//===- IRSymtab.h - data definitions for IR symbol tables -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file contains data definitions and a reader and builder for a symbol
 
// table for LLVM IR. Its purpose is to allow linkers and other consumers of
 
// bitcode files to efficiently read the symbol table for symbol resolution
 
// purposes without needing to construct a module in memory.
 
//
 
// As with most object files the symbol table has two parts: the symbol table
 
// itself and a string table which is referenced by the symbol table.
 
//
 
// A symbol table corresponds to a single bitcode file, which may consist of
 
// multiple modules, so symbol tables may likewise contain symbols for multiple
 
// modules.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_OBJECT_IRSYMTAB_H
 
#define LLVM_OBJECT_IRSYMTAB_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/IR/Comdat.h"
 
#include "llvm/IR/GlobalValue.h"
 
#include "llvm/Object/SymbolicFile.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/Error.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
struct BitcodeFileContents;
 
class StringTableBuilder;
 
 
 
namespace irsymtab {
 
 
 
namespace storage {
 
 
 
// The data structures in this namespace define the low-level serialization
 
// format. Clients that just want to read a symbol table should use the
 
// irsymtab::Reader class.
 
 
 
using Word = support::ulittle32_t;
 
 
 
/// A reference to a string in the string table.
 
struct Str {
 
  Word Offset, Size;
 
 
 
  StringRef get(StringRef Strtab) const {
 
    return {Strtab.data() + Offset, Size};
 
  }
 
};
 
 
 
/// A reference to a range of objects in the symbol table.
 
template <typename T> struct Range {
 
  Word Offset, Size;
 
 
 
  ArrayRef<T> get(StringRef Symtab) const {
 
    return {reinterpret_cast<const T *>(Symtab.data() + Offset), Size};
 
  }
 
};
 
 
 
/// Describes the range of a particular module's symbols within the symbol
 
/// table.
 
struct Module {
 
  Word Begin, End;
 
 
 
  /// The index of the first Uncommon for this Module.
 
  Word UncBegin;
 
};
 
 
 
/// This is equivalent to an IR comdat.
 
struct Comdat {
 
  Str Name;
 
 
 
  // llvm::Comdat::SelectionKind
 
  Word SelectionKind;
 
};
 
 
 
/// Contains the information needed by linkers for symbol resolution, as well as
 
/// by the LTO implementation itself.
 
struct Symbol {
 
  /// The mangled symbol name.
 
  Str Name;
 
 
 
  /// The unmangled symbol name, or the empty string if this is not an IR
 
  /// symbol.
 
  Str IRName;
 
 
 
  /// The index into Header::Comdats, or -1 if not a comdat member.
 
  Word ComdatIndex;
 
 
 
  Word Flags;
 
  enum FlagBits {
 
    FB_visibility, // 2 bits
 
    FB_has_uncommon = FB_visibility + 2,
 
    FB_undefined,
 
    FB_weak,
 
    FB_common,
 
    FB_indirect,
 
    FB_used,
 
    FB_tls,
 
    FB_may_omit,
 
    FB_global,
 
    FB_format_specific,
 
    FB_unnamed_addr,
 
    FB_executable,
 
  };
 
};
 
 
 
/// This data structure contains rarely used symbol fields and is optionally
 
/// referenced by a Symbol.
 
struct Uncommon {
 
  Word CommonSize, CommonAlign;
 
 
 
  /// COFF-specific: the name of the symbol that a weak external resolves to
 
  /// if not defined.
 
  Str COFFWeakExternFallbackName;
 
 
 
  /// Specified section name, if any.
 
  Str SectionName;
 
};
 
 
 
 
 
struct Header {
 
  /// Version number of the symtab format. This number should be incremented
 
  /// when the format changes, but it does not need to be incremented if a
 
  /// change to LLVM would cause it to create a different symbol table.
 
  Word Version;
 
  enum { kCurrentVersion = 3 };
 
 
 
  /// The producer's version string (LLVM_VERSION_STRING " " LLVM_REVISION).
 
  /// Consumers should rebuild the symbol table from IR if the producer's
 
  /// version does not match the consumer's version due to potential differences
 
  /// in symbol table format, symbol enumeration order and so on.
 
  Str Producer;
 
 
 
  Range<Module> Modules;
 
  Range<Comdat> Comdats;
 
  Range<Symbol> Symbols;
 
  Range<Uncommon> Uncommons;
 
 
 
  Str TargetTriple, SourceFileName;
 
 
 
  /// COFF-specific: linker directives.
 
  Str COFFLinkerOpts;
 
 
 
  /// Dependent Library Specifiers
 
  Range<Str> DependentLibraries;
 
};
 
 
 
} // end namespace storage
 
 
 
/// Fills in Symtab and StrtabBuilder with a valid symbol and string table for
 
/// Mods.
 
Error build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
 
            StringTableBuilder &StrtabBuilder, BumpPtrAllocator &Alloc);
 
 
 
/// This represents a symbol that has been read from a storage::Symbol and
 
/// possibly a storage::Uncommon.
 
struct Symbol {
 
  // Copied from storage::Symbol.
 
  StringRef Name, IRName;
 
  int ComdatIndex;
 
  uint32_t Flags;
 
 
 
  // Copied from storage::Uncommon.
 
  uint32_t CommonSize, CommonAlign;
 
  StringRef COFFWeakExternFallbackName;
 
  StringRef SectionName;
 
 
 
  /// Returns the mangled symbol name.
 
  StringRef getName() const { return Name; }
 
 
 
  /// Returns the unmangled symbol name, or the empty string if this is not an
 
  /// IR symbol.
 
  StringRef getIRName() const { return IRName; }
 
 
 
  /// Returns the index into the comdat table (see Reader::getComdatTable()), or
 
  /// -1 if not a comdat member.
 
  int getComdatIndex() const { return ComdatIndex; }
 
 
 
  using S = storage::Symbol;
 
 
 
  GlobalValue::VisibilityTypes getVisibility() const {
 
    return GlobalValue::VisibilityTypes((Flags >> S::FB_visibility) & 3);
 
  }
 
 
 
  bool isUndefined() const { return (Flags >> S::FB_undefined) & 1; }
 
  bool isWeak() const { return (Flags >> S::FB_weak) & 1; }
 
  bool isCommon() const { return (Flags >> S::FB_common) & 1; }
 
  bool isIndirect() const { return (Flags >> S::FB_indirect) & 1; }
 
  bool isUsed() const { return (Flags >> S::FB_used) & 1; }
 
  bool isTLS() const { return (Flags >> S::FB_tls) & 1; }
 
 
 
  bool canBeOmittedFromSymbolTable() const {
 
    return (Flags >> S::FB_may_omit) & 1;
 
  }
 
 
 
  bool isGlobal() const { return (Flags >> S::FB_global) & 1; }
 
  bool isFormatSpecific() const { return (Flags >> S::FB_format_specific) & 1; }
 
  bool isUnnamedAddr() const { return (Flags >> S::FB_unnamed_addr) & 1; }
 
  bool isExecutable() const { return (Flags >> S::FB_executable) & 1; }
 
 
 
  uint64_t getCommonSize() const {
 
    assert(isCommon());
 
    return CommonSize;
 
  }
 
 
 
  uint32_t getCommonAlignment() const {
 
    assert(isCommon());
 
    return CommonAlign;
 
  }
 
 
 
  /// COFF-specific: for weak externals, returns the name of the symbol that is
 
  /// used as a fallback if the weak external remains undefined.
 
  StringRef getCOFFWeakExternalFallback() const {
 
    assert(isWeak() && isIndirect());
 
    return COFFWeakExternFallbackName;
 
  }
 
 
 
  StringRef getSectionName() const { return SectionName; }
 
};
 
 
 
/// This class can be used to read a Symtab and Strtab produced by
 
/// irsymtab::build.
 
class Reader {
 
  StringRef Symtab, Strtab;
 
 
 
  ArrayRef<storage::Module> Modules;
 
  ArrayRef<storage::Comdat> Comdats;
 
  ArrayRef<storage::Symbol> Symbols;
 
  ArrayRef<storage::Uncommon> Uncommons;
 
  ArrayRef<storage::Str> DependentLibraries;
 
 
 
  StringRef str(storage::Str S) const { return S.get(Strtab); }
 
 
 
  template <typename T> ArrayRef<T> range(storage::Range<T> R) const {
 
    return R.get(Symtab);
 
  }
 
 
 
  const storage::Header &header() const {
 
    return *reinterpret_cast<const storage::Header *>(Symtab.data());
 
  }
 
 
 
public:
 
  class SymbolRef;
 
 
 
  Reader() = default;
 
  Reader(StringRef Symtab, StringRef Strtab) : Symtab(Symtab), Strtab(Strtab) {
 
    Modules = range(header().Modules);
 
    Comdats = range(header().Comdats);
 
    Symbols = range(header().Symbols);
 
    Uncommons = range(header().Uncommons);
 
    DependentLibraries = range(header().DependentLibraries);
 
  }
 
 
 
  using symbol_range = iterator_range<object::content_iterator<SymbolRef>>;
 
 
 
  /// Returns the symbol table for the entire bitcode file.
 
  /// The symbols enumerated by this method are ephemeral, but they can be
 
  /// copied into an irsymtab::Symbol object.
 
  symbol_range symbols() const;
 
 
 
  size_t getNumModules() const { return Modules.size(); }
 
 
 
  /// Returns a slice of the symbol table for the I'th module in the file.
 
  /// The symbols enumerated by this method are ephemeral, but they can be
 
  /// copied into an irsymtab::Symbol object.
 
  symbol_range module_symbols(unsigned I) const;
 
 
 
  StringRef getTargetTriple() const { return str(header().TargetTriple); }
 
 
 
  /// Returns the source file path specified at compile time.
 
  StringRef getSourceFileName() const { return str(header().SourceFileName); }
 
 
 
  /// Returns a table with all the comdats used by this file.
 
  std::vector<std::pair<StringRef, llvm::Comdat::SelectionKind>>
 
  getComdatTable() const {
 
    std::vector<std::pair<StringRef, llvm::Comdat::SelectionKind>> ComdatTable;
 
    ComdatTable.reserve(Comdats.size());
 
    for (auto C : Comdats)
 
      ComdatTable.push_back({str(C.Name), llvm::Comdat::SelectionKind(
 
                                              uint32_t(C.SelectionKind))});
 
    return ComdatTable;
 
  }
 
 
 
  /// COFF-specific: returns linker options specified in the input file.
 
  StringRef getCOFFLinkerOpts() const { return str(header().COFFLinkerOpts); }
 
 
 
  /// Returns dependent library specifiers
 
  std::vector<StringRef> getDependentLibraries() const {
 
    std::vector<StringRef> Specifiers;
 
    Specifiers.reserve(DependentLibraries.size());
 
    for (auto S : DependentLibraries) {
 
      Specifiers.push_back(str(S));
 
    }
 
    return Specifiers;
 
  }
 
};
 
 
 
/// Ephemeral symbols produced by Reader::symbols() and
 
/// Reader::module_symbols().
 
class Reader::SymbolRef : public Symbol {
 
  const storage::Symbol *SymI, *SymE;
 
  const storage::Uncommon *UncI;
 
  const Reader *R;
 
 
 
  void read() {
 
    if (SymI == SymE)
 
      return;
 
 
 
    Name = R->str(SymI->Name);
 
    IRName = R->str(SymI->IRName);
 
    ComdatIndex = SymI->ComdatIndex;
 
    Flags = SymI->Flags;
 
 
 
    if (Flags & (1 << storage::Symbol::FB_has_uncommon)) {
 
      CommonSize = UncI->CommonSize;
 
      CommonAlign = UncI->CommonAlign;
 
      COFFWeakExternFallbackName = R->str(UncI->COFFWeakExternFallbackName);
 
      SectionName = R->str(UncI->SectionName);
 
    } else
 
      // Reset this field so it can be queried unconditionally for all symbols.
 
      SectionName = "";
 
  }
 
 
 
public:
 
  SymbolRef(const storage::Symbol *SymI, const storage::Symbol *SymE,
 
            const storage::Uncommon *UncI, const Reader *R)
 
      : SymI(SymI), SymE(SymE), UncI(UncI), R(R) {
 
    read();
 
  }
 
 
 
  void moveNext() {
 
    ++SymI;
 
    if (Flags & (1 << storage::Symbol::FB_has_uncommon))
 
      ++UncI;
 
    read();
 
  }
 
 
 
  bool operator==(const SymbolRef &Other) const { return SymI == Other.SymI; }
 
};
 
 
 
inline Reader::symbol_range Reader::symbols() const {
 
  return {SymbolRef(Symbols.begin(), Symbols.end(), Uncommons.begin(), this),
 
          SymbolRef(Symbols.end(), Symbols.end(), nullptr, this)};
 
}
 
 
 
inline Reader::symbol_range Reader::module_symbols(unsigned I) const {
 
  const storage::Module &M = Modules[I];
 
  const storage::Symbol *MBegin = Symbols.begin() + M.Begin,
 
                        *MEnd = Symbols.begin() + M.End;
 
  return {SymbolRef(MBegin, MEnd, Uncommons.begin() + M.UncBegin, this),
 
          SymbolRef(MEnd, MEnd, nullptr, this)};
 
}
 
 
 
/// The contents of the irsymtab in a bitcode file. Any underlying data for the
 
/// irsymtab are owned by Symtab and Strtab.
 
struct FileContents {
 
  SmallVector<char, 0> Symtab, Strtab;
 
  Reader TheReader;
 
};
 
 
 
/// Reads the contents of a bitcode file, creating its irsymtab if necessary.
 
Expected<FileContents> readBitcode(const BitcodeFileContents &BFC);
 
 
 
} // end namespace irsymtab
 
} // end namespace llvm
 
 
 
#endif // LLVM_OBJECT_IRSYMTAB_H