Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8.  
  9. #ifndef LLVM_OBJECT_ELFTYPES_H
  10. #define LLVM_OBJECT_ELFTYPES_H
  11.  
  12. #include "llvm/ADT/ArrayRef.h"
  13. #include "llvm/ADT/StringRef.h"
  14. #include "llvm/BinaryFormat/ELF.h"
  15. #include "llvm/Object/Error.h"
  16. #include "llvm/Support/Endian.h"
  17. #include "llvm/Support/Error.h"
  18. #include "llvm/Support/MathExtras.h"
  19. #include <cassert>
  20. #include <cstdint>
  21. #include <cstring>
  22. #include <type_traits>
  23.  
  24. namespace llvm {
  25. namespace object {
  26.  
  27. using support::endianness;
  28.  
  29. template <class ELFT> struct Elf_Ehdr_Impl;
  30. template <class ELFT> struct Elf_Shdr_Impl;
  31. template <class ELFT> struct Elf_Sym_Impl;
  32. template <class ELFT> struct Elf_Dyn_Impl;
  33. template <class ELFT> struct Elf_Phdr_Impl;
  34. template <class ELFT, bool isRela> struct Elf_Rel_Impl;
  35. template <class ELFT> struct Elf_Verdef_Impl;
  36. template <class ELFT> struct Elf_Verdaux_Impl;
  37. template <class ELFT> struct Elf_Verneed_Impl;
  38. template <class ELFT> struct Elf_Vernaux_Impl;
  39. template <class ELFT> struct Elf_Versym_Impl;
  40. template <class ELFT> struct Elf_Hash_Impl;
  41. template <class ELFT> struct Elf_GnuHash_Impl;
  42. template <class ELFT> struct Elf_Chdr_Impl;
  43. template <class ELFT> struct Elf_Nhdr_Impl;
  44. template <class ELFT> class Elf_Note_Impl;
  45. template <class ELFT> class Elf_Note_Iterator_Impl;
  46. template <class ELFT> struct Elf_CGProfile_Impl;
  47.  
  48. template <endianness E, bool Is64> struct ELFType {
  49. private:
  50.   template <typename Ty>
  51.   using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>;
  52.  
  53. public:
  54.   static const endianness TargetEndianness = E;
  55.   static const bool Is64Bits = Is64;
  56.  
  57.   using uint = std::conditional_t<Is64, uint64_t, uint32_t>;
  58.   using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
  59.   using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
  60.   using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
  61.   using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
  62.   using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
  63.   using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
  64.   using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
  65.   using Relr = packed<uint>;
  66.   using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
  67.   using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
  68.   using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
  69.   using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
  70.   using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
  71.   using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
  72.   using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
  73.   using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
  74.   using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>;
  75.   using Note = Elf_Note_Impl<ELFType<E, Is64>>;
  76.   using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>;
  77.   using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>;
  78.   using DynRange = ArrayRef<Dyn>;
  79.   using ShdrRange = ArrayRef<Shdr>;
  80.   using SymRange = ArrayRef<Sym>;
  81.   using RelRange = ArrayRef<Rel>;
  82.   using RelaRange = ArrayRef<Rela>;
  83.   using RelrRange = ArrayRef<Relr>;
  84.   using PhdrRange = ArrayRef<Phdr>;
  85.  
  86.   using Half = packed<uint16_t>;
  87.   using Word = packed<uint32_t>;
  88.   using Sword = packed<int32_t>;
  89.   using Xword = packed<uint64_t>;
  90.   using Sxword = packed<int64_t>;
  91.   using Addr = packed<uint>;
  92.   using Off = packed<uint>;
  93. };
  94.  
  95. using ELF32LE = ELFType<support::little, false>;
  96. using ELF32BE = ELFType<support::big, false>;
  97. using ELF64LE = ELFType<support::little, true>;
  98. using ELF64BE = ELFType<support::big, true>;
  99.  
  100. // Use an alignment of 2 for the typedefs since that is the worst case for
  101. // ELF files in archives.
  102.  
  103. // I really don't like doing this, but the alternative is copypasta.
  104. #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
  105.   using Elf_Addr = typename ELFT::Addr;                                        \
  106.   using Elf_Off = typename ELFT::Off;                                          \
  107.   using Elf_Half = typename ELFT::Half;                                        \
  108.   using Elf_Word = typename ELFT::Word;                                        \
  109.   using Elf_Sword = typename ELFT::Sword;                                      \
  110.   using Elf_Xword = typename ELFT::Xword;                                      \
  111.   using Elf_Sxword = typename ELFT::Sxword;                                    \
  112.   using uintX_t = typename ELFT::uint;                                         \
  113.   using Elf_Ehdr = typename ELFT::Ehdr;                                        \
  114.   using Elf_Shdr = typename ELFT::Shdr;                                        \
  115.   using Elf_Sym = typename ELFT::Sym;                                          \
  116.   using Elf_Dyn = typename ELFT::Dyn;                                          \
  117.   using Elf_Phdr = typename ELFT::Phdr;                                        \
  118.   using Elf_Rel = typename ELFT::Rel;                                          \
  119.   using Elf_Rela = typename ELFT::Rela;                                        \
  120.   using Elf_Relr = typename ELFT::Relr;                                        \
  121.   using Elf_Verdef = typename ELFT::Verdef;                                    \
  122.   using Elf_Verdaux = typename ELFT::Verdaux;                                  \
  123.   using Elf_Verneed = typename ELFT::Verneed;                                  \
  124.   using Elf_Vernaux = typename ELFT::Vernaux;                                  \
  125.   using Elf_Versym = typename ELFT::Versym;                                    \
  126.   using Elf_Hash = typename ELFT::Hash;                                        \
  127.   using Elf_GnuHash = typename ELFT::GnuHash;                                  \
  128.   using Elf_Chdr = typename ELFT::Chdr;                                        \
  129.   using Elf_Nhdr = typename ELFT::Nhdr;                                        \
  130.   using Elf_Note = typename ELFT::Note;                                        \
  131.   using Elf_Note_Iterator = typename ELFT::NoteIterator;                       \
  132.   using Elf_CGProfile = typename ELFT::CGProfile;                              \
  133.   using Elf_Dyn_Range = typename ELFT::DynRange;                               \
  134.   using Elf_Shdr_Range = typename ELFT::ShdrRange;                             \
  135.   using Elf_Sym_Range = typename ELFT::SymRange;                               \
  136.   using Elf_Rel_Range = typename ELFT::RelRange;                               \
  137.   using Elf_Rela_Range = typename ELFT::RelaRange;                             \
  138.   using Elf_Relr_Range = typename ELFT::RelrRange;                             \
  139.   using Elf_Phdr_Range = typename ELFT::PhdrRange;
  140.  
  141. #define LLVM_ELF_COMMA ,
  142. #define LLVM_ELF_IMPORT_TYPES(E, W)                                            \
  143.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>)
  144.  
  145. // Section header.
  146. template <class ELFT> struct Elf_Shdr_Base;
  147.  
  148. template <endianness TargetEndianness>
  149. struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
  150.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  151.   Elf_Word sh_name;      // Section name (index into string table)
  152.   Elf_Word sh_type;      // Section type (SHT_*)
  153.   Elf_Word sh_flags;     // Section flags (SHF_*)
  154.   Elf_Addr sh_addr;      // Address where section is to be loaded
  155.   Elf_Off sh_offset;     // File offset of section data, in bytes
  156.   Elf_Word sh_size;      // Size of section, in bytes
  157.   Elf_Word sh_link;      // Section type-specific header table index link
  158.   Elf_Word sh_info;      // Section type-specific extra information
  159.   Elf_Word sh_addralign; // Section address alignment
  160.   Elf_Word sh_entsize;   // Size of records contained within the section
  161. };
  162.  
  163. template <endianness TargetEndianness>
  164. struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
  165.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  166.   Elf_Word sh_name;       // Section name (index into string table)
  167.   Elf_Word sh_type;       // Section type (SHT_*)
  168.   Elf_Xword sh_flags;     // Section flags (SHF_*)
  169.   Elf_Addr sh_addr;       // Address where section is to be loaded
  170.   Elf_Off sh_offset;      // File offset of section data, in bytes
  171.   Elf_Xword sh_size;      // Size of section, in bytes
  172.   Elf_Word sh_link;       // Section type-specific header table index link
  173.   Elf_Word sh_info;       // Section type-specific extra information
  174.   Elf_Xword sh_addralign; // Section address alignment
  175.   Elf_Xword sh_entsize;   // Size of records contained within the section
  176. };
  177.  
  178. template <class ELFT>
  179. struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
  180.   using Elf_Shdr_Base<ELFT>::sh_entsize;
  181.   using Elf_Shdr_Base<ELFT>::sh_size;
  182.  
  183.   /// Get the number of entities this section contains if it has any.
  184.   unsigned getEntityCount() const {
  185.     if (sh_entsize == 0)
  186.       return 0;
  187.     return sh_size / sh_entsize;
  188.   }
  189. };
  190.  
  191. template <class ELFT> struct Elf_Sym_Base;
  192.  
  193. template <endianness TargetEndianness>
  194. struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
  195.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  196.   Elf_Word st_name;       // Symbol name (index into string table)
  197.   Elf_Addr st_value;      // Value or address associated with the symbol
  198.   Elf_Word st_size;       // Size of the symbol
  199.   unsigned char st_info;  // Symbol's type and binding attributes
  200.   unsigned char st_other; // Must be zero; reserved
  201.   Elf_Half st_shndx;      // Which section (header table index) it's defined in
  202. };
  203.  
  204. template <endianness TargetEndianness>
  205. struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
  206.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  207.   Elf_Word st_name;       // Symbol name (index into string table)
  208.   unsigned char st_info;  // Symbol's type and binding attributes
  209.   unsigned char st_other; // Must be zero; reserved
  210.   Elf_Half st_shndx;      // Which section (header table index) it's defined in
  211.   Elf_Addr st_value;      // Value or address associated with the symbol
  212.   Elf_Xword st_size;      // Size of the symbol
  213. };
  214.  
  215. template <class ELFT>
  216. struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
  217.   using Elf_Sym_Base<ELFT>::st_info;
  218.   using Elf_Sym_Base<ELFT>::st_shndx;
  219.   using Elf_Sym_Base<ELFT>::st_other;
  220.   using Elf_Sym_Base<ELFT>::st_value;
  221.  
  222.   // These accessors and mutators correspond to the ELF32_ST_BIND,
  223.   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
  224.   unsigned char getBinding() const { return st_info >> 4; }
  225.   unsigned char getType() const { return st_info & 0x0f; }
  226.   uint64_t getValue() const { return st_value; }
  227.   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  228.   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
  229.  
  230.   void setBindingAndType(unsigned char b, unsigned char t) {
  231.     st_info = (b << 4) + (t & 0x0f);
  232.   }
  233.  
  234.   /// Access to the STV_xxx flag stored in the first two bits of st_other.
  235.   /// STV_DEFAULT: 0
  236.   /// STV_INTERNAL: 1
  237.   /// STV_HIDDEN: 2
  238.   /// STV_PROTECTED: 3
  239.   unsigned char getVisibility() const { return st_other & 0x3; }
  240.   void setVisibility(unsigned char v) {
  241.     assert(v < 4 && "Invalid value for visibility");
  242.     st_other = (st_other & ~0x3) | v;
  243.   }
  244.  
  245.   bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
  246.  
  247.   bool isCommon() const {
  248.     return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
  249.   }
  250.  
  251.   bool isDefined() const { return !isUndefined(); }
  252.  
  253.   bool isProcessorSpecific() const {
  254.     return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
  255.   }
  256.  
  257.   bool isOSSpecific() const {
  258.     return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
  259.   }
  260.  
  261.   bool isReserved() const {
  262.     // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
  263.     // true and some compilers warn about it.
  264.     return st_shndx >= ELF::SHN_LORESERVE;
  265.   }
  266.  
  267.   bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
  268.  
  269.   bool isExternal() const {
  270.     return getBinding() != ELF::STB_LOCAL;
  271.   }
  272.  
  273.   Expected<StringRef> getName(StringRef StrTab) const;
  274. };
  275.  
  276. template <class ELFT>
  277. Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
  278.   uint32_t Offset = this->st_name;
  279.   if (Offset >= StrTab.size())
  280.     return createStringError(object_error::parse_failed,
  281.                              "st_name (0x%" PRIx32
  282.                              ") is past the end of the string table"
  283.                              " of size 0x%zx",
  284.                              Offset, StrTab.size());
  285.   return StringRef(StrTab.data() + Offset);
  286. }
  287.  
  288. /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
  289. /// (.gnu.version). This structure is identical for ELF32 and ELF64.
  290. template <class ELFT>
  291. struct Elf_Versym_Impl {
  292.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  293.   Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
  294. };
  295.  
  296. /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
  297. /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
  298. template <class ELFT>
  299. struct Elf_Verdef_Impl {
  300.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  301.   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
  302.   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
  303.   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
  304.   Elf_Half vd_cnt;     // Number of Verdaux entries
  305.   Elf_Word vd_hash;    // Hash of name
  306.   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
  307.   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
  308.  
  309.   /// Get the first Verdaux entry for this Verdef.
  310.   const Elf_Verdaux *getAux() const {
  311.     return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
  312.   }
  313. };
  314.  
  315. /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
  316. /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
  317. template <class ELFT>
  318. struct Elf_Verdaux_Impl {
  319.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  320.   Elf_Word vda_name; // Version name (offset in string table)
  321.   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
  322. };
  323.  
  324. /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
  325. /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
  326. template <class ELFT>
  327. struct Elf_Verneed_Impl {
  328.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  329.   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
  330.   Elf_Half vn_cnt;     // Number of associated Vernaux entries
  331.   Elf_Word vn_file;    // Library name (string table offset)
  332.   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
  333.   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
  334. };
  335.  
  336. /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
  337. /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
  338. template <class ELFT>
  339. struct Elf_Vernaux_Impl {
  340.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  341.   Elf_Word vna_hash;  // Hash of dependency name
  342.   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
  343.   Elf_Half vna_other; // Version index, used in .gnu.version entries
  344.   Elf_Word vna_name;  // Dependency name
  345.   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
  346. };
  347.  
  348. /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
  349. ///               table section (.dynamic) look like.
  350. template <class ELFT> struct Elf_Dyn_Base;
  351.  
  352. template <endianness TargetEndianness>
  353. struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
  354.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  355.   Elf_Sword d_tag;
  356.   union {
  357.     Elf_Word d_val;
  358.     Elf_Addr d_ptr;
  359.   } d_un;
  360. };
  361.  
  362. template <endianness TargetEndianness>
  363. struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
  364.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  365.   Elf_Sxword d_tag;
  366.   union {
  367.     Elf_Xword d_val;
  368.     Elf_Addr d_ptr;
  369.   } d_un;
  370. };
  371.  
  372. /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
  373. template <class ELFT>
  374. struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
  375.   using Elf_Dyn_Base<ELFT>::d_tag;
  376.   using Elf_Dyn_Base<ELFT>::d_un;
  377.   using intX_t = std::conditional_t<ELFT::Is64Bits, int64_t, int32_t>;
  378.   using uintX_t = std::conditional_t<ELFT::Is64Bits, uint64_t, uint32_t>;
  379.   intX_t getTag() const { return d_tag; }
  380.   uintX_t getVal() const { return d_un.d_val; }
  381.   uintX_t getPtr() const { return d_un.d_ptr; }
  382. };
  383.  
  384. template <endianness TargetEndianness>
  385. struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
  386.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  387.   static const bool IsRela = false;
  388.   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
  389.   Elf_Word r_info;   // Symbol table index and type of relocation to apply
  390.  
  391.   uint32_t getRInfo(bool isMips64EL) const {
  392.     assert(!isMips64EL);
  393.     return r_info;
  394.   }
  395.   void setRInfo(uint32_t R, bool IsMips64EL) {
  396.     assert(!IsMips64EL);
  397.     r_info = R;
  398.   }
  399.  
  400.   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  401.   // and ELF32_R_INFO macros defined in the ELF specification:
  402.   uint32_t getSymbol(bool isMips64EL) const {
  403.     return this->getRInfo(isMips64EL) >> 8;
  404.   }
  405.   unsigned char getType(bool isMips64EL) const {
  406.     return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
  407.   }
  408.   void setSymbol(uint32_t s, bool IsMips64EL) {
  409.     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
  410.   }
  411.   void setType(unsigned char t, bool IsMips64EL) {
  412.     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
  413.   }
  414.   void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
  415.     this->setRInfo((s << 8) + t, IsMips64EL);
  416.   }
  417. };
  418.  
  419. template <endianness TargetEndianness>
  420. struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
  421.     : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
  422.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  423.   static const bool IsRela = true;
  424.   Elf_Sword r_addend; // Compute value for relocatable field by adding this
  425. };
  426.  
  427. template <endianness TargetEndianness>
  428. struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
  429.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  430.   static const bool IsRela = false;
  431.   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
  432.   Elf_Xword r_info;  // Symbol table index and type of relocation to apply
  433.  
  434.   uint64_t getRInfo(bool isMips64EL) const {
  435.     uint64_t t = r_info;
  436.     if (!isMips64EL)
  437.       return t;
  438.     // Mips64 little endian has a "special" encoding of r_info. Instead of one
  439.     // 64 bit little endian number, it is a little endian 32 bit number followed
  440.     // by a 32 bit big endian number.
  441.     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
  442.            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
  443.   }
  444.  
  445.   void setRInfo(uint64_t R, bool IsMips64EL) {
  446.     if (IsMips64EL)
  447.       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
  448.                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
  449.     else
  450.       r_info = R;
  451.   }
  452.  
  453.   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  454.   // and ELF64_R_INFO macros defined in the ELF specification:
  455.   uint32_t getSymbol(bool isMips64EL) const {
  456.     return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
  457.   }
  458.   uint32_t getType(bool isMips64EL) const {
  459.     return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
  460.   }
  461.   void setSymbol(uint32_t s, bool IsMips64EL) {
  462.     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
  463.   }
  464.   void setType(uint32_t t, bool IsMips64EL) {
  465.     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
  466.   }
  467.   void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
  468.     this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
  469.   }
  470. };
  471.  
  472. template <endianness TargetEndianness>
  473. struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
  474.     : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
  475.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  476.   static const bool IsRela = true;
  477.   Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
  478. };
  479.  
  480. template <class ELFT>
  481. struct Elf_Ehdr_Impl {
  482.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  483.   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
  484.   Elf_Half e_type;                       // Type of file (see ET_*)
  485.   Elf_Half e_machine;   // Required architecture for this file (see EM_*)
  486.   Elf_Word e_version;   // Must be equal to 1
  487.   Elf_Addr e_entry;     // Address to jump to in order to start program
  488.   Elf_Off e_phoff;      // Program header table's file offset, in bytes
  489.   Elf_Off e_shoff;      // Section header table's file offset, in bytes
  490.   Elf_Word e_flags;     // Processor-specific flags
  491.   Elf_Half e_ehsize;    // Size of ELF header, in bytes
  492.   Elf_Half e_phentsize; // Size of an entry in the program header table
  493.   Elf_Half e_phnum;     // Number of entries in the program header table
  494.   Elf_Half e_shentsize; // Size of an entry in the section header table
  495.   Elf_Half e_shnum;     // Number of entries in the section header table
  496.   Elf_Half e_shstrndx;  // Section header table index of section name
  497.                         // string table
  498.  
  499.   bool checkMagic() const {
  500.     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
  501.   }
  502.  
  503.   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
  504.   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
  505. };
  506.  
  507. template <endianness TargetEndianness>
  508. struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
  509.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  510.   Elf_Word p_type;   // Type of segment
  511.   Elf_Off p_offset;  // FileOffset where segment is located, in bytes
  512.   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
  513.   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
  514.   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
  515.   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
  516.   Elf_Word p_flags;  // Segment flags
  517.   Elf_Word p_align;  // Segment alignment constraint
  518. };
  519.  
  520. template <endianness TargetEndianness>
  521. struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
  522.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  523.   Elf_Word p_type;    // Type of segment
  524.   Elf_Word p_flags;   // Segment flags
  525.   Elf_Off p_offset;   // FileOffset where segment is located, in bytes
  526.   Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
  527.   Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
  528.   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
  529.   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
  530.   Elf_Xword p_align;  // Segment alignment constraint
  531. };
  532.  
  533. // ELFT needed for endianness.
  534. template <class ELFT>
  535. struct Elf_Hash_Impl {
  536.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  537.   Elf_Word nbucket;
  538.   Elf_Word nchain;
  539.  
  540.   ArrayRef<Elf_Word> buckets() const {
  541.     return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
  542.   }
  543.  
  544.   ArrayRef<Elf_Word> chains() const {
  545.     return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
  546.                               &nbucket + 2 + nbucket + nchain);
  547.   }
  548. };
  549.  
  550. // .gnu.hash section
  551. template <class ELFT>
  552. struct Elf_GnuHash_Impl {
  553.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  554.   Elf_Word nbuckets;
  555.   Elf_Word symndx;
  556.   Elf_Word maskwords;
  557.   Elf_Word shift2;
  558.  
  559.   ArrayRef<Elf_Off> filter() const {
  560.     return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
  561.                              maskwords);
  562.   }
  563.  
  564.   ArrayRef<Elf_Word> buckets() const {
  565.     return ArrayRef<Elf_Word>(
  566.         reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
  567.   }
  568.  
  569.   ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
  570.     assert(DynamicSymCount >= symndx);
  571.     return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
  572.   }
  573. };
  574.  
  575. // Compressed section headers.
  576. // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
  577. template <endianness TargetEndianness>
  578. struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
  579.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  580.   Elf_Word ch_type;
  581.   Elf_Word ch_size;
  582.   Elf_Word ch_addralign;
  583. };
  584.  
  585. template <endianness TargetEndianness>
  586. struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
  587.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  588.   Elf_Word ch_type;
  589.   Elf_Word ch_reserved;
  590.   Elf_Xword ch_size;
  591.   Elf_Xword ch_addralign;
  592. };
  593.  
  594. /// Note header
  595. template <class ELFT>
  596. struct Elf_Nhdr_Impl {
  597.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  598.   Elf_Word n_namesz;
  599.   Elf_Word n_descsz;
  600.   Elf_Word n_type;
  601.  
  602.   /// The alignment of the name and descriptor.
  603.   ///
  604.   /// Implementations differ from the specification here: in practice all
  605.   /// variants align both the name and descriptor to 4-bytes.
  606.   static const unsigned int Align = 4;
  607.  
  608.   /// Get the size of the note, including name, descriptor, and padding.
  609.   size_t getSize() const {
  610.     return sizeof(*this) + alignTo<Align>(n_namesz) + alignTo<Align>(n_descsz);
  611.   }
  612. };
  613.  
  614. /// An ELF note.
  615. ///
  616. /// Wraps a note header, providing methods for accessing the name and
  617. /// descriptor safely.
  618. template <class ELFT>
  619. class Elf_Note_Impl {
  620.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  621.  
  622.   const Elf_Nhdr_Impl<ELFT> &Nhdr;
  623.  
  624.   template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl;
  625.  
  626. public:
  627.   Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {}
  628.  
  629.   /// Get the note's name, excluding the terminating null byte.
  630.   StringRef getName() const {
  631.     if (!Nhdr.n_namesz)
  632.       return StringRef();
  633.     return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr),
  634.                      Nhdr.n_namesz - 1);
  635.   }
  636.  
  637.   /// Get the note's descriptor.
  638.   ArrayRef<uint8_t> getDesc() const {
  639.     if (!Nhdr.n_descsz)
  640.       return ArrayRef<uint8_t>();
  641.     return ArrayRef<uint8_t>(
  642.         reinterpret_cast<const uint8_t *>(&Nhdr) + sizeof(Nhdr) +
  643.           alignTo<Elf_Nhdr_Impl<ELFT>::Align>(Nhdr.n_namesz),
  644.         Nhdr.n_descsz);
  645.   }
  646.  
  647.   /// Get the note's descriptor as StringRef
  648.   StringRef getDescAsStringRef() const {
  649.     ArrayRef<uint8_t> Desc = getDesc();
  650.     return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
  651.   }
  652.  
  653.   /// Get the note's type.
  654.   Elf_Word getType() const { return Nhdr.n_type; }
  655. };
  656.  
  657. template <class ELFT> class Elf_Note_Iterator_Impl {
  658. public:
  659.   using iterator_category = std::forward_iterator_tag;
  660.   using value_type = Elf_Note_Impl<ELFT>;
  661.   using difference_type = std::ptrdiff_t;
  662.   using pointer = value_type *;
  663.   using reference = value_type &;
  664.  
  665. private:
  666.   // Nhdr being a nullptr marks the end of iteration.
  667.   const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr;
  668.   size_t RemainingSize = 0u;
  669.   Error *Err = nullptr;
  670.  
  671.   template <class ELFFileELFT> friend class ELFFile;
  672.  
  673.   // Stop iteration and indicate an overflow.
  674.   void stopWithOverflowError() {
  675.     Nhdr = nullptr;
  676.     *Err = make_error<StringError>("ELF note overflows container",
  677.                                    object_error::parse_failed);
  678.   }
  679.  
  680.   // Advance Nhdr by NoteSize bytes, starting from NhdrPos.
  681.   //
  682.   // Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize
  683.   // upon returning. Handles stopping iteration when reaching the end of the
  684.   // container, either cleanly or with an overflow error.
  685.   void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) {
  686.     RemainingSize -= NoteSize;
  687.     if (RemainingSize == 0u) {
  688.       // Ensure that if the iterator walks to the end, the error is checked
  689.       // afterwards.
  690.       *Err = Error::success();
  691.       Nhdr = nullptr;
  692.     } else if (sizeof(*Nhdr) > RemainingSize)
  693.       stopWithOverflowError();
  694.     else {
  695.       Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize);
  696.       if (Nhdr->getSize() > RemainingSize)
  697.         stopWithOverflowError();
  698.       else
  699.         *Err = Error::success();
  700.     }
  701.   }
  702.  
  703.   Elf_Note_Iterator_Impl() = default;
  704.   explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {}
  705.   Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, Error &Err)
  706.       : RemainingSize(Size), Err(&Err) {
  707.     consumeError(std::move(Err));
  708.     assert(Start && "ELF note iterator starting at NULL");
  709.     advanceNhdr(Start, 0u);
  710.   }
  711.  
  712. public:
  713.   Elf_Note_Iterator_Impl &operator++() {
  714.     assert(Nhdr && "incremented ELF note end iterator");
  715.     const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr);
  716.     size_t NoteSize = Nhdr->getSize();
  717.     advanceNhdr(NhdrPos, NoteSize);
  718.     return *this;
  719.   }
  720.   bool operator==(Elf_Note_Iterator_Impl Other) const {
  721.     if (!Nhdr && Other.Err)
  722.       (void)(bool)(*Other.Err);
  723.     if (!Other.Nhdr && Err)
  724.       (void)(bool)(*Err);
  725.     return Nhdr == Other.Nhdr;
  726.   }
  727.   bool operator!=(Elf_Note_Iterator_Impl Other) const {
  728.     return !(*this == Other);
  729.   }
  730.   Elf_Note_Impl<ELFT> operator*() const {
  731.     assert(Nhdr && "dereferenced ELF note end iterator");
  732.     return Elf_Note_Impl<ELFT>(*Nhdr);
  733.   }
  734. };
  735.  
  736. template <class ELFT> struct Elf_CGProfile_Impl {
  737.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  738.   Elf_Xword cgp_weight;
  739. };
  740.  
  741. // MIPS .reginfo section
  742. template <class ELFT>
  743. struct Elf_Mips_RegInfo;
  744.  
  745. template <support::endianness TargetEndianness>
  746. struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
  747.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  748.   Elf_Word ri_gprmask;     // bit-mask of used general registers
  749.   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
  750.   Elf_Addr ri_gp_value;    // gp register value
  751. };
  752.  
  753. template <support::endianness TargetEndianness>
  754. struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
  755.   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  756.   Elf_Word ri_gprmask;     // bit-mask of used general registers
  757.   Elf_Word ri_pad;         // unused padding field
  758.   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
  759.   Elf_Addr ri_gp_value;    // gp register value
  760. };
  761.  
  762. // .MIPS.options section
  763. template <class ELFT> struct Elf_Mips_Options {
  764.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  765.   uint8_t kind;     // Determines interpretation of variable part of descriptor
  766.   uint8_t size;     // Byte size of descriptor, including this header
  767.   Elf_Half section; // Section header index of section affected,
  768.                     // or 0 for global options
  769.   Elf_Word info;    // Kind-specific information
  770.  
  771.   Elf_Mips_RegInfo<ELFT> &getRegInfo() {
  772.     assert(kind == ELF::ODK_REGINFO);
  773.     return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
  774.         (uint8_t *)this + sizeof(Elf_Mips_Options));
  775.   }
  776.   const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
  777.     return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
  778.   }
  779. };
  780.  
  781. // .MIPS.abiflags section content
  782. template <class ELFT> struct Elf_Mips_ABIFlags {
  783.   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  784.   Elf_Half version;  // Version of the structure
  785.   uint8_t isa_level; // ISA level: 1-5, 32, and 64
  786.   uint8_t isa_rev;   // ISA revision (0 for MIPS I - MIPS V)
  787.   uint8_t gpr_size;  // General purpose registers size
  788.   uint8_t cpr1_size; // Co-processor 1 registers size
  789.   uint8_t cpr2_size; // Co-processor 2 registers size
  790.   uint8_t fp_abi;    // Floating-point ABI flag
  791.   Elf_Word isa_ext;  // Processor-specific extension
  792.   Elf_Word ases;     // ASEs flags
  793.   Elf_Word flags1;   // General flags
  794.   Elf_Word flags2;   // General flags
  795. };
  796.  
  797. // Struct representing the BBAddrMap for one function.
  798. struct BBAddrMap {
  799.   uint64_t Addr; // Function address
  800.   // Struct representing the BBAddrMap information for one basic block.
  801.   struct BBEntry {
  802.     uint32_t ID;     // Unique ID of this basic block.
  803.     uint32_t Offset; // Offset of basic block relative to function start.
  804.     uint32_t Size;   // Size of the basic block.
  805.  
  806.     // The following fields are decoded from the Metadata field. The encoding
  807.     // happens in AsmPrinter.cpp:getBBAddrMapMetadata.
  808.     bool HasReturn;      // If this block ends with a return (or tail call).
  809.     bool HasTailCall;    // If this block ends with a tail call.
  810.     bool IsEHPad;        // If this is an exception handling block.
  811.     bool CanFallThrough; // If this block can fall through to its next.
  812.  
  813.     BBEntry(uint32_t ID, uint32_t Offset, uint32_t Size, uint32_t Metadata)
  814.         : ID(ID), Offset(Offset), Size(Size), HasReturn(Metadata & 1),
  815.           HasTailCall(Metadata & (1 << 1)), IsEHPad(Metadata & (1 << 2)),
  816.           CanFallThrough(Metadata & (1 << 3)){};
  817.  
  818.     bool operator==(const BBEntry &Other) const {
  819.       return ID == Other.ID && Offset == Other.Offset && Size == Other.Size &&
  820.              HasReturn == Other.HasReturn && HasTailCall == Other.HasTailCall &&
  821.              IsEHPad == Other.IsEHPad && CanFallThrough == Other.CanFallThrough;
  822.     }
  823.   };
  824.   std::vector<BBEntry> BBEntries; // Basic block entries for this function.
  825.  
  826.   // Equality operator for unit testing.
  827.   bool operator==(const BBAddrMap &Other) const {
  828.     return Addr == Other.Addr && std::equal(BBEntries.begin(), BBEntries.end(),
  829.                                             Other.BBEntries.begin());
  830.   }
  831. };
  832.  
  833. } // end namespace object.
  834. } // end namespace llvm.
  835.  
  836. #endif // LLVM_OBJECT_ELFTYPES_H
  837.