//===- llvm/MC/MCTargetAsmParser.h - Target Assembly Parser -----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
 
#define LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
 
 
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/MC/MCExpr.h"
 
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
 
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
 
#include "llvm/MC/MCTargetOptions.h"
 
#include "llvm/MC/SubtargetFeature.h"
 
#include "llvm/Support/SMLoc.h"
 
#include <cstdint>
 
#include <memory>
 
 
 
namespace llvm {
 
 
 
class MCContext;
 
class MCInst;
 
class MCInstrInfo;
 
class MCRegister;
 
class MCStreamer;
 
class MCSubtargetInfo;
 
class MCSymbol;
 
template <typename T> class SmallVectorImpl;
 
 
 
using OperandVector = SmallVectorImpl<std::unique_ptr<MCParsedAsmOperand>>;
 
 
 
enum AsmRewriteKind {
 
  AOK_Align,          // Rewrite align as .align.
 
  AOK_EVEN,           // Rewrite even as .even.
 
  AOK_Emit,           // Rewrite _emit as .byte.
 
  AOK_CallInput,      // Rewrite in terms of ${N:P}.
 
  AOK_Input,          // Rewrite in terms of $N.
 
  AOK_Output,         // Rewrite in terms of $N.
 
  AOK_SizeDirective,  // Add a sizing directive (e.g., dword ptr).
 
  AOK_Label,          // Rewrite local labels.
 
  AOK_EndOfStatement, // Add EndOfStatement (e.g., "\n\t").
 
  AOK_Skip,           // Skip emission (e.g., offset/type operators).
 
  AOK_IntelExpr       // SizeDirective SymDisp [BaseReg + IndexReg * Scale + ImmDisp]
 
};
 
 
 
const char AsmRewritePrecedence [] = {
 
  2, // AOK_Align
 
  2, // AOK_EVEN
 
  2, // AOK_Emit
 
  3, // AOK_Input
 
  3, // AOK_CallInput
 
  3, // AOK_Output
 
  5, // AOK_SizeDirective
 
  1, // AOK_Label
 
  5, // AOK_EndOfStatement
 
  2, // AOK_Skip
 
  2  // AOK_IntelExpr
 
};
 
 
 
// Represnt the various parts which makes up an intel expression,
 
// used for emitting compound intel expressions
 
struct IntelExpr {
 
  bool NeedBracs;
 
  int64_t Imm;
 
  StringRef BaseReg;
 
  StringRef IndexReg;
 
  StringRef OffsetName;
 
  unsigned Scale;
 
 
 
  IntelExpr()
 
      : NeedBracs(false), Imm(0), BaseReg(StringRef()), IndexReg(StringRef()),
 
        OffsetName(StringRef()), Scale(1) {}
 
  // [BaseReg + IndexReg * ScaleExpression + OFFSET name + ImmediateExpression]
 
  IntelExpr(StringRef baseReg, StringRef indexReg, unsigned scale,
 
            StringRef offsetName, int64_t imm, bool needBracs)
 
      : NeedBracs(needBracs), Imm(imm), BaseReg(baseReg), IndexReg(indexReg),
 
        OffsetName(offsetName), Scale(1) {
 
    if (scale)
 
      Scale = scale;
 
  }
 
  bool hasBaseReg() const { return !BaseReg.empty(); }
 
  bool hasIndexReg() const { return !IndexReg.empty(); }
 
  bool hasRegs() const { return hasBaseReg() || hasIndexReg(); }
 
  bool hasOffset() const { return !OffsetName.empty(); }
 
  // Normally we won't emit immediates unconditionally,
 
  // unless we've got no other components
 
  bool emitImm() const { return !(hasRegs() || hasOffset()); }
 
  bool isValid() const {
 
    return (Scale == 1) ||
 
           (hasIndexReg() && (Scale == 2 || Scale == 4 || Scale == 8));
 
  }
 
};
 
 
 
struct AsmRewrite {
 
  AsmRewriteKind Kind;
 
  SMLoc Loc;
 
  unsigned Len;
 
  bool Done;
 
  int64_t Val;
 
  StringRef Label;
 
  IntelExpr IntelExp;
 
  bool IntelExpRestricted;
 
 
 
public:
 
  AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len = 0, int64_t val = 0,
 
             bool Restricted = false)
 
      : Kind(kind), Loc(loc), Len(len), Done(false), Val(val) {
 
    IntelExpRestricted = Restricted;
 
  }
 
  AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len, StringRef label)
 
    : AsmRewrite(kind, loc, len) { Label = label; }
 
  AsmRewrite(SMLoc loc, unsigned len, IntelExpr exp)
 
    : AsmRewrite(AOK_IntelExpr, loc, len) { IntelExp = exp; }
 
};
 
 
 
struct ParseInstructionInfo {
 
  SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
 
 
 
  ParseInstructionInfo() = default;
 
  ParseInstructionInfo(SmallVectorImpl<AsmRewrite> *rewrites)
 
    : AsmRewrites(rewrites) {}
 
};
 
 
 
enum OperandMatchResultTy {
 
  MatchOperand_Success,  // operand matched successfully
 
  MatchOperand_NoMatch,  // operand did not match
 
  MatchOperand_ParseFail // operand matched but had errors
 
};
 
 
 
enum class DiagnosticPredicateTy {
 
  Match,
 
  NearMatch,
 
  NoMatch,
 
};
 
 
 
// When an operand is parsed, the assembler will try to iterate through a set of
 
// possible operand classes that the operand might match and call the
 
// corresponding PredicateMethod to determine that.
 
//
 
// If there are two AsmOperands that would give a specific diagnostic if there
 
// is no match, there is currently no mechanism to distinguish which operand is
 
// a closer match. The DiagnosticPredicate distinguishes between 'completely
 
// no match' and 'near match', so the assembler can decide whether to give a
 
// specific diagnostic, or use 'InvalidOperand' and continue to find a
 
// 'better matching' diagnostic.
 
//
 
// For example:
 
//    opcode opnd0, onpd1, opnd2
 
//
 
// where:
 
//    opnd2 could be an 'immediate of range [-8, 7]'
 
//    opnd2 could be a  'register + shift/extend'.
 
//
 
// If opnd2 is a valid register, but with a wrong shift/extend suffix, it makes
 
// little sense to give a diagnostic that the operand should be an immediate
 
// in range [-8, 7].
 
//
 
// This is a light-weight alternative to the 'NearMissInfo' approach
 
// below which collects *all* possible diagnostics. This alternative
 
// is optional and fully backward compatible with existing
 
// PredicateMethods that return a 'bool' (match or no match).
 
struct DiagnosticPredicate {
 
  DiagnosticPredicateTy Type;
 
 
 
  explicit DiagnosticPredicate(bool Match)
 
      : Type(Match ? DiagnosticPredicateTy::Match
 
                   : DiagnosticPredicateTy::NearMatch) {}
 
  DiagnosticPredicate(DiagnosticPredicateTy T) : Type(T) {}
 
  DiagnosticPredicate(const DiagnosticPredicate &) = default;
 
  DiagnosticPredicate& operator=(const DiagnosticPredicate &) = default;
 
 
 
  operator bool() const { return Type == DiagnosticPredicateTy::Match; }
 
  bool isMatch() const { return Type == DiagnosticPredicateTy::Match; }
 
  bool isNearMatch() const { return Type == DiagnosticPredicateTy::NearMatch; }
 
  bool isNoMatch() const { return Type == DiagnosticPredicateTy::NoMatch; }
 
};
 
 
 
// When matching of an assembly instruction fails, there may be multiple
 
// encodings that are close to being a match. It's often ambiguous which one
 
// the programmer intended to use, so we want to report an error which mentions
 
// each of these "near-miss" encodings. This struct contains information about
 
// one such encoding, and why it did not match the parsed instruction.
 
class NearMissInfo {
 
public:
 
  enum NearMissKind {
 
    NoNearMiss,
 
    NearMissOperand,
 
    NearMissFeature,
 
    NearMissPredicate,
 
    NearMissTooFewOperands,
 
  };
 
 
 
  // The encoding is valid for the parsed assembly string. This is only used
 
  // internally to the table-generated assembly matcher.
 
  static NearMissInfo getSuccess() { return NearMissInfo(); }
 
 
 
  // The instruction encoding is not valid because it requires some target
 
  // features that are not currently enabled. MissingFeatures has a bit set for
 
  // each feature that the encoding needs but which is not enabled.
 
  static NearMissInfo getMissedFeature(const FeatureBitset &MissingFeatures) {
 
    NearMissInfo Result;
 
    Result.Kind = NearMissFeature;
 
    Result.Features = MissingFeatures;
 
    return Result;
 
  }
 
 
 
  // The instruction encoding is not valid because the target-specific
 
  // predicate function returned an error code. FailureCode is the
 
  // target-specific error code returned by the predicate.
 
  static NearMissInfo getMissedPredicate(unsigned FailureCode) {
 
    NearMissInfo Result;
 
    Result.Kind = NearMissPredicate;
 
    Result.PredicateError = FailureCode;
 
    return Result;
 
  }
 
 
 
  // The instruction encoding is not valid because one (and only one) parsed
 
  // operand is not of the correct type. OperandError is the error code
 
  // relating to the operand class expected by the encoding. OperandClass is
 
  // the type of the expected operand. Opcode is the opcode of the encoding.
 
  // OperandIndex is the index into the parsed operand list.
 
  static NearMissInfo getMissedOperand(unsigned OperandError,
 
                                       unsigned OperandClass, unsigned Opcode,
 
                                       unsigned OperandIndex) {
 
    NearMissInfo Result;
 
    Result.Kind = NearMissOperand;
 
    Result.MissedOperand.Error = OperandError;
 
    Result.MissedOperand.Class = OperandClass;
 
    Result.MissedOperand.Opcode = Opcode;
 
    Result.MissedOperand.Index = OperandIndex;
 
    return Result;
 
  }
 
 
 
  // The instruction encoding is not valid because it expects more operands
 
  // than were parsed. OperandClass is the class of the expected operand that
 
  // was not provided. Opcode is the instruction encoding.
 
  static NearMissInfo getTooFewOperands(unsigned OperandClass,
 
                                        unsigned Opcode) {
 
    NearMissInfo Result;
 
    Result.Kind = NearMissTooFewOperands;
 
    Result.TooFewOperands.Class = OperandClass;
 
    Result.TooFewOperands.Opcode = Opcode;
 
    return Result;
 
  }
 
 
 
  operator bool() const { return Kind != NoNearMiss; }
 
 
 
  NearMissKind getKind() const { return Kind; }
 
 
 
  // Feature flags required by the instruction, that the current target does
 
  // not have.
 
  const FeatureBitset& getFeatures() const {
 
    assert(Kind == NearMissFeature);
 
    return Features;
 
  }
 
  // Error code returned by the target predicate when validating this
 
  // instruction encoding.
 
  unsigned getPredicateError() const {
 
    assert(Kind == NearMissPredicate);
 
    return PredicateError;
 
  }
 
  // MatchClassKind of the operand that we expected to see.
 
  unsigned getOperandClass() const {
 
    assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
 
    return MissedOperand.Class;
 
  }
 
  // Opcode of the encoding we were trying to match.
 
  unsigned getOpcode() const {
 
    assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
 
    return MissedOperand.Opcode;
 
  }
 
  // Error code returned when validating the operand.
 
  unsigned getOperandError() const {
 
    assert(Kind == NearMissOperand);
 
    return MissedOperand.Error;
 
  }
 
  // Index of the actual operand we were trying to match in the list of parsed
 
  // operands.
 
  unsigned getOperandIndex() const {
 
    assert(Kind == NearMissOperand);
 
    return MissedOperand.Index;
 
  }
 
 
 
private:
 
  NearMissKind Kind;
 
 
 
  // These two structs share a common prefix, so we can safely rely on the fact
 
  // that they overlap in the union.
 
  struct MissedOpInfo {
 
    unsigned Class;
 
    unsigned Opcode;
 
    unsigned Error;
 
    unsigned Index;
 
  };
 
 
 
  struct TooFewOperandsInfo {
 
    unsigned Class;
 
    unsigned Opcode;
 
  };
 
 
 
  union {
 
    FeatureBitset Features;
 
    unsigned PredicateError;
 
    MissedOpInfo MissedOperand;
 
    TooFewOperandsInfo TooFewOperands;
 
  };
 
 
 
  NearMissInfo() : Kind(NoNearMiss) {}
 
};
 
 
 
/// MCTargetAsmParser - Generic interface to target specific assembly parsers.
 
class MCTargetAsmParser : public MCAsmParserExtension {
 
public:
 
  enum MatchResultTy {
 
    Match_InvalidOperand,
 
    Match_InvalidTiedOperand,
 
    Match_MissingFeature,
 
    Match_MnemonicFail,
 
    Match_Success,
 
    Match_NearMisses,
 
    FIRST_TARGET_MATCH_RESULT_TY
 
  };
 
 
 
protected: // Can only create subclasses.
 
  MCTargetAsmParser(MCTargetOptions const &, const MCSubtargetInfo &STI,
 
                    const MCInstrInfo &MII);
 
 
 
  /// Create a copy of STI and return a non-const reference to it.
 
  MCSubtargetInfo ©STI();
 
 
 
  /// AvailableFeatures - The current set of available features.
 
  FeatureBitset AvailableFeatures;
 
 
 
  /// ParsingMSInlineAsm - Are we parsing ms-style inline assembly?
 
  bool ParsingMSInlineAsm = false;
 
 
 
  /// SemaCallback - The Sema callback implementation.  Must be set when parsing
 
  /// ms-style inline assembly.
 
  MCAsmParserSemaCallback *SemaCallback = nullptr;
 
 
 
  /// Set of options which affects instrumentation of inline assembly.
 
  MCTargetOptions MCOptions;
 
 
 
  /// Current STI.
 
  const MCSubtargetInfo *STI;
 
 
 
  const MCInstrInfo &MII;
 
 
 
public:
 
  MCTargetAsmParser(const MCTargetAsmParser &) = delete;
 
  MCTargetAsmParser &operator=(const MCTargetAsmParser &) = delete;
 
 
 
  ~MCTargetAsmParser() override;
 
 
 
  const MCSubtargetInfo &getSTI() const;
 
 
 
  const FeatureBitset& getAvailableFeatures() const {
 
    return AvailableFeatures;
 
  }
 
  void setAvailableFeatures(const FeatureBitset& Value) {
 
    AvailableFeatures = Value;
 
  }
 
 
 
  bool isParsingMSInlineAsm () { return ParsingMSInlineAsm; }
 
  void setParsingMSInlineAsm (bool Value) { ParsingMSInlineAsm = Value; }
 
 
 
  MCTargetOptions getTargetOptions() const { return MCOptions; }
 
 
 
  void setSemaCallback(MCAsmParserSemaCallback *Callback) {
 
    SemaCallback = Callback;
 
  }
 
 
 
  // Target-specific parsing of expression.
 
  virtual bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
 
    return getParser().parsePrimaryExpr(Res, EndLoc, nullptr);
 
  }
 
 
 
  virtual bool parseRegister(MCRegister &Reg, SMLoc &StartLoc,
 
                             SMLoc &EndLoc) = 0;
 
 
 
  /// tryParseRegister - parse one register if possible
 
  ///
 
  /// Check whether a register specification can be parsed at the current
 
  /// location, without failing the entire parse if it can't. Must not consume
 
  /// tokens if the parse fails.
 
  virtual OperandMatchResultTy
 
  tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) = 0;
 
 
 
  /// ParseInstruction - Parse one assembly instruction.
 
  ///
 
  /// The parser is positioned following the instruction name. The target
 
  /// specific instruction parser should parse the entire instruction and
 
  /// construct the appropriate MCInst, or emit an error. On success, the entire
 
  /// line should be parsed up to and including the end-of-statement token. On
 
  /// failure, the parser is not required to read to the end of the line.
 
  //
 
  /// \param Name - The instruction name.
 
  /// \param NameLoc - The source location of the name.
 
  /// \param Operands [out] - The list of parsed operands, this returns
 
  ///        ownership of them to the caller.
 
  /// \return True on failure.
 
  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 
                                SMLoc NameLoc, OperandVector &Operands) = 0;
 
  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 
                                AsmToken Token, OperandVector &Operands) {
 
    return ParseInstruction(Info, Name, Token.getLoc(), Operands);
 
  }
 
 
 
  /// ParseDirective - Parse a target specific assembler directive
 
  ///
 
  /// The parser is positioned following the directive name.  The target
 
  /// specific directive parser should parse the entire directive doing or
 
  /// recording any target specific work, or return true and do nothing if the
 
  /// directive is not target specific. If the directive is specific for
 
  /// the target, the entire line is parsed up to and including the
 
  /// end-of-statement token and false is returned.
 
  ///
 
  /// \param DirectiveID - the identifier token of the directive.
 
  virtual bool ParseDirective(AsmToken DirectiveID) = 0;
 
 
 
  /// MatchAndEmitInstruction - Recognize a series of operands of a parsed
 
  /// instruction as an actual MCInst and emit it to the specified MCStreamer.
 
  /// This returns false on success and returns true on failure to match.
 
  ///
 
  /// On failure, the target parser is responsible for emitting a diagnostic
 
  /// explaining the match failure.
 
  virtual bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 
                                       OperandVector &Operands, MCStreamer &Out,
 
                                       uint64_t &ErrorInfo,
 
                                       bool MatchingInlineAsm) = 0;
 
 
 
  /// Allows targets to let registers opt out of clobber lists.
 
  virtual bool OmitRegisterFromClobberLists(unsigned RegNo) { return false; }
 
 
 
  /// Allow a target to add special case operand matching for things that
 
  /// tblgen doesn't/can't handle effectively. For example, literal
 
  /// immediates on ARM. TableGen expects a token operand, but the parser
 
  /// will recognize them as immediates.
 
  virtual unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
 
                                              unsigned Kind) {
 
    return Match_InvalidOperand;
 
  }
 
 
 
  /// Validate the instruction match against any complex target predicates
 
  /// before rendering any operands to it.
 
  virtual unsigned
 
  checkEarlyTargetMatchPredicate(MCInst &Inst, const OperandVector &Operands) {
 
    return Match_Success;
 
  }
 
 
 
  /// checkTargetMatchPredicate - Validate the instruction match against
 
  /// any complex target predicates not expressible via match classes.
 
  virtual unsigned checkTargetMatchPredicate(MCInst &Inst) {
 
    return Match_Success;
 
  }
 
 
 
  virtual void convertToMapAndConstraints(unsigned Kind,
 
                                          const OperandVector &Operands) = 0;
 
 
 
  /// Returns whether two operands are registers and are equal. This is used
 
  /// by the tied-operands checks in the AsmMatcher. This method can be
 
  /// overridden to allow e.g. a sub- or super-register as the tied operand.
 
  virtual bool areEqualRegs(const MCParsedAsmOperand &Op1,
 
                            const MCParsedAsmOperand &Op2) const {
 
    return Op1.isReg() && Op2.isReg() && Op1.getReg() == Op2.getReg();
 
  }
 
 
 
  // Return whether this parser uses assignment statements with equals tokens
 
  virtual bool equalIsAsmAssignment() { return true; };
 
  // Return whether this start of statement identifier is a label
 
  virtual bool isLabel(AsmToken &Token) { return true; };
 
  // Return whether this parser accept star as start of statement
 
  virtual bool starIsStartOfStatement() { return false; };
 
 
 
  virtual const MCExpr *applyModifierToExpr(const MCExpr *E,
 
                                            MCSymbolRefExpr::VariantKind,
 
                                            MCContext &Ctx) {
 
    return nullptr;
 
  }
 
 
 
  // For actions that have to be performed before a label is emitted
 
  virtual void doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) {}
 
  
 
  virtual void onLabelParsed(MCSymbol *Symbol) {}
 
 
 
  /// Ensure that all previously parsed instructions have been emitted to the
 
  /// output streamer, if the target does not emit them immediately.
 
  virtual void flushPendingInstructions(MCStreamer &Out) {}
 
 
 
  virtual const MCExpr *createTargetUnaryExpr(const MCExpr *E,
 
                                              AsmToken::TokenKind OperatorToken,
 
                                              MCContext &Ctx) {
 
    return nullptr;
 
  }
 
 
 
  // For any initialization at the beginning of parsing.
 
  virtual void onBeginOfFile() {}
 
 
 
  // For any checks or cleanups at the end of parsing.
 
  virtual void onEndOfFile() {}
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_MC_MCPARSER_MCTARGETASMPARSER_H