//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file declares the ELFFile template class.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_OBJECT_ELF_H
 
#define LLVM_OBJECT_ELF_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/SmallString.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/BinaryFormat/ELF.h"
 
#include "llvm/Object/ELFTypes.h"
 
#include "llvm/Object/Error.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/Error.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <limits>
 
#include <utility>
 
 
 
namespace llvm {
 
namespace object {
 
 
 
struct VerdAux {
 
  unsigned Offset;
 
  std::string Name;
 
};
 
 
 
struct VerDef {
 
  unsigned Offset;
 
  unsigned Version;
 
  unsigned Flags;
 
  unsigned Ndx;
 
  unsigned Cnt;
 
  unsigned Hash;
 
  std::string Name;
 
  std::vector<VerdAux> AuxV;
 
};
 
 
 
struct VernAux {
 
  unsigned Hash;
 
  unsigned Flags;
 
  unsigned Other;
 
  unsigned Offset;
 
  std::string Name;
 
};
 
 
 
struct VerNeed {
 
  unsigned Version;
 
  unsigned Cnt;
 
  unsigned Offset;
 
  std::string File;
 
  std::vector<VernAux> AuxV;
 
};
 
 
 
struct VersionEntry {
 
  std::string Name;
 
  bool IsVerDef;
 
};
 
 
 
StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type);
 
uint32_t getELFRelativeRelocationType(uint32_t Machine);
 
StringRef getELFSectionTypeName(uint32_t Machine, uint32_t Type);
 
 
 
// Subclasses of ELFFile may need this for template instantiation
 
inline std::pair<unsigned char, unsigned char>
 
getElfArchType(StringRef Object) {
 
  if (Object.size() < ELF::EI_NIDENT)
 
    return std::make_pair((uint8_t)ELF::ELFCLASSNONE,
 
                          (uint8_t)ELF::ELFDATANONE);
 
  return std::make_pair((uint8_t)Object[ELF::EI_CLASS],
 
                        (uint8_t)Object[ELF::EI_DATA]);
 
}
 
 
 
enum PPCInstrMasks : uint64_t {
 
  PADDI_R12_NO_DISP = 0x0610000039800000,
 
  ADDIS_R12_TO_R2_NO_DISP = 0x3D820000,
 
  ADDI_R12_TO_R2_NO_DISP = 0x39820000,
 
  ADDI_R12_TO_R12_NO_DISP = 0x398C0000,
 
  PLD_R12_NO_DISP = 0x04100000E5800000,
 
  MTCTR_R12 = 0x7D8903A6,
 
  BCTR = 0x4E800420,
 
};
 
 
 
template <class ELFT> class ELFFile;
 
 
 
template <class T> struct DataRegion {
 
  // This constructor is used when we know the start and the size of a data
 
  // region. We assume that Arr does not go past the end of the file.
 
  DataRegion(ArrayRef<T> Arr) : First(Arr.data()), Size(Arr.size()) {}
 
 
 
  // Sometimes we only know the start of a data region. We still don't want to
 
  // read past the end of the file, so we provide the end of a buffer.
 
  DataRegion(const T *Data, const uint8_t *BufferEnd)
 
      : First(Data), BufEnd(BufferEnd) {}
 
 
 
  Expected<T> operator[](uint64_t N) {
 
    assert(Size || BufEnd);
 
    if (Size) {
 
      if (N >= *Size)
 
        return createError(
 
            "the index is greater than or equal to the number of entries (" +
 
            Twine(*Size) + ")");
 
    } else {
 
      const uint8_t *EntryStart = (const uint8_t *)First + N * sizeof(T);
 
      if (EntryStart + sizeof(T) > BufEnd)
 
        return createError("can't read past the end of the file");
 
    }
 
    return *(First + N);
 
  }
 
 
 
  const T *First;
 
  std::optional<uint64_t> Size;
 
  const uint8_t *BufEnd = nullptr;
 
};
 
 
 
template <class ELFT>
 
std::string getSecIndexForError(const ELFFile<ELFT> &Obj,
 
                                const typename ELFT::Shdr &Sec) {
 
  auto TableOrErr = Obj.sections();
 
  if (TableOrErr)
 
    return "[index " + std::to_string(&Sec - &TableOrErr->front()) + "]";
 
  // To make this helper be more convenient for error reporting purposes we
 
  // drop the error. But really it should never be triggered. Before this point,
 
  // our code should have called 'sections()' and reported a proper error on
 
  // failure.
 
  llvm::consumeError(TableOrErr.takeError());
 
  return "[unknown index]";
 
}
 
 
 
template <class ELFT>
 
static std::string describe(const ELFFile<ELFT> &Obj,
 
                            const typename ELFT::Shdr &Sec) {
 
  unsigned SecNdx = &Sec - &cantFail(Obj.sections()).front();
 
  return (object::getELFSectionTypeName(Obj.getHeader().e_machine,
 
                                        Sec.sh_type) +
 
          " section with index " + Twine(SecNdx))
 
      .str();
 
}
 
 
 
template <class ELFT>
 
std::string getPhdrIndexForError(const ELFFile<ELFT> &Obj,
 
                                 const typename ELFT::Phdr &Phdr) {
 
  auto Headers = Obj.program_headers();
 
  if (Headers)
 
    return ("[index " + Twine(&Phdr - &Headers->front()) + "]").str();
 
  // See comment in the getSecIndexForError() above.
 
  llvm::consumeError(Headers.takeError());
 
  return "[unknown index]";
 
}
 
 
 
static inline Error defaultWarningHandler(const Twine &Msg) {
 
  return createError(Msg);
 
}
 
 
 
template <class ELFT>
 
class ELFFile {
 
public:
 
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 
 
 
  // This is a callback that can be passed to a number of functions.
 
  // It can be used to ignore non-critical errors (warnings), which is
 
  // useful for dumpers, like llvm-readobj.
 
  // It accepts a warning message string and returns a success
 
  // when the warning should be ignored or an error otherwise.
 
  using WarningHandler = llvm::function_ref<Error(const Twine &Msg)>;
 
 
 
  const uint8_t *base() const { return Buf.bytes_begin(); }
 
  const uint8_t *end() const { return base() + getBufSize(); }
 
 
 
  size_t getBufSize() const { return Buf.size(); }
 
 
 
private:
 
  StringRef Buf;
 
  std::vector<Elf_Shdr> FakeSections;
 
  SmallString<0> FakeSectionStrings;
 
 
 
  ELFFile(StringRef Object);
 
 
 
public:
 
  const Elf_Ehdr &getHeader() const {
 
    return *reinterpret_cast<const Elf_Ehdr *>(base());
 
  }
 
 
 
  template <typename T>
 
  Expected<const T *> getEntry(uint32_t Section, uint32_t Entry) const;
 
  template <typename T>
 
  Expected<const T *> getEntry(const Elf_Shdr &Section, uint32_t Entry) const;
 
 
 
  Expected<std::vector<VerDef>>
 
  getVersionDefinitions(const Elf_Shdr &Sec) const;
 
  Expected<std::vector<VerNeed>> getVersionDependencies(
 
      const Elf_Shdr &Sec,
 
      WarningHandler WarnHandler = &defaultWarningHandler) const;
 
  Expected<StringRef> getSymbolVersionByIndex(
 
      uint32_t SymbolVersionIndex, bool &IsDefault,
 
      SmallVector<std::optional<VersionEntry>, 0> &VersionMap,
 
      std::optional<bool> IsSymHidden) const;
 
 
 
  Expected<StringRef>
 
  getStringTable(const Elf_Shdr &Section,
 
                 WarningHandler WarnHandler = &defaultWarningHandler) const;
 
  Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section) const;
 
  Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section,
 
                                              Elf_Shdr_Range Sections) const;
 
  Expected<StringRef> getLinkAsStrtab(const typename ELFT::Shdr &Sec) const;
 
 
 
  Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section) const;
 
  Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section,
 
                                             Elf_Shdr_Range Sections) const;
 
 
 
  Expected<uint64_t> getDynSymtabSize() const;
 
 
 
  StringRef getRelocationTypeName(uint32_t Type) const;
 
  void getRelocationTypeName(uint32_t Type,
 
                             SmallVectorImpl<char> &Result) const;
 
  uint32_t getRelativeRelocationType() const;
 
 
 
  std::string getDynamicTagAsString(unsigned Arch, uint64_t Type) const;
 
  std::string getDynamicTagAsString(uint64_t Type) const;
 
 
 
  /// Get the symbol for a given relocation.
 
  Expected<const Elf_Sym *> getRelocationSymbol(const Elf_Rel &Rel,
 
                                                const Elf_Shdr *SymTab) const;
 
 
 
  Expected<SmallVector<std::optional<VersionEntry>, 0>>
 
  loadVersionMap(const Elf_Shdr *VerNeedSec, const Elf_Shdr *VerDefSec) const;
 
 
 
  static Expected<ELFFile> create(StringRef Object);
 
 
 
  bool isLE() const {
 
    return getHeader().getDataEncoding() == ELF::ELFDATA2LSB;
 
  }
 
 
 
  bool isMipsELF64() const {
 
    return getHeader().e_machine == ELF::EM_MIPS &&
 
           getHeader().getFileClass() == ELF::ELFCLASS64;
 
  }
 
 
 
  bool isMips64EL() const { return isMipsELF64() && isLE(); }
 
 
 
  Expected<Elf_Shdr_Range> sections() const;
 
 
 
  Expected<Elf_Dyn_Range> dynamicEntries() const;
 
 
 
  Expected<const uint8_t *>
 
  toMappedAddr(uint64_t VAddr,
 
               WarningHandler WarnHandler = &defaultWarningHandler) const;
 
 
 
  Expected<Elf_Sym_Range> symbols(const Elf_Shdr *Sec) const {
 
    if (!Sec)
 
      return ArrayRef<Elf_Sym>(nullptr, nullptr);
 
    return getSectionContentsAsArray<Elf_Sym>(*Sec);
 
  }
 
 
 
  Expected<Elf_Rela_Range> relas(const Elf_Shdr &Sec) const {
 
    return getSectionContentsAsArray<Elf_Rela>(Sec);
 
  }
 
 
 
  Expected<Elf_Rel_Range> rels(const Elf_Shdr &Sec) const {
 
    return getSectionContentsAsArray<Elf_Rel>(Sec);
 
  }
 
 
 
  Expected<Elf_Relr_Range> relrs(const Elf_Shdr &Sec) const {
 
    return getSectionContentsAsArray<Elf_Relr>(Sec);
 
  }
 
 
 
  std::vector<Elf_Rel> decode_relrs(Elf_Relr_Range relrs) const;
 
 
 
  Expected<std::vector<Elf_Rela>> android_relas(const Elf_Shdr &Sec) const;
 
 
 
  /// Iterate over program header table.
 
  Expected<Elf_Phdr_Range> program_headers() const {
 
    if (getHeader().e_phnum && getHeader().e_phentsize != sizeof(Elf_Phdr))
 
      return createError("invalid e_phentsize: " +
 
                         Twine(getHeader().e_phentsize));
 
 
 
    uint64_t HeadersSize =
 
        (uint64_t)getHeader().e_phnum * getHeader().e_phentsize;
 
    uint64_t PhOff = getHeader().e_phoff;
 
    if (PhOff + HeadersSize < PhOff || PhOff + HeadersSize > getBufSize())
 
      return createError("program headers are longer than binary of size " +
 
                         Twine(getBufSize()) + ": e_phoff = 0x" +
 
                         Twine::utohexstr(getHeader().e_phoff) +
 
                         ", e_phnum = " + Twine(getHeader().e_phnum) +
 
                         ", e_phentsize = " + Twine(getHeader().e_phentsize));
 
 
 
    auto *Begin = reinterpret_cast<const Elf_Phdr *>(base() + PhOff);
 
    return ArrayRef(Begin, Begin + getHeader().e_phnum);
 
  }
 
 
 
  /// Get an iterator over notes in a program header.
 
  ///
 
  /// The program header must be of type \c PT_NOTE.
 
  ///
 
  /// \param Phdr the program header to iterate over.
 
  /// \param Err [out] an error to support fallible iteration, which should
 
  ///  be checked after iteration ends.
 
  Elf_Note_Iterator notes_begin(const Elf_Phdr &Phdr, Error &Err) const {
 
    assert(Phdr.p_type == ELF::PT_NOTE && "Phdr is not of type PT_NOTE");
 
    ErrorAsOutParameter ErrAsOutParam(&Err);
 
    if (Phdr.p_offset + Phdr.p_filesz > getBufSize()) {
 
      Err =
 
          createError("invalid offset (0x" + Twine::utohexstr(Phdr.p_offset) +
 
                      ") or size (0x" + Twine::utohexstr(Phdr.p_filesz) + ")");
 
      return Elf_Note_Iterator(Err);
 
    }
 
    return Elf_Note_Iterator(base() + Phdr.p_offset, Phdr.p_filesz, Err);
 
  }
 
 
 
  /// Get an iterator over notes in a section.
 
  ///
 
  /// The section must be of type \c SHT_NOTE.
 
  ///
 
  /// \param Shdr the section to iterate over.
 
  /// \param Err [out] an error to support fallible iteration, which should
 
  ///  be checked after iteration ends.
 
  Elf_Note_Iterator notes_begin(const Elf_Shdr &Shdr, Error &Err) const {
 
    assert(Shdr.sh_type == ELF::SHT_NOTE && "Shdr is not of type SHT_NOTE");
 
    ErrorAsOutParameter ErrAsOutParam(&Err);
 
    if (Shdr.sh_offset + Shdr.sh_size > getBufSize()) {
 
      Err =
 
          createError("invalid offset (0x" + Twine::utohexstr(Shdr.sh_offset) +
 
                      ") or size (0x" + Twine::utohexstr(Shdr.sh_size) + ")");
 
      return Elf_Note_Iterator(Err);
 
    }
 
    return Elf_Note_Iterator(base() + Shdr.sh_offset, Shdr.sh_size, Err);
 
  }
 
 
 
  /// Get the end iterator for notes.
 
  Elf_Note_Iterator notes_end() const {
 
    return Elf_Note_Iterator();
 
  }
 
 
 
  /// Get an iterator range over notes of a program header.
 
  ///
 
  /// The program header must be of type \c PT_NOTE.
 
  ///
 
  /// \param Phdr the program header to iterate over.
 
  /// \param Err [out] an error to support fallible iteration, which should
 
  ///  be checked after iteration ends.
 
  iterator_range<Elf_Note_Iterator> notes(const Elf_Phdr &Phdr,
 
                                          Error &Err) const {
 
    return make_range(notes_begin(Phdr, Err), notes_end());
 
  }
 
 
 
  /// Get an iterator range over notes of a section.
 
  ///
 
  /// The section must be of type \c SHT_NOTE.
 
  ///
 
  /// \param Shdr the section to iterate over.
 
  /// \param Err [out] an error to support fallible iteration, which should
 
  ///  be checked after iteration ends.
 
  iterator_range<Elf_Note_Iterator> notes(const Elf_Shdr &Shdr,
 
                                          Error &Err) const {
 
    return make_range(notes_begin(Shdr, Err), notes_end());
 
  }
 
 
 
  Expected<StringRef> getSectionStringTable(
 
      Elf_Shdr_Range Sections,
 
      WarningHandler WarnHandler = &defaultWarningHandler) const;
 
  Expected<uint32_t> getSectionIndex(const Elf_Sym &Sym, Elf_Sym_Range Syms,
 
                                     DataRegion<Elf_Word> ShndxTable) const;
 
  Expected<const Elf_Shdr *> getSection(const Elf_Sym &Sym,
 
                                        const Elf_Shdr *SymTab,
 
                                        DataRegion<Elf_Word> ShndxTable) const;
 
  Expected<const Elf_Shdr *> getSection(const Elf_Sym &Sym,
 
                                        Elf_Sym_Range Symtab,
 
                                        DataRegion<Elf_Word> ShndxTable) const;
 
  Expected<const Elf_Shdr *> getSection(uint32_t Index) const;
 
 
 
  Expected<const Elf_Sym *> getSymbol(const Elf_Shdr *Sec,
 
                                      uint32_t Index) const;
 
 
 
  Expected<StringRef>
 
  getSectionName(const Elf_Shdr &Section,
 
                 WarningHandler WarnHandler = &defaultWarningHandler) const;
 
  Expected<StringRef> getSectionName(const Elf_Shdr &Section,
 
                                     StringRef DotShstrtab) const;
 
  template <typename T>
 
  Expected<ArrayRef<T>> getSectionContentsAsArray(const Elf_Shdr &Sec) const;
 
  Expected<ArrayRef<uint8_t>> getSectionContents(const Elf_Shdr &Sec) const;
 
  Expected<ArrayRef<uint8_t>> getSegmentContents(const Elf_Phdr &Phdr) const;
 
  Expected<std::vector<BBAddrMap>> decodeBBAddrMap(const Elf_Shdr &Sec) const;
 
 
 
  void createFakeSections();
 
};
 
 
 
using ELF32LEFile = ELFFile<ELF32LE>;
 
using ELF64LEFile = ELFFile<ELF64LE>;
 
using ELF32BEFile = ELFFile<ELF32BE>;
 
using ELF64BEFile = ELFFile<ELF64BE>;
 
 
 
template <class ELFT>
 
inline Expected<const typename ELFT::Shdr *>
 
getSection(typename ELFT::ShdrRange Sections, uint32_t Index) {
 
  if (Index >= Sections.size())
 
    return createError("invalid section index: " + Twine(Index));
 
  return &Sections[Index];
 
}
 
 
 
template <class ELFT>
 
inline Expected<uint32_t>
 
getExtendedSymbolTableIndex(const typename ELFT::Sym &Sym, unsigned SymIndex,
 
                            DataRegion<typename ELFT::Word> ShndxTable) {
 
  assert(Sym.st_shndx == ELF::SHN_XINDEX);
 
  if (!ShndxTable.First)
 
    return createError(
 
        "found an extended symbol index (" + Twine(SymIndex) +
 
        "), but unable to locate the extended symbol index table");
 
 
 
  Expected<typename ELFT::Word> TableOrErr = ShndxTable[SymIndex];
 
  if (!TableOrErr)
 
    return createError("unable to read an extended symbol table at index " +
 
                       Twine(SymIndex) + ": " +
 
                       toString(TableOrErr.takeError()));
 
  return *TableOrErr;
 
}
 
 
 
template <class ELFT>
 
Expected<uint32_t>
 
ELFFile<ELFT>::getSectionIndex(const Elf_Sym &Sym, Elf_Sym_Range Syms,
 
                               DataRegion<Elf_Word> ShndxTable) const {
 
  uint32_t Index = Sym.st_shndx;
 
  if (Index == ELF::SHN_XINDEX) {
 
    Expected<uint32_t> ErrorOrIndex =
 
        getExtendedSymbolTableIndex<ELFT>(Sym, &Sym - Syms.begin(), ShndxTable);
 
    if (!ErrorOrIndex)
 
      return ErrorOrIndex.takeError();
 
    return *ErrorOrIndex;
 
  }
 
  if (Index == ELF::SHN_UNDEF || Index >= ELF::SHN_LORESERVE)
 
    return 0;
 
  return Index;
 
}
 
 
 
template <class ELFT>
 
Expected<const typename ELFT::Shdr *>
 
ELFFile<ELFT>::getSection(const Elf_Sym &Sym, const Elf_Shdr *SymTab,
 
                          DataRegion<Elf_Word> ShndxTable) const {
 
  auto SymsOrErr = symbols(SymTab);
 
  if (!SymsOrErr)
 
    return SymsOrErr.takeError();
 
  return getSection(Sym, *SymsOrErr, ShndxTable);
 
}
 
 
 
template <class ELFT>
 
Expected<const typename ELFT::Shdr *>
 
ELFFile<ELFT>::getSection(const Elf_Sym &Sym, Elf_Sym_Range Symbols,
 
                          DataRegion<Elf_Word> ShndxTable) const {
 
  auto IndexOrErr = getSectionIndex(Sym, Symbols, ShndxTable);
 
  if (!IndexOrErr)
 
    return IndexOrErr.takeError();
 
  uint32_t Index = *IndexOrErr;
 
  if (Index == 0)
 
    return nullptr;
 
  return getSection(Index);
 
}
 
 
 
template <class ELFT>
 
Expected<const typename ELFT::Sym *>
 
ELFFile<ELFT>::getSymbol(const Elf_Shdr *Sec, uint32_t Index) const {
 
  auto SymsOrErr = symbols(Sec);
 
  if (!SymsOrErr)
 
    return SymsOrErr.takeError();
 
 
 
  Elf_Sym_Range Symbols = *SymsOrErr;
 
  if (Index >= Symbols.size())
 
    return createError("unable to get symbol from section " +
 
                       getSecIndexForError(*this, *Sec) +
 
                       ": invalid symbol index (" + Twine(Index) + ")");
 
  return &Symbols[Index];
 
}
 
 
 
template <class ELFT>
 
template <typename T>
 
Expected<ArrayRef<T>>
 
ELFFile<ELFT>::getSectionContentsAsArray(const Elf_Shdr &Sec) const {
 
  if (Sec.sh_entsize != sizeof(T) && sizeof(T) != 1)
 
    return createError("section " + getSecIndexForError(*this, Sec) +
 
                       " has invalid sh_entsize: expected " + Twine(sizeof(T)) +
 
                       ", but got " + Twine(Sec.sh_entsize));
 
 
 
  uintX_t Offset = Sec.sh_offset;
 
  uintX_t Size = Sec.sh_size;
 
 
 
  if (Size % sizeof(T))
 
    return createError("section " + getSecIndexForError(*this, Sec) +
 
                       " has an invalid sh_size (" + Twine(Size) +
 
                       ") which is not a multiple of its sh_entsize (" +
 
                       Twine(Sec.sh_entsize) + ")");
 
  if (std::numeric_limits<uintX_t>::max() - Offset < Size)
 
    return createError("section " + getSecIndexForError(*this, Sec) +
 
                       " has a sh_offset (0x" + Twine::utohexstr(Offset) +
 
                       ") + sh_size (0x" + Twine::utohexstr(Size) +
 
                       ") that cannot be represented");
 
  if (Offset + Size > Buf.size())
 
    return createError("section " + getSecIndexForError(*this, Sec) +
 
                       " has a sh_offset (0x" + Twine::utohexstr(Offset) +
 
                       ") + sh_size (0x" + Twine::utohexstr(Size) +
 
                       ") that is greater than the file size (0x" +
 
                       Twine::utohexstr(Buf.size()) + ")");
 
 
 
  if (Offset % alignof(T))
 
    // TODO: this error is untested.
 
    return createError("unaligned data");
 
 
 
  const T *Start = reinterpret_cast<const T *>(base() + Offset);
 
  return ArrayRef(Start, Size / sizeof(T));
 
}
 
 
 
template <class ELFT>
 
Expected<ArrayRef<uint8_t>>
 
ELFFile<ELFT>::getSegmentContents(const Elf_Phdr &Phdr) const {
 
  uintX_t Offset = Phdr.p_offset;
 
  uintX_t Size = Phdr.p_filesz;
 
 
 
  if (std::numeric_limits<uintX_t>::max() - Offset < Size)
 
    return createError("program header " + getPhdrIndexForError(*this, Phdr) +
 
                       " has a p_offset (0x" + Twine::utohexstr(Offset) +
 
                       ") + p_filesz (0x" + Twine::utohexstr(Size) +
 
                       ") that cannot be represented");
 
  if (Offset + Size > Buf.size())
 
    return createError("program header  " + getPhdrIndexForError(*this, Phdr) +
 
                       " has a p_offset (0x" + Twine::utohexstr(Offset) +
 
                       ") + p_filesz (0x" + Twine::utohexstr(Size) +
 
                       ") that is greater than the file size (0x" +
 
                       Twine::utohexstr(Buf.size()) + ")");
 
  return ArrayRef(base() + Offset, Size);
 
}
 
 
 
template <class ELFT>
 
Expected<ArrayRef<uint8_t>>
 
ELFFile<ELFT>::getSectionContents(const Elf_Shdr &Sec) const {
 
  return getSectionContentsAsArray<uint8_t>(Sec);
 
}
 
 
 
template <class ELFT>
 
StringRef ELFFile<ELFT>::getRelocationTypeName(uint32_t Type) const {
 
  return getELFRelocationTypeName(getHeader().e_machine, Type);
 
}
 
 
 
template <class ELFT>
 
void ELFFile<ELFT>::getRelocationTypeName(uint32_t Type,
 
                                          SmallVectorImpl<char> &Result) const {
 
  if (!isMipsELF64()) {
 
    StringRef Name = getRelocationTypeName(Type);
 
    Result.append(Name.begin(), Name.end());
 
  } else {
 
    // The Mips N64 ABI allows up to three operations to be specified per
 
    // relocation record. Unfortunately there's no easy way to test for the
 
    // presence of N64 ELFs as they have no special flag that identifies them
 
    // as being N64. We can safely assume at the moment that all Mips
 
    // ELFCLASS64 ELFs are N64. New Mips64 ABIs should provide enough
 
    // information to disambiguate between old vs new ABIs.
 
    uint8_t Type1 = (Type >> 0) & 0xFF;
 
    uint8_t Type2 = (Type >> 8) & 0xFF;
 
    uint8_t Type3 = (Type >> 16) & 0xFF;
 
 
 
    // Concat all three relocation type names.
 
    StringRef Name = getRelocationTypeName(Type1);
 
    Result.append(Name.begin(), Name.end());
 
 
 
    Name = getRelocationTypeName(Type2);
 
    Result.append(1, '/');
 
    Result.append(Name.begin(), Name.end());
 
 
 
    Name = getRelocationTypeName(Type3);
 
    Result.append(1, '/');
 
    Result.append(Name.begin(), Name.end());
 
  }
 
}
 
 
 
template <class ELFT>
 
uint32_t ELFFile<ELFT>::getRelativeRelocationType() const {
 
  return getELFRelativeRelocationType(getHeader().e_machine);
 
}
 
 
 
template <class ELFT>
 
Expected<SmallVector<std::optional<VersionEntry>, 0>>
 
ELFFile<ELFT>::loadVersionMap(const Elf_Shdr *VerNeedSec,
 
                              const Elf_Shdr *VerDefSec) const {
 
  SmallVector<std::optional<VersionEntry>, 0> VersionMap;
 
 
 
  // The first two version indexes are reserved.
 
  // Index 0 is VER_NDX_LOCAL, index 1 is VER_NDX_GLOBAL.
 
  VersionMap.push_back(VersionEntry());
 
  VersionMap.push_back(VersionEntry());
 
 
 
  auto InsertEntry = [&](unsigned N, StringRef Version, bool IsVerdef) {
 
    if (N >= VersionMap.size())
 
      VersionMap.resize(N + 1);
 
    VersionMap[N] = {std::string(Version), IsVerdef};
 
  };
 
 
 
  if (VerDefSec) {
 
    Expected<std::vector<VerDef>> Defs = getVersionDefinitions(*VerDefSec);
 
    if (!Defs)
 
      return Defs.takeError();
 
    for (const VerDef &Def : *Defs)
 
      InsertEntry(Def.Ndx & ELF::VERSYM_VERSION, Def.Name, true);
 
  }
 
 
 
  if (VerNeedSec) {
 
    Expected<std::vector<VerNeed>> Deps = getVersionDependencies(*VerNeedSec);
 
    if (!Deps)
 
      return Deps.takeError();
 
    for (const VerNeed &Dep : *Deps)
 
      for (const VernAux &Aux : Dep.AuxV)
 
        InsertEntry(Aux.Other & ELF::VERSYM_VERSION, Aux.Name, false);
 
  }
 
 
 
  return VersionMap;
 
}
 
 
 
template <class ELFT>
 
Expected<const typename ELFT::Sym *>
 
ELFFile<ELFT>::getRelocationSymbol(const Elf_Rel &Rel,
 
                                   const Elf_Shdr *SymTab) const {
 
  uint32_t Index = Rel.getSymbol(isMips64EL());
 
  if (Index == 0)
 
    return nullptr;
 
  return getEntry<Elf_Sym>(*SymTab, Index);
 
}
 
 
 
template <class ELFT>
 
Expected<StringRef>
 
ELFFile<ELFT>::getSectionStringTable(Elf_Shdr_Range Sections,
 
                                     WarningHandler WarnHandler) const {
 
  uint32_t Index = getHeader().e_shstrndx;
 
  if (Index == ELF::SHN_XINDEX) {
 
    // If the section name string table section index is greater than
 
    // or equal to SHN_LORESERVE, then the actual index of the section name
 
    // string table section is contained in the sh_link field of the section
 
    // header at index 0.
 
    if (Sections.empty())
 
      return createError(
 
          "e_shstrndx == SHN_XINDEX, but the section header table is empty");
 
 
 
    Index = Sections[0].sh_link;
 
  }
 
 
 
  // There is no section name string table. Return FakeSectionStrings which
 
  // is non-empty if we have created fake sections.
 
  if (!Index)
 
    return FakeSectionStrings;
 
 
 
  if (Index >= Sections.size())
 
    return createError("section header string table index " + Twine(Index) +
 
                       " does not exist");
 
  return getStringTable(Sections[Index], WarnHandler);
 
}
 
 
 
/// This function finds the number of dynamic symbols using a GNU hash table.
 
///
 
/// @param Table The GNU hash table for .dynsym.
 
template <class ELFT>
 
static Expected<uint64_t>
 
getDynSymtabSizeFromGnuHash(const typename ELFT::GnuHash &Table,
 
                            const void *BufEnd) {
 
  using Elf_Word = typename ELFT::Word;
 
  if (Table.nbuckets == 0)
 
    return Table.symndx + 1;
 
  uint64_t LastSymIdx = 0;
 
  // Find the index of the first symbol in the last chain.
 
  for (Elf_Word Val : Table.buckets())
 
    LastSymIdx = std::max(LastSymIdx, (uint64_t)Val);
 
  const Elf_Word *It =
 
      reinterpret_cast<const Elf_Word *>(Table.values(LastSymIdx).end());
 
  // Locate the end of the chain to find the last symbol index.
 
  while (It < BufEnd && (*It & 1) == 0) {
 
    ++LastSymIdx;
 
    ++It;
 
  }
 
  if (It >= BufEnd) {
 
    return createStringError(
 
        object_error::parse_failed,
 
        "no terminator found for GNU hash section before buffer end");
 
  }
 
  return LastSymIdx + 1;
 
}
 
 
 
/// This function determines the number of dynamic symbols. It reads section
 
/// headers first. If section headers are not available, the number of
 
/// symbols will be inferred by parsing dynamic hash tables.
 
template <class ELFT>
 
Expected<uint64_t> ELFFile<ELFT>::getDynSymtabSize() const {
 
  // Read .dynsym section header first if available.
 
  Expected<Elf_Shdr_Range> SectionsOrError = sections();
 
  if (!SectionsOrError)
 
    return SectionsOrError.takeError();
 
  for (const Elf_Shdr &Sec : *SectionsOrError) {
 
    if (Sec.sh_type == ELF::SHT_DYNSYM) {
 
      if (Sec.sh_size % Sec.sh_entsize != 0) {
 
        return createStringError(object_error::parse_failed,
 
                                 "SHT_DYNSYM section has sh_size (" +
 
                                     Twine(Sec.sh_size) + ") % sh_entsize (" +
 
                                     Twine(Sec.sh_entsize) + ") that is not 0");
 
      }
 
      return Sec.sh_size / Sec.sh_entsize;
 
    }
 
  }
 
 
 
  if (!SectionsOrError->empty()) {
 
    // Section headers are available but .dynsym header is not found.
 
    // Return 0 as .dynsym does not exist.
 
    return 0;
 
  }
 
 
 
  // Section headers do not exist. Falling back to infer
 
  // upper bound of .dynsym from .gnu.hash and .hash.
 
  Expected<Elf_Dyn_Range> DynTable = dynamicEntries();
 
  if (!DynTable)
 
    return DynTable.takeError();
 
  std::optional<uint64_t> ElfHash;
 
  std::optional<uint64_t> ElfGnuHash;
 
  for (const Elf_Dyn &Entry : *DynTable) {
 
    switch (Entry.d_tag) {
 
    case ELF::DT_HASH:
 
      ElfHash = Entry.d_un.d_ptr;
 
      break;
 
    case ELF::DT_GNU_HASH:
 
      ElfGnuHash = Entry.d_un.d_ptr;
 
      break;
 
    }
 
  }
 
  if (ElfGnuHash) {
 
    Expected<const uint8_t *> TablePtr = toMappedAddr(*ElfGnuHash);
 
    if (!TablePtr)
 
      return TablePtr.takeError();
 
    const Elf_GnuHash *Table =
 
        reinterpret_cast<const Elf_GnuHash *>(TablePtr.get());
 
    return getDynSymtabSizeFromGnuHash<ELFT>(*Table, this->Buf.bytes_end());
 
  }
 
 
 
  // Search SYSV hash table to try to find the upper bound of dynsym.
 
  if (ElfHash) {
 
    Expected<const uint8_t *> TablePtr = toMappedAddr(*ElfHash);
 
    if (!TablePtr)
 
      return TablePtr.takeError();
 
    const Elf_Hash *Table = reinterpret_cast<const Elf_Hash *>(TablePtr.get());
 
    return Table->nchain;
 
  }
 
  return 0;
 
}
 
 
 
template <class ELFT> ELFFile<ELFT>::ELFFile(StringRef Object) : Buf(Object) {}
 
 
 
template <class ELFT>
 
Expected<ELFFile<ELFT>> ELFFile<ELFT>::create(StringRef Object) {
 
  if (sizeof(Elf_Ehdr) > Object.size())
 
    return createError("invalid buffer: the size (" + Twine(Object.size()) +
 
                       ") is smaller than an ELF header (" +
 
                       Twine(sizeof(Elf_Ehdr)) + ")");
 
  return ELFFile(Object);
 
}
 
 
 
/// Used by llvm-objdump -d (which needs sections for disassembly) to
 
/// disassemble objects without a section header table (e.g. ET_CORE objects
 
/// analyzed by linux perf or ET_EXEC with llvm-strip --strip-sections).
 
template <class ELFT> void ELFFile<ELFT>::createFakeSections() {
 
  if (!FakeSections.empty())
 
    return;
 
  auto PhdrsOrErr = program_headers();
 
  if (!PhdrsOrErr)
 
    return;
 
 
 
  FakeSectionStrings += '\0';
 
  for (auto [Idx, Phdr] : llvm::enumerate(*PhdrsOrErr)) {
 
    if (Phdr.p_type != ELF::PT_LOAD || !(Phdr.p_flags & ELF::PF_X))
 
      continue;
 
    Elf_Shdr FakeShdr = {};
 
    FakeShdr.sh_type = ELF::SHT_PROGBITS;
 
    FakeShdr.sh_flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
 
    FakeShdr.sh_addr = Phdr.p_vaddr;
 
    FakeShdr.sh_size = Phdr.p_memsz;
 
    FakeShdr.sh_offset = Phdr.p_offset;
 
    // Create a section name based on the p_type and index.
 
    FakeShdr.sh_name = FakeSectionStrings.size();
 
    FakeSectionStrings += ("PT_LOAD#" + Twine(Idx)).str();
 
    FakeSectionStrings += '\0';
 
    FakeSections.push_back(FakeShdr);
 
  }
 
}
 
 
 
template <class ELFT>
 
Expected<typename ELFT::ShdrRange> ELFFile<ELFT>::sections() const {
 
  const uintX_t SectionTableOffset = getHeader().e_shoff;
 
  if (SectionTableOffset == 0) {
 
    if (!FakeSections.empty())
 
      return ArrayRef(FakeSections.data(), FakeSections.size());
 
    return ArrayRef<Elf_Shdr>();
 
  }
 
 
 
  if (getHeader().e_shentsize != sizeof(Elf_Shdr))
 
    return createError("invalid e_shentsize in ELF header: " +
 
                       Twine(getHeader().e_shentsize));
 
 
 
  const uint64_t FileSize = Buf.size();
 
  if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize ||
 
      SectionTableOffset + (uintX_t)sizeof(Elf_Shdr) < SectionTableOffset)
 
    return createError(
 
        "section header table goes past the end of the file: e_shoff = 0x" +
 
        Twine::utohexstr(SectionTableOffset));
 
 
 
  // Invalid address alignment of section headers
 
  if (SectionTableOffset & (alignof(Elf_Shdr) - 1))
 
    // TODO: this error is untested.
 
    return createError("invalid alignment of section headers");
 
 
 
  const Elf_Shdr *First =
 
      reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
 
 
 
  uintX_t NumSections = getHeader().e_shnum;
 
  if (NumSections == 0)
 
    NumSections = First->sh_size;
 
 
 
  if (NumSections > UINT64_MAX / sizeof(Elf_Shdr))
 
    return createError("invalid number of sections specified in the NULL "
 
                       "section's sh_size field (" +
 
                       Twine(NumSections) + ")");
 
 
 
  const uint64_t SectionTableSize = NumSections * sizeof(Elf_Shdr);
 
  if (SectionTableOffset + SectionTableSize < SectionTableOffset)
 
    return createError(
 
        "invalid section header table offset (e_shoff = 0x" +
 
        Twine::utohexstr(SectionTableOffset) +
 
        ") or invalid number of sections specified in the first section "
 
        "header's sh_size field (0x" +
 
        Twine::utohexstr(NumSections) + ")");
 
 
 
  // Section table goes past end of file!
 
  if (SectionTableOffset + SectionTableSize > FileSize)
 
    return createError("section table goes past the end of file");
 
  return ArrayRef(First, NumSections);
 
}
 
 
 
template <class ELFT>
 
template <typename T>
 
Expected<const T *> ELFFile<ELFT>::getEntry(uint32_t Section,
 
                                            uint32_t Entry) const {
 
  auto SecOrErr = getSection(Section);
 
  if (!SecOrErr)
 
    return SecOrErr.takeError();
 
  return getEntry<T>(**SecOrErr, Entry);
 
}
 
 
 
template <class ELFT>
 
template <typename T>
 
Expected<const T *> ELFFile<ELFT>::getEntry(const Elf_Shdr &Section,
 
                                            uint32_t Entry) const {
 
  Expected<ArrayRef<T>> EntriesOrErr = getSectionContentsAsArray<T>(Section);
 
  if (!EntriesOrErr)
 
    return EntriesOrErr.takeError();
 
 
 
  ArrayRef<T> Arr = *EntriesOrErr;
 
  if (Entry >= Arr.size())
 
    return createError(
 
        "can't read an entry at 0x" +
 
        Twine::utohexstr(Entry * static_cast<uint64_t>(sizeof(T))) +
 
        ": it goes past the end of the section (0x" +
 
        Twine::utohexstr(Section.sh_size) + ")");
 
  return &Arr[Entry];
 
}
 
 
 
template <typename ELFT>
 
Expected<StringRef> ELFFile<ELFT>::getSymbolVersionByIndex(
 
    uint32_t SymbolVersionIndex, bool &IsDefault,
 
    SmallVector<std::optional<VersionEntry>, 0> &VersionMap,
 
    std::optional<bool> IsSymHidden) const {
 
  size_t VersionIndex = SymbolVersionIndex & llvm::ELF::VERSYM_VERSION;
 
 
 
  // Special markers for unversioned symbols.
 
  if (VersionIndex == llvm::ELF::VER_NDX_LOCAL ||
 
      VersionIndex == llvm::ELF::VER_NDX_GLOBAL) {
 
    IsDefault = false;
 
    return "";
 
  }
 
 
 
  // Lookup this symbol in the version table.
 
  if (VersionIndex >= VersionMap.size() || !VersionMap[VersionIndex])
 
    return createError("SHT_GNU_versym section refers to a version index " +
 
                       Twine(VersionIndex) + " which is missing");
 
 
 
  const VersionEntry &Entry = *VersionMap[VersionIndex];
 
  // A default version (@@) is only available for defined symbols.
 
  if (!Entry.IsVerDef || IsSymHidden.value_or(false))
 
    IsDefault = false;
 
  else
 
    IsDefault = !(SymbolVersionIndex & llvm::ELF::VERSYM_HIDDEN);
 
  return Entry.Name.c_str();
 
}
 
 
 
template <class ELFT>
 
Expected<std::vector<VerDef>>
 
ELFFile<ELFT>::getVersionDefinitions(const Elf_Shdr &Sec) const {
 
  Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Sec);
 
  if (!StrTabOrErr)
 
    return StrTabOrErr.takeError();
 
 
 
  Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
 
  if (!ContentsOrErr)
 
    return createError("cannot read content of " + describe(*this, Sec) + ": " +
 
                       toString(ContentsOrErr.takeError()));
 
 
 
  const uint8_t *Start = ContentsOrErr->data();
 
  const uint8_t *End = Start + ContentsOrErr->size();
 
 
 
  auto ExtractNextAux = [&](const uint8_t *&VerdauxBuf,
 
                            unsigned VerDefNdx) -> Expected<VerdAux> {
 
    if (VerdauxBuf + sizeof(Elf_Verdaux) > End)
 
      return createError("invalid " + describe(*this, Sec) +
 
                         ": version definition " + Twine(VerDefNdx) +
 
                         " refers to an auxiliary entry that goes past the end "
 
                         "of the section");
 
 
 
    auto *Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
 
    VerdauxBuf += Verdaux->vda_next;
 
 
 
    VerdAux Aux;
 
    Aux.Offset = VerdauxBuf - Start;
 
    if (Verdaux->vda_name <= StrTabOrErr->size())
 
      Aux.Name = std::string(StrTabOrErr->drop_front(Verdaux->vda_name));
 
    else
 
      Aux.Name = ("<invalid vda_name: " + Twine(Verdaux->vda_name) + ">").str();
 
    return Aux;
 
  };
 
 
 
  std::vector<VerDef> Ret;
 
  const uint8_t *VerdefBuf = Start;
 
  for (unsigned I = 1; I <= /*VerDefsNum=*/Sec.sh_info; ++I) {
 
    if (VerdefBuf + sizeof(Elf_Verdef) > End)
 
      return createError("invalid " + describe(*this, Sec) +
 
                         ": version definition " + Twine(I) +
 
                         " goes past the end of the section");
 
 
 
    if (reinterpret_cast<uintptr_t>(VerdefBuf) % sizeof(uint32_t) != 0)
 
      return createError(
 
          "invalid " + describe(*this, Sec) +
 
          ": found a misaligned version definition entry at offset 0x" +
 
          Twine::utohexstr(VerdefBuf - Start));
 
 
 
    unsigned Version = *reinterpret_cast<const Elf_Half *>(VerdefBuf);
 
    if (Version != 1)
 
      return createError("unable to dump " + describe(*this, Sec) +
 
                         ": version " + Twine(Version) +
 
                         " is not yet supported");
 
 
 
    const Elf_Verdef *D = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
 
    VerDef &VD = *Ret.emplace(Ret.end());
 
    VD.Offset = VerdefBuf - Start;
 
    VD.Version = D->vd_version;
 
    VD.Flags = D->vd_flags;
 
    VD.Ndx = D->vd_ndx;
 
    VD.Cnt = D->vd_cnt;
 
    VD.Hash = D->vd_hash;
 
 
 
    const uint8_t *VerdauxBuf = VerdefBuf + D->vd_aux;
 
    for (unsigned J = 0; J < D->vd_cnt; ++J) {
 
      if (reinterpret_cast<uintptr_t>(VerdauxBuf) % sizeof(uint32_t) != 0)
 
        return createError("invalid " + describe(*this, Sec) +
 
                           ": found a misaligned auxiliary entry at offset 0x" +
 
                           Twine::utohexstr(VerdauxBuf - Start));
 
 
 
      Expected<VerdAux> AuxOrErr = ExtractNextAux(VerdauxBuf, I);
 
      if (!AuxOrErr)
 
        return AuxOrErr.takeError();
 
 
 
      if (J == 0)
 
        VD.Name = AuxOrErr->Name;
 
      else
 
        VD.AuxV.push_back(*AuxOrErr);
 
    }
 
 
 
    VerdefBuf += D->vd_next;
 
  }
 
 
 
  return Ret;
 
}
 
 
 
template <class ELFT>
 
Expected<std::vector<VerNeed>>
 
ELFFile<ELFT>::getVersionDependencies(const Elf_Shdr &Sec,
 
                                      WarningHandler WarnHandler) const {
 
  StringRef StrTab;
 
  Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Sec);
 
  if (!StrTabOrErr) {
 
    if (Error E = WarnHandler(toString(StrTabOrErr.takeError())))
 
      return std::move(E);
 
  } else {
 
    StrTab = *StrTabOrErr;
 
  }
 
 
 
  Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
 
  if (!ContentsOrErr)
 
    return createError("cannot read content of " + describe(*this, Sec) + ": " +
 
                       toString(ContentsOrErr.takeError()));
 
 
 
  const uint8_t *Start = ContentsOrErr->data();
 
  const uint8_t *End = Start + ContentsOrErr->size();
 
  const uint8_t *VerneedBuf = Start;
 
 
 
  std::vector<VerNeed> Ret;
 
  for (unsigned I = 1; I <= /*VerneedNum=*/Sec.sh_info; ++I) {
 
    if (VerneedBuf + sizeof(Elf_Verdef) > End)
 
      return createError("invalid " + describe(*this, Sec) +
 
                         ": version dependency " + Twine(I) +
 
                         " goes past the end of the section");
 
 
 
    if (reinterpret_cast<uintptr_t>(VerneedBuf) % sizeof(uint32_t) != 0)
 
      return createError(
 
          "invalid " + describe(*this, Sec) +
 
          ": found a misaligned version dependency entry at offset 0x" +
 
          Twine::utohexstr(VerneedBuf - Start));
 
 
 
    unsigned Version = *reinterpret_cast<const Elf_Half *>(VerneedBuf);
 
    if (Version != 1)
 
      return createError("unable to dump " + describe(*this, Sec) +
 
                         ": version " + Twine(Version) +
 
                         " is not yet supported");
 
 
 
    const Elf_Verneed *Verneed =
 
        reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
 
 
 
    VerNeed &VN = *Ret.emplace(Ret.end());
 
    VN.Version = Verneed->vn_version;
 
    VN.Cnt = Verneed->vn_cnt;
 
    VN.Offset = VerneedBuf - Start;
 
 
 
    if (Verneed->vn_file < StrTab.size())
 
      VN.File = std::string(StrTab.data() + Verneed->vn_file);
 
    else
 
      VN.File = ("<corrupt vn_file: " + Twine(Verneed->vn_file) + ">").str();
 
 
 
    const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
 
    for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
 
      if (reinterpret_cast<uintptr_t>(VernauxBuf) % sizeof(uint32_t) != 0)
 
        return createError("invalid " + describe(*this, Sec) +
 
                           ": found a misaligned auxiliary entry at offset 0x" +
 
                           Twine::utohexstr(VernauxBuf - Start));
 
 
 
      if (VernauxBuf + sizeof(Elf_Vernaux) > End)
 
        return createError(
 
            "invalid " + describe(*this, Sec) + ": version dependency " +
 
            Twine(I) +
 
            " refers to an auxiliary entry that goes past the end "
 
            "of the section");
 
 
 
      const Elf_Vernaux *Vernaux =
 
          reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
 
 
 
      VernAux &Aux = *VN.AuxV.emplace(VN.AuxV.end());
 
      Aux.Hash = Vernaux->vna_hash;
 
      Aux.Flags = Vernaux->vna_flags;
 
      Aux.Other = Vernaux->vna_other;
 
      Aux.Offset = VernauxBuf - Start;
 
      if (StrTab.size() <= Vernaux->vna_name)
 
        Aux.Name = "<corrupt>";
 
      else
 
        Aux.Name = std::string(StrTab.drop_front(Vernaux->vna_name));
 
 
 
      VernauxBuf += Vernaux->vna_next;
 
    }
 
    VerneedBuf += Verneed->vn_next;
 
  }
 
  return Ret;
 
}
 
 
 
template <class ELFT>
 
Expected<const typename ELFT::Shdr *>
 
ELFFile<ELFT>::getSection(uint32_t Index) const {
 
  auto TableOrErr = sections();
 
  if (!TableOrErr)
 
    return TableOrErr.takeError();
 
  return object::getSection<ELFT>(*TableOrErr, Index);
 
}
 
 
 
template <class ELFT>
 
Expected<StringRef>
 
ELFFile<ELFT>::getStringTable(const Elf_Shdr &Section,
 
                              WarningHandler WarnHandler) const {
 
  if (Section.sh_type != ELF::SHT_STRTAB)
 
    if (Error E = WarnHandler("invalid sh_type for string table section " +
 
                              getSecIndexForError(*this, Section) +
 
                              ": expected SHT_STRTAB, but got " +
 
                              object::getELFSectionTypeName(
 
                                  getHeader().e_machine, Section.sh_type)))
 
      return std::move(E);
 
 
 
  auto V = getSectionContentsAsArray<char>(Section);
 
  if (!V)
 
    return V.takeError();
 
  ArrayRef<char> Data = *V;
 
  if (Data.empty())
 
    return createError("SHT_STRTAB string table section " +
 
                       getSecIndexForError(*this, Section) + " is empty");
 
  if (Data.back() != '\0')
 
    return createError("SHT_STRTAB string table section " +
 
                       getSecIndexForError(*this, Section) +
 
                       " is non-null terminated");
 
  return StringRef(Data.begin(), Data.size());
 
}
 
 
 
template <class ELFT>
 
Expected<ArrayRef<typename ELFT::Word>>
 
ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section) const {
 
  auto SectionsOrErr = sections();
 
  if (!SectionsOrErr)
 
    return SectionsOrErr.takeError();
 
  return getSHNDXTable(Section, *SectionsOrErr);
 
}
 
 
 
template <class ELFT>
 
Expected<ArrayRef<typename ELFT::Word>>
 
ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section,
 
                             Elf_Shdr_Range Sections) const {
 
  assert(Section.sh_type == ELF::SHT_SYMTAB_SHNDX);
 
  auto VOrErr = getSectionContentsAsArray<Elf_Word>(Section);
 
  if (!VOrErr)
 
    return VOrErr.takeError();
 
  ArrayRef<Elf_Word> V = *VOrErr;
 
  auto SymTableOrErr = object::getSection<ELFT>(Sections, Section.sh_link);
 
  if (!SymTableOrErr)
 
    return SymTableOrErr.takeError();
 
  const Elf_Shdr &SymTable = **SymTableOrErr;
 
  if (SymTable.sh_type != ELF::SHT_SYMTAB &&
 
      SymTable.sh_type != ELF::SHT_DYNSYM)
 
    return createError(
 
        "SHT_SYMTAB_SHNDX section is linked with " +
 
        object::getELFSectionTypeName(getHeader().e_machine, SymTable.sh_type) +
 
        " section (expected SHT_SYMTAB/SHT_DYNSYM)");
 
 
 
  uint64_t Syms = SymTable.sh_size / sizeof(Elf_Sym);
 
  if (V.size() != Syms)
 
    return createError("SHT_SYMTAB_SHNDX has " + Twine(V.size()) +
 
                       " entries, but the symbol table associated has " +
 
                       Twine(Syms));
 
 
 
  return V;
 
}
 
 
 
template <class ELFT>
 
Expected<StringRef>
 
ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec) const {
 
  auto SectionsOrErr = sections();
 
  if (!SectionsOrErr)
 
    return SectionsOrErr.takeError();
 
  return getStringTableForSymtab(Sec, *SectionsOrErr);
 
}
 
 
 
template <class ELFT>
 
Expected<StringRef>
 
ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec,
 
                                       Elf_Shdr_Range Sections) const {
 
 
 
  if (Sec.sh_type != ELF::SHT_SYMTAB && Sec.sh_type != ELF::SHT_DYNSYM)
 
    return createError(
 
        "invalid sh_type for symbol table, expected SHT_SYMTAB or SHT_DYNSYM");
 
  Expected<const Elf_Shdr *> SectionOrErr =
 
      object::getSection<ELFT>(Sections, Sec.sh_link);
 
  if (!SectionOrErr)
 
    return SectionOrErr.takeError();
 
  return getStringTable(**SectionOrErr);
 
}
 
 
 
template <class ELFT>
 
Expected<StringRef>
 
ELFFile<ELFT>::getLinkAsStrtab(const typename ELFT::Shdr &Sec) const {
 
  Expected<const typename ELFT::Shdr *> StrTabSecOrErr =
 
      getSection(Sec.sh_link);
 
  if (!StrTabSecOrErr)
 
    return createError("invalid section linked to " + describe(*this, Sec) +
 
                       ": " + toString(StrTabSecOrErr.takeError()));
 
 
 
  Expected<StringRef> StrTabOrErr = getStringTable(**StrTabSecOrErr);
 
  if (!StrTabOrErr)
 
    return createError("invalid string table linked to " +
 
                       describe(*this, Sec) + ": " +
 
                       toString(StrTabOrErr.takeError()));
 
  return *StrTabOrErr;
 
}
 
 
 
template <class ELFT>
 
Expected<StringRef>
 
ELFFile<ELFT>::getSectionName(const Elf_Shdr &Section,
 
                              WarningHandler WarnHandler) const {
 
  auto SectionsOrErr = sections();
 
  if (!SectionsOrErr)
 
    return SectionsOrErr.takeError();
 
  auto Table = getSectionStringTable(*SectionsOrErr, WarnHandler);
 
  if (!Table)
 
    return Table.takeError();
 
  return getSectionName(Section, *Table);
 
}
 
 
 
template <class ELFT>
 
Expected<StringRef> ELFFile<ELFT>::getSectionName(const Elf_Shdr &Section,
 
                                                  StringRef DotShstrtab) const {
 
  uint32_t Offset = Section.sh_name;
 
  if (Offset == 0)
 
    return StringRef();
 
  if (Offset >= DotShstrtab.size())
 
    return createError("a section " + getSecIndexForError(*this, Section) +
 
                       " has an invalid sh_name (0x" +
 
                       Twine::utohexstr(Offset) +
 
                       ") offset which goes past the end of the "
 
                       "section name string table");
 
  return StringRef(DotShstrtab.data() + Offset);
 
}
 
 
 
/// This function returns the hash value for a symbol in the .dynsym section
 
/// Name of the API remains consistent as specified in the libelf
 
/// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
 
inline unsigned hashSysV(StringRef SymbolName) {
 
  unsigned h = 0, g;
 
  for (char C : SymbolName) {
 
    h = (h << 4) + C;
 
    g = h & 0xf0000000L;
 
    if (g != 0)
 
      h ^= g >> 24;
 
    h &= ~g;
 
  }
 
  return h;
 
}
 
 
 
/// This function returns the hash value for a symbol in the .dynsym section
 
/// for the GNU hash table. The implementation is defined in the GNU hash ABI.
 
/// REF : https://sourceware.org/git/?p=binutils-gdb.git;a=blob;f=bfd/elf.c#l222
 
inline uint32_t hashGnu(StringRef Name) {
 
  uint32_t H = 5381;
 
  for (uint8_t C : Name)
 
    H = (H << 5) + H + C;
 
  return H;
 
}
 
 
 
} // end namespace object
 
} // end namespace llvm
 
 
 
#endif // LLVM_OBJECT_ELF_H