct SymverSection : Section {
 
  std::optional<std::vector<uint16_t>> Entries;
 
 
 
  SymverSection() : Section(ChunkKind::Symver) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Symver; }
 
};
 
 
 
struct VerdefEntry {
 
  std::optional<uint16_t> Version;
 
  std::optional<uint16_t> Flags;
 
  std::optional<uint16_t> VersionNdx;
 
  std::optional<uint32_t> Hash;
 
  std::vector<StringRef> VerNames;
 
};
 
 
 
struct VerdefSection : Section {
 
  std::optional<std::vector<VerdefEntry>> Entries;
 
  std::optional<llvm::yaml::Hex64> Info;
 
 
 
  VerdefSection() : Section(ChunkKind::Verdef) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Verdef; }
 
};
 
 
 
struct GroupSection : Section {
 
  // Members of a group contain a flag and a list of section indices
 
  // that are part of the group.
 
  std::optional<std::vector<SectionOrType>> Members;
 
  std::optional<StringRef> Signature; /* Info */
 
 
 
  GroupSection() : Section(ChunkKind::Group) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Members", Members.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Group; }
 
};
 
 
 
struct Relocation {
 
  llvm::yaml::Hex64 Offset;
 
  YAMLIntUInt Addend;
 
  ELF_REL Type;
 
  std::optional<StringRef> Symbol;
 
};
 
 
 
struct RelocationSection : Section {
 
  std::optional<std::vector<Relocation>> Relocations;
 
  StringRef RelocatableSec; /* Info */
 
 
 
  RelocationSection() : Section(ChunkKind::Relocation) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Relocations", Relocations.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::Relocation;
 
  }
 
};
 
 
 
struct RelrSection : Section {
 
  std::optional<std::vector<llvm::yaml::Hex64>> Entries;
 
 
 
  RelrSection() : Section(ChunkKind::Relr) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::Relr;
 
  }
 
};
 
 
 
struct SymtabShndxSection : Section {
 
  std::optional<std::vector<uint32_t>> Entries;
 
 
 
  SymtabShndxSection() : Section(ChunkKind::SymtabShndxSection) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::SymtabShndxSection;
 
  }
 
};
 
 
 
struct ARMIndexTableEntry {
 
  llvm::yaml::Hex32 Offset;
 
  llvm::yaml::Hex32 Value;
 
};
 
 
 
struct ARMIndexTableSection : Section {
 
  std::optional<std::vector<ARMIndexTableEntry>> Entries;
 
 
 
  ARMIndexTableSection() : Section(ChunkKind::ARMIndexTable) {}
 
 
 
  std::vector<std::pair<StringRef, bool>> getEntries() const override {
 
    return {{"Entries", Entries.has_value()}};
 
  };
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::ARMIndexTable;
 
  }
 
};
 
 
 
// Represents .MIPS.abiflags section
 
struct MipsABIFlags : Section {
 
  llvm::yaml::Hex16 Version;
 
  MIPS_ISA ISALevel;
 
  llvm::yaml::Hex8 ISARevision;
 
  MIPS_AFL_REG GPRSize;
 
  MIPS_AFL_REG CPR1Size;
 
  MIPS_AFL_REG CPR2Size;
 
  MIPS_ABI_FP FpABI;
 
  MIPS_AFL_EXT ISAExtension;
 
  MIPS_AFL_ASE ASEs;
 
  MIPS_AFL_FLAGS1 Flags1;
 
  llvm::yaml::Hex32 Flags2;
 
 
 
  MipsABIFlags() : Section(ChunkKind::MipsABIFlags) {}
 
 
 
  static bool classof(const Chunk *S) {
 
    return S->Kind == ChunkKind::MipsABIFlags;
 
  }
 
};
 
 
 
struct ProgramHeader {
 
  ELF_PT Type;
 
  ELF_PF Flags;
 
  llvm::yaml::Hex64 VAddr;
 
  llvm::yaml::Hex64 PAddr;
 
  std::optional<llvm::yaml::Hex64> Align;
 
  std::optional<llvm::yaml::Hex64> FileSize;
 
  std::optional<llvm::yaml::Hex64> MemSize;
 
  std::optional<llvm::yaml::Hex64> Offset;
 
  std::optional<StringRef> FirstSec;
 
  std::optional<StringRef> LastSec;
 
 
 
  // This vector contains all chunks from [FirstSec, LastSec].
 
  std::vector<Chunk *> Chunks;
 
};
 
 
 
struct Object {
 
  FileHeader Header;
 
  std::vector<ProgramHeader> ProgramHeaders;
 
 
 
  // An object might contain output section descriptions as well as
 
  // custom data that does not belong to any section.
 
  std::vector<std::unique_ptr<Chunk>> Chunks;
 
 
 
  // Although in reality the symbols reside in a section, it is a lot
 
  // cleaner and nicer if we read them from the YAML as a separate
 
  // top-level key, which automatically ensures that invariants like there
 
  // being a single SHT_SYMTAB section are upheld.
 
  std::optional<std::vector<Symbol>> Symbols;
 
  std::optional<std::vector<Symbol>> DynamicSymbols;
 
  std::optional<DWARFYAML::Data> DWARF;
 
 
 
  std::vector<Section *> getSections() {
 
    std::vector<Section *> Ret;
 
    for (const std::unique_ptr<Chunk> &Sec : Chunks)
 
      if (auto S = dyn_cast<ELFYAML::Section>(Sec.get()))
 
        Ret.push_back(S);
 
    return Ret;
 
  }
 
 
 
  const SectionHeaderTable &getSectionHeaderTable() const {
 
    for (const std::unique_ptr<Chunk> &C : Chunks)
 
      if (auto *S = dyn_cast<ELFYAML::SectionHeaderTable>(C.get()))
 
        return *S;
 
    llvm_unreachable("the section header table chunk must always be present");
 
  }
 
 
 
  ELF_ELFOSABI getOSAbi() const;
 
  unsigned getMachine() const;
 
};
 
 
 
bool shouldAllocateFileSpace(ArrayRef<ProgramHeader> Phdrs,
 
                             const NoBitsSection &S);
 
 
 
} // end namespace ELFYAML
 
} // end namespace llvm
 
 
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::StackSizeEntry)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::BBAddrMapEntry)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::BBAddrMapEntry::BBEntry)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::DynamicEntry)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::LinkerOption)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::CallGraphEntryWeight)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::NoteEntry)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ProgramHeader)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionHeader)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(std::unique_ptr<llvm::ELFYAML::Chunk>)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Symbol)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerdefEntry)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VernauxEntry)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerneedEntry)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Relocation)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionOrType)
 
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ARMIndexTableEntry)
 
 
 
namespace llvm {
 
namespace yaml {
 
 
 
template <> struct ScalarTraits<ELFYAML::YAMLIntUInt> {
 
  static void output(const ELFYAML::YAMLIntUInt &Val, void *Ctx,
 
                     raw_ostream &Out);
 
  static StringRef input(StringRef Scalar, void *Ctx,
 
                         ELFYAML::YAMLIntUInt &Val);
 
  static QuotingType mustQuote(StringRef) { return QuotingType::None; }
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_ET> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_ET &Value);
 
};
 
 
 
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_PT> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_PT &Value);
 
};
 
 
 
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_NT> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_NT &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_EM> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_EM &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_ELFCLASS> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_ELFCLASS &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_ELFDATA> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_ELFDATA &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_ELFOSABI> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_ELFOSABI &Value);
 
};
 
 
 
template <>
 
struct ScalarBitSetTraits<ELFYAML::ELF_EF> {
 
  static void bitset(IO &IO, ELFYAML::ELF_EF &Value);
 
};
 
 
 
template <> struct ScalarBitSetTraits<ELFYAML::ELF_PF> {
 
  static void bitset(IO &IO, ELFYAML::ELF_PF &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_SHT> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_SHT &Value);
 
};
 
 
 
template <>
 
struct ScalarBitSetTraits<ELFYAML::ELF_SHF> {
 
  static void bitset(IO &IO, ELFYAML::ELF_SHF &Value);
 
};
 
 
 
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_SHN> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_SHN &Value);
 
};
 
 
 
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_STB> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_STB &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_STT> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_STT &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_REL> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_REL &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_DYNTAG> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_DYNTAG &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::ELF_RSS> {
 
  static void enumeration(IO &IO, ELFYAML::ELF_RSS &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_REG> {
 
  static void enumeration(IO &IO, ELFYAML::MIPS_AFL_REG &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::MIPS_ABI_FP> {
 
  static void enumeration(IO &IO, ELFYAML::MIPS_ABI_FP &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_EXT> {
 
  static void enumeration(IO &IO, ELFYAML::MIPS_AFL_EXT &Value);
 
};
 
 
 
template <>
 
struct ScalarEnumerationTraits<ELFYAML::MIPS_ISA> {
 
  static void enumeration(IO &IO, ELFYAML::MIPS_ISA &Value);
 
};
 
 
 
template <>
 
struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_ASE> {
 
  static void bitset(IO &IO, ELFYAML::MIPS_AFL_ASE &Value);
 
};
 
 
 
template <>
 
struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_FLAGS1> {
 
  static void bitset(IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value);
 
};
 
 
 
template <>
 
struct MappingTraits<ELFYAML::FileHeader> {
 
  static void mapping(IO &IO, ELFYAML::FileHeader &FileHdr);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::SectionHeader> {
 
  static void mapping(IO &IO, ELFYAML::SectionHeader &SHdr);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::ProgramHeader> {
 
  static void mapping(IO &IO, ELFYAML::ProgramHeader &FileHdr);
 
  static std::string validate(IO &IO, ELFYAML::ProgramHeader &FileHdr);
 
};
 
 
 
template <>
 
struct MappingTraits<ELFYAML::Symbol> {
 
  static void mapping(IO &IO, ELFYAML::Symbol &Symbol);
 
  static std::string validate(IO &IO, ELFYAML::Symbol &Symbol);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::StackSizeEntry> {
 
  static void mapping(IO &IO, ELFYAML::StackSizeEntry &Rel);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::BBAddrMapEntry> {
 
  static void mapping(IO &IO, ELFYAML::BBAddrMapEntry &Rel);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::BBAddrMapEntry::BBEntry> {
 
  static void mapping(IO &IO, ELFYAML::BBAddrMapEntry::BBEntry &Rel);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::GnuHashHeader> {
 
  static void mapping(IO &IO, ELFYAML::GnuHashHeader &Rel);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::DynamicEntry> {
 
  static void mapping(IO &IO, ELFYAML::DynamicEntry &Rel);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::NoteEntry> {
 
  static void mapping(IO &IO, ELFYAML::NoteEntry &N);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::VerdefEntry> {
 
  static void mapping(IO &IO, ELFYAML::VerdefEntry &E);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::VerneedEntry> {
 
  static void mapping(IO &IO, ELFYAML::VerneedEntry &E);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::VernauxEntry> {
 
  static void mapping(IO &IO, ELFYAML::VernauxEntry &E);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::LinkerOption> {
 
  static void mapping(IO &IO, ELFYAML::LinkerOption &Sym);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::CallGraphEntryWeight> {
 
  static void mapping(IO &IO, ELFYAML::CallGraphEntryWeight &E);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::Relocation> {
 
  static void mapping(IO &IO, ELFYAML::Relocation &Rel);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::ARMIndexTableEntry> {
 
  static void mapping(IO &IO, ELFYAML::ARMIndexTableEntry &E);
 
};
 
 
 
template <> struct MappingTraits<std::unique_ptr<ELFYAML::Chunk>> {
 
  static void mapping(IO &IO, std::unique_ptr<ELFYAML::Chunk> &C);
 
  static std::string validate(IO &io, std::unique_ptr<ELFYAML::Chunk> &C);
 
};
 
 
 
template <>
 
struct MappingTraits<ELFYAML::Object> {
 
  static void mapping(IO &IO, ELFYAML::Object &Object);
 
};
 
 
 
template <> struct MappingTraits<ELFYAML::SectionOrType> {
 
  static void mapping(IO &IO, ELFYAML::SectionOrType §ionOrType);
 
};
 
 
 
} // end namespace yaml
 
} // end namespace llvm
 
 
 
#endif // LLVM_OBJECTYAML_ELFYAML_H